
Jonathan Lacotte, Mohammad Ghavamzadeh, Yinlam Chow, Marco Pavone

A Proof of Theorem 1

Before proving the theorem, we first state and prove the following two technical lemmas that we will later use
them in the proof of Theoren 1.
Lemma 1 (Minimax). For any fixed policy π and any member of the risk envelop ζ ∈ Uπ such that ξ = 1+λζ

1+λ , let
Λ(f, ξ) = Eπ[ξFf ]−EπE [ξFf ] be the difference between the expected cumulative costs. Then, the following equality
holds:

sup
f∈C

inf
ζ∈Uπ

Λ

(
f,

1 + λζ

1 + λ

)
= inf
ζ∈Uπ

sup
f∈C

Λ

(
f,

1 + λζ

1 + λ

)
.

Proof. The function (f, ξ) 7→ Λ(f, ξ) is linear and continuous over C, and ξ is a linear function of ζ and is linear
and continuous over Uπ. Since C is convex and Uπ is nonempty, convex, and weakly compact, the result follows
from the Von Neumann-Fan minimax theorem [Borwein, 2016].

The result of Lemma 1 allows us to swap the min and max operators between the cost and risk envelops.

We now prove the following technical lemma that justifies the duality between the distorted occupation measure
and the risk-sensitive probability distribution pπξ = ξ · pπ over trajectories, for ξ = 1+λζ

1+λ , when ζ ∈ Uπ is any
element of the risk envelop.
Lemma 2. For any arbitrary pair (f, ξ) such that ζ ∈ Uπ, ξ = 1+λζ

1+λ , and f ∈ C, the following equality holds:

Eπ[ξ(τ)Cπf (τ)] =

∫
Γ

dπξ (s, a)f(s, a)ds da,

where dπξ is the γ-discounted ξ-distorted occupation measure of policy π.

Proof. See Theorem 3.1 in Altman [1999].

Using Lemma 1, for any arbitrary policy π, the following chain of equalities holds for the loss function of RS-GAIL:

Lλ(π, πE) = (1 + λ) sup
f∈C

ρλα[Cπf ]− ρλα[CπEf ]− ψ(f)

= (1 + λ) sup
f∈C

sup
ζ∈Uπ

E
[

1 + λζ

1 + λ
Cπf

]
− sup
ζ′∈UπE

E
[

1 + λζ ′

1 + λ
CπEf

]
− ψ(f)

= (1 + λ) sup
f∈C

sup
ζ∈Uπ

inf
ζ′∈UπE

E
[

1 + λζ

1 + λ
Cπf

]
− E

[
1 + λζ ′

1 + λ
CπEf

]
− ψ(f)

= (1 + λ) sup
ζ∈Uπ

sup
f∈C

inf
ζ′∈UπE

E
[

1 + λζ

1 + λ
Cπf

]
− E

[
1 + λζ ′

1 + λ
CπEf

]
− ψ(f).

By applying Lemma 1 to the last expression, the loss function in RS-GAIL can be expressed as

Lλ(π, πE) = sup
ζ∈Uπ

inf
ζ′∈UπE

sup
f∈C

(1 + λ) ·
(
E
[

1 + λζ

1 + λ
Cπf

]
− E

[
1 + λζ ′

1 + λ
Cπf

])
− ψ(f).

Furthermore, from Lemma 2, we deduce that for any ζ ∈ Uπ, ζ ′ ∈ UπE , and ξ = 1+λζ
1+λ , ξ′ = 1+λζ′

1+λ , the following
equality holds:

E
[

1 + λζ

1 + λ
Cπf

]
− E

[
1 + λζ ′

1 + λ
Cπf

]
=

∫
Γ

(
dπξ (s, a)− dπEξ′ (s, a)

)
f(s, a) ds da.

Combining the above results with the definitions of distorted occupation measure w.r.t. radon-nikodem derivative
ξ and policies π and πE , i.e., Dπξ and DπEξ , we finally obtain the following desired result:

Lλ(π, πE) = sup
d∈Dπξ

inf
d′∈DπEξ

ψ∗C((1 + λ)(d− d′)),

where the convex conjugate function with respect ψ∗C : RS×A → R is defined as

ψ∗C(d) = sup
f∈C
〈d, f〉 − ψ(f).
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B Proofs of RS-GAIL with Jensen Shannon Divergence

In this section, we aim to derive RS-GAIL using occupation measure matching via Jensen Shannon divergence.
Consider the original RS-GAIL formulation of Eq. 4 with fixed λ ≥ 0, i.e.,

(1 + λ) min
π

sup
f∈C

ρλα[Cπf ]− ρλα[CπEf ]. (15)

Following the derivation of the GAIL paper, we replace (15) with the following formulation:

min
π
−H(π) + sup

f∈C
ρλα[Cπf ]− ρλα[CπEf ]− ψ(f), (16)

where the entropy regularizer term H(π) incentivizes exploration in policy learning and the cost regularizer ψ(f)
regularizes the inverse reinforcement learning problem.

We first want to find the cost regularizer ψ(·) that leads to the Jensen Shannon divergence loss function between
the occupation measures. To proceed, we revisit the following technical lemma from Ho and Ermon [2016a]
about reformulating occupation measure matching as a general f−divergence minimization problem, where the
corresponding f−divergence is induced by a given strictly decreasing convex surrogate function φ.

Lemma 3. Let φ : R → R be a strictly decreasing convex function and Φ be the range of −φ. We define
ψφ : RS×A → R as

ψφ(f) =

{
(1 + λ)

(
−ρλα[CπEf ] + ρλα[GπEφ,f ]

)
if f(s, a) ∈ Φ, ∀s, a

∞ otherwise
, (17)

where GπEφ,f is the γ-discounted cumulative cost function GπEφ,f = −
∑∞
t=0 γ

tφ
(
− φ−1

(
− f(st, at)

))
that is induced

by policy πE. Then, ψφ is closed, proper, and convex. Using ψ = ψφ as the cost regularizer, the optimization
problem (5) is equivalent to

sup
d∈Dπξ

inf
d′∈DπEξ

−Rλ,φ(d, d′),

where Rλ,φ is the minimum expected risk induced by the surrogate loss function φ, i.e., Rλ,φ(d, d′) = (1 +
λ)
∑
s,a minγ∈R d(s, a)φ(γ) + d′(s, a)φ(−γ).

Proof. From (5), recall the following inner objective function of RS-GAIL:

Lλ(π, πE) = sup
f∈C

(1 + λ)
(
ρλα[Cπf ]− ρλα[CπEf ]− ψ(f)

)
.

Using the definition of the above regularizer (which is a difference of convex function in f), we have the following
chain of inequalities:

sup
d∈Dπξ

(1 + λ)
(
ρλα[Cπf ]− ρλα[CπEf ]

)
− ψφ(f) = (1 + λ) sup

f∈Φ
ρλα[Cπf ]− ρλα[GπEφ,f ]

= (1 + λ) sup
d∈Dπξ

sup
f∈Φ
〈d, f〉 − ρλα[GπEφ,f ]

(a)
= (1 + λ) sup

d∈Dπξ
sup
f∈Φ

inf
d′∈DπEξ

〈d, f〉 −
〈
d′, φ

(
− φ−1(−f)

)〉
(b)
= (1 + λ) sup

d∈Dπξ
inf

d′∈DπEξ
sup
f∈Φ
〈d, f〉 −

〈
d′, φ

(
− φ−1(−f)

)〉
,

where the first and second equalities follow from the definitions of ψφ and the dual representation theorem of
the coherent risk measure ρλα[CπEφ,f ]. (a) is based on the dual representation theorem of coherent risk ρλα[GπEφ,f ] =

supd′∈DπEξ

〈
d′,−φ

(
− φ−1(−f)

)〉
. (b) is based on strong duality, i.e., κd(d′, f) = 〈d, f〉 −

〈
d′, φ

(
− φ−1(−f)

)〉
is
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concave in f and is convex in d′, and both DπEξ and Φ are convex sets. Utilizing the arguments from Proposition
A.1 in Ho and Ermon [2016a], the above expression can be further rewritten as

(1 + λ) sup
d∈Dπξ

inf
d′∈DπEξ

sup
f∈Φ
〈d, f〉 −

〈
d′, φ

(
− φ−1(−f)

)〉
(a)
= (1 + λ) sup

d∈Dπξ
inf

d′∈DπEξ

∑
s,a

sup
f̃∈Φ

[
d(s, a)f̃ − d′(s, a)φ

(
− φ−1(−f̃)

)]
= (1 + λ) sup

d∈Dπξ
inf

d′∈DπEξ

∑
s,a

sup
γ∈R

[
d(s, a)

(
− φ(γ)

)
− d′(s, a)φ(−γ)

]
, where f = −φ(γ)

= sup
d∈Dπξ

inf
d′∈DπEξ

−Rλ,φ(d, d′).

(a) is due to the fact that the outer maximization on the first line is w.r.t. the cost function f , and the inner
maximization on the second line is w.r.t. an element of the cost function (which is denoted by f̃). The second
equality is due to the one-to-one mapping of f = −φ(γ). The third equality follows from the definition of
Rλ,φ(d, d′). This completes the proof.

B.1 Proof of Theorem 2

We now turn to the main result of this section. The following theorem transforms the loss function of RS-
GAIL into a Jensen Shannon divergence loss function using the cost regularizer in (17), with the logistic loss
φ(x) = log(1 + exp(−x)), as suggested by the discussions in Section 2.1.4 of Nguyen et al. [2009].

Recall from Lemma 3 that the inner problem of RS-GAIL (i.e., the problem in Eq. 6) can be rewritten as

sup
d∈Dπξ

inf
d′∈DπEξ

−Rλ,φ(d, d′).

Therefore, we can reformulate the objective function −Rφ(d, d′) in this problem as

−Rλ,φ(d, d′) = (1 + λ)
∑
s,a

max
γ∈R

d(s, a) log

(
1

1 + exp(−γ)

)
+ d′(s, a) log

(
1

1 + exp(γ)

)
= (1 + λ)

∑
s,a

max
γ∈R

d(s, a) log
(
σ(γ)

)
+ d′(s, a) log

(
1− σ(γ)

)
= (1 + λ) sup

f :S×A→(0,1)

∑
s,a

d(s, a) log
(
f(s, a)

)
+ d′(s, a) log

(
1− f(s, a)

)
,

where σ(γ) = 1/
(
1 + exp(−γ)

)
is a sigmoid function, and since its range is (0, 1), one can further express the

inner optimization problem using the discriminator form given in the third equality.

Now consider the objective function
∑
s,a d(s, a) log

(
f(s, a)

)
+ d′(s, a) log

(
1− f(s, a)

)
. This objective function is

concave in f and linear in d and d′. Using the minimax theorem in Lemma 1, one can swap the infd′∈DπEξ
and

supf :S×A→(0,1) operators in (6), i.e.,

sup
d∈Dπξ

inf
d′∈DπEξ

−Rφ(d, d′) = (1 + λ) · sup
d∈Dπξ

sup
f :S×A→(0,1)

inf
d′∈DπEξ

∑
s,a

d(s, a) log
(
f(s, a)

)
+ d′(s, a) log

(
1− f(s, a)

)
= (1 + λ) · sup

f :S×A→(0,1)

sup
d∈Dπξ

inf
d′∈DπEξ

∑
s,a

d(s, a) log
(
f(s, a)

)
+ d′(s, a) log

(
1− f(s, a)

)
.

Furthermore, using the equivalence of supremum (or infimum) between the set of distorted occupation measure
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Dπξ (or DπEξ ) and the set of risk envelop Uπ (or UπE ), we can show the following chain of equalities:

1

1 + λ
· sup
ζ∈Uπ :ξ= 1+λζ

1+λ

inf
ζ′∈UπE :ξ′= 1+λζ′

1+λ

−Rφ(dπξ , d
πE
ξ′ )

= sup
f :S×A→(0,1)

sup
ζ∈Uπ :ξ= 1+λζ

1+λ

inf
ζ′∈UπE :ξ′= 1+λζ′

1+λ

∑
s,a

dπξ (s, a) log
(
f(s, a)

)
+ dπEξ′ (s, a) log

(
1− f(s, a)

)
= sup
f :S×A→(0,1)

sup
ζ∈Uπ :ξ= 1+λζ

1+λ

∑
s,a

dπξ (s, a) log
(
f(s, a)

)
− sup
ζ′∈UπE :ξ′= 1+λζ′

1+λ

∑
s,a

dπEξ′ (s, a)
(
− log

(
1− f(s, a)

))
= sup
f :S×A→(0,1)

ρλα[Fπ1,f ]− ρλα[−FπE2,f ],

where the first and second equalities follow from basic arguments in optimization theory, and the third equality
follows from the dual representation theory of the coherent risk measures ρλα[Fπ1,f ] and ρλα[−FπE2,f ].

Combining this result with the original problem formulation in (16) completes the proof.

B.2 Proof of Corollary 1

In order to show the following equality:

(1 + λ) sup
f :S×A→(0,1)

ρλα[Fπ1,f ]− ρλα[−FπE2,f ] = (1 + λ) sup
d∈Dπξ

inf
d′∈DπEξ

DJS(d, d′),

we utilize the fact that the left-hand-side is equal to

sup
d∈Dπξ

inf
d′∈DπEξ

−Rφ(d, d′).

In proving Corollary 1, we instead show that the following equality holds:

sup
d∈Dπξ

inf
d′∈DπEξ

−Rφ(d, d′) = (1 + λ) sup
d∈Dπξ

inf
d′∈DπEξ

DJS(d, d′). (18)

For any d ∈ Dπξ and d′ ∈ DπEξ , consider the optimization problem∑
s,a

max
f̃∈(0,1)

d(s, a) log(f̃) + d′(s, a) log(1− f̃). (19)

For each state-action pair (s, a), since the optimization problem has a concave objective function, by the first
order optimality, f̃∗ can be found as

(1− f̃∗)d(s, a)− f̃∗d′(s, a) = 0 =⇒ f̃∗ =
d(s, a)

d(s, a) + d′(s, a)
∈ (0, 1).

By putting the optimizer back to the problem, one can show that (19) may be rewritten as∑
s,a

d(s, a) log

(
d(s, a)

d(s, a) + d′(s, a)

)
+ d′(s, a) log

(
d′(s, a)

d(s, a) + d′(s, a)

)
.

Then by putting this result back to (18), one may show that

sup
d∈Dπξ

inf
d′∈DπEξ

−Rφ(d, d′) = (1 + λ)
(
− log(4) + sup

d∈Dπξ
inf

d′∈DπEξ
DJS(d, d′)

)
,

which completes the proof.
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C Proofs of RS-GAIL with Wasserstein Distance

C.1 Proof of Corollary 2

Corollary 2. For the cost function regularizer ψ(f) :=

{
0 if f ∈ F1

+∞ otherwise
, we may write

Lλ(π, πE) = (1 + λ) sup
d∈Dπξ

inf
d′∈DπEξ

W (d, d′).

Proof. From Eq. 6, we may write

Lλ(π, πE) = sup
d∈Dπξ

inf
d′∈DπEξ

ψ∗
(
(1 + λ)(d− d′)

)
(a)
= (1 + λ) sup

d∈Dπξ
inf

d′∈DπEξ
sup
f∈C

(d− d′)>f − ψ(f)

(b)
= (1 + λ) sup

d∈Dπξ
inf

d′∈DπEξ
sup
f∈F1

(d− d′)>f

= (1 + λ) sup
d∈Dπξ

inf
d′∈DπEξ

sup
f∈F1

Ed[f(s, a)]− Ed′ [f(s, a)]

(c)
= (1 + λ) sup

d∈Dπξ
inf

d′∈DπEξ
W (d, d′),

(a) is from the definition of ψ∗, (b) is from the definition of ψ(f), and (c) is from the definition of the Wasserstein
distance.

C.2 Proof of Theorem 3

Theorem 3. Let ∆ be the worst-case risk difference between the agent and the expert, given that their occupancy
measures are δ-close (δ > 0), i.e.,

∆ = sup
p,p0,π

sup
f∈F1

ρα[Cπf ]− ρα[CπEf ], s.t. W (dπ, dπE ) ≤ δ.

Then, ∆ ≥ δ
α .

Proof. Let ‖ · ‖ be a norm on the state-action space S ×A and denote by Γ the set of all trajectories with horizon
T . For a trajectory τ = (s0, a0, s1, . . . , sT , aT ) ∈ Γ, we define ‖τ‖Γ =

∑T
t=0 γ

t‖(st, at)‖. The function ‖ · ‖Γ
defines a norm on the trajectory space Γ. Let G1 be the space of 1-Lipschitz functions over Γ w.r.t. ‖ · ‖Γ. In
particular, for f ∈ F1 and trajectories τ and τ ′, we have

|Cf (τ)− Cf (τ ′)| = |
T∑
t=0

γt (f(st, at)− f(s′t, a
′
t)) |

≤
T∑
t=0

γt|f(st, at)− f(s′t, a
′
t)|

(a)
≤

T∑
t=0

γt‖(st, at)− (s′t, a
′
t)‖

= ‖τ − τ ′‖Γ,

where (a) holds because f is 1-Lipschitz over S ×A. Hence, for f ∈ F1, we have Cf ∈ G1. This implies that{
(π, p, p0) |W (pπ, pπE ) ≤ δ

}
⊆
{

(π, p, p0) |W (dπ, dπE ) ≤ δ
}
, (20)
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where pπ and pπE denote the distributions over Γ induced by (π, p, p0) and (πE , p, p0), respectively. Indeed, if
(π, p, p0) ∈

{
(π, p, p0) |W (pπ, pπE ) ≤ δ

}
, then for any G ∈ G1, we have

Epπ
[
G(τ)

]
− EpπE

[
G(τ)

]
≤ δ.

For f ∈ F1, since Cf ∈ G1, we obtain Epπ
[
Cf (τ)

]
− EpπE

[
Cf (τ)

]
≤ δ, which proves (20). Therefore, we can

lower-bound ∆ as
∆ ≥ ∆̃ := sup

f∈F1

sup
(π,p,p0);W (pπ,pπE )≤δ

ρα[Cπf ]− ρα[CπEf ]. (21)

Using Theorem 15 in Pichler [2013], we have that ∆̃ ≥ δ
α , which concludes the proof.
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D Algorithmic Details

D.1 JS-RS-GAIL

D.1.1 Gradient Formulas

In order to derive the expression of the gradients for JS-RS-GAIL, we first make the following assumption
regarding the uniqueness of the quantiles of the random cumulative cost w.r.t. any cost and policy parameters.
Assumption 1. For any α ∈ (0, 1), θ ∈ Θ, and w ∈ W, there exists a unique zθα ∈ R (respectively zπEα ∈ R) such
that P[Fπθ1,fw

≤ zθα] = 1− α (respectively P[−FπE2,fw
≤ zπEα ] = 1− α).

Lemma 4. Let θ ∈ Θ and w ∈ W. Then,

1. ρα[Fπθ1,fw
] = infν∈R

(
ν + 1

αE[Fπθ1,fw
− ν]+

)
, where x+ = max(x, 0).

2. There exists a unique ν∗ ∈ R such that ρα[Fπθ1,fw
] = ν∗ + 1

αE[Fπθ1,fw
− ν∗]+.

3. ν∗ = να(Fπθ1,fw
).

Proof. The first item is a standard result about the Conditional-Value-at-Risk (see Shapiro et al. [2014]). The
second and third items stem from Assumption 1 and Theorem 6.2 in Shapiro et al. [2014].

Lemma 5. For any θ ∈ Θ and any w ∈ W, we have

∇wρα[Fπθ1,fw
] =

1

α
E
[
1{Fπθ1,w(τ)≥να(F

πθ
1,w)}∇wF

πθ
1,w(τ)

]
,

∇wρα[−FπE2,fw
] = − 1

α
E
[
1{−FπE2,w(τ)≥να(−FπE2,w)}∇wF

πE
2,w(τ)

]
.

Proof. From Lemma 4, for any ε > 0, we have

ρα[Fπθ1,fw
] = inf

ν∈[ν∗w−ε,ν∗w+ε]

(
ν +

1

α
E[Fπθ1,fw

− ν]+

)
, (22)

where ν∗ = να(Fπθ1,fw
). The set of minimizers Λ of the RHS of (22) is the singleton {ν∗w}. The in-

terval [ν∗ − ε, ν∗ + ε] is nonempty and compact. Using Assumption 1, for any ν ∈ R, the function
w 7→ ν + 1

αE[Fπθ1,fw
− ν]+ is differentiable and the function (w, ν) 7→ ∇w

(
ν + 1

αE[Fπθ1,fw
− ν]+

)
is continuous.

Therefore, we can apply Danskin’s theorem [Shapiro et al., 2014] to deduce that w 7→ ρα[Fπθ1,fw
] is differentiable

and ∇wρα[Fπθ1,fw
] = ∇w

(
ν∗ + 1

αE[Fπθ1,fw
− ν∗]+

)
. It is immediately observed that ∇w

(
ν∗ + 1

αE[Ffw − ν∗]+
)

=

Eθ
[

1
α1{Fπθ1,fw

(τ)≥να(F
πθ
1,fw

)}∇wF
πθ
1,fw

(τ)
]
. Similar steps can be carried out to show that ∇wρα[−FπE2,fw

] =

− 1
αE
[
1{−FπE2,fw

(τ)≥να(−FπE2,fw
)}∇wF

πE
2,fw

(τ)
]
.

Lemma 6. For any θ ∈ Θ, the causal entropy gradient is given by

∇θH(πθ) = Edπθ
[
∇θ log πθ(a | s)Qlog(s, a)

]
, (23)

where Qlog(s̄, ā) = Edπθ
[
− log πθ(a | s) | s0 = s̄, a0 = ā

]
.

Proof. We refer to the proof of Lemma A.1 in Ho and Ermon [2016a].

Lemma 7. For any θ ∈ Θ and w ∈ W, we have

∇θρα[Fπθ1,fw
] =

1

α
E
[
∇θ log πθ(τ)

(
Fπθ1,fw

(τ)− να(Fπθ1,fw
)
)

+

]
, (24)

where ∇θ log πθ(τ) =
∑T
t=0∇θ log πθ(at | st) with τ = (s0, a0, . . . , sT , aT ).

Proof. We refer the reader to the proof in Tamar et al. [2015a, 2017].



Risk-Sensitive Generative Adversarial Imitation Learning

D.1.2 Estimation of the VaR and Gradients

Estimation of the VaR
Corollary 3. Let {τj}Nj=1 be trajectories sampled independently from πθ. Given a cost function parameter w ∈ W,

let
(
Fπθ1,fw

(τ(1)), . . . , F
πθ
1,fw

(τ(N))
)
be the order statistic of the sampled trajectories, i.e.,

Fπθ1,fw
(τ(1)) ≤ . . . ≤ Fπθ1,fw

(τ(N)).

Then, a consistent estimator ν̂α(Fπθ1,fw
) of the Value-at-Risk να(Fπθ1,fw

) is given by the (1−α)-quantile of the order

statistic
(
Fπθ1,fw

(τ(1)), . . . , F
πθ
1,fw

(τ(N))
)
.

Similarly, let {τEj }Nj=1 be trajectories sampled independently from πE. If
(
−FπE2,fw

(τE(1)), . . . ,−F
πE
2,fw

(τE(N))
)
is the

order statistic of the sampled expert trajectories, then a consistent estimator ν̂α(−FπE2,fw
) of the Value-at-Risk

να(−FπE2,fw
) is given by the (1− α)-quantile of the order statistic

(
−FπE2,fw

(τE(1)), . . . ,−F
πE
2,fw

(τE(N))
)
.

Estimation of the Gradients
Corollary 4. Given trajectories {τj}Nj=1 sampled from πθ, trajectories {τEj }

NE
j=1 sampled from πE, and a cost

function parameter w ∈ W, a consistent estimator of the gradient of (1 + λ)
(
ρλα[Fπθ1,fw

]− ρλα[−FπE2,fw
]
)
w.r.t. w is

given by

1

αN

N∑
j=1

(
α+ λ1{

F
πθ
1,fw

(τj)≥ν̂α(F
πθ
1,fw

)
})∇wFπθ1,fw

(τj) +
1

αNE

NE∑
j=1

(
α+ λ1{

−FπE2,fw
(τEj )≥ν̂α(−FπE2,fw

)
})∇wFπE2,fw

(τEj ).

The two other gradients are estimated using standard Monte-Carlo techniques from the reinforcement learning
literature [Sutton et al., 2000, Ziebart et al., 2008].

D.2 W-RS-GAIL

D.2.1 Gradient Formulas

Using similar assumptions and technical arguments as for JS-RS-GAIL, we obtain the following expressions for
the gradients of W-RS-GAIL.
Theorem 4 (W-RS-GAIL, gradient w.r.t. the cost function parameter).

∇w(1 + λ)
(
ρλα[Cπθfw ]− ρλα[CπEfw ]

)
=

1

α
E
[(
α+ λ1{

C
πθ
fw

(τ)≥να(C
πθ
fw

)
})∇wCπθfw(τ)

]
− 1

α
E
[(
α+ λ1{

C
πE
fw

(τ)≥να(C
πE
fw

)
})∇wCπEfw (τ)

]
.

Theorem 5 (W-RS-GAIL, gradient w.r.t. the policy parameter).

∇θρλα[Cπθfw ] =
1

α
E
[
∇θ log πθ(τ)

(
Cπθfw(τ)− να(Cπθfw)

)
+

]
.

D.2.2 Estimation of the VaR and Gradients

Estimation of the VaR
Corollary 5. Let {τj}Nj=1 be trajectories sampled independently from πθ. Given a cost function parameter w ∈ W,

let
(
Cπθfw(τ(1)), . . . , C

πθ
fw

(τ(N))
)
be the order statistic of the sampled trajectories, i.e.,

Cπθfw(τ(1)) ≤ . . . ≤ Cπθfw(τ(N)).

Then, a consistent estimator ν̂α(Cπθfw) of the Value-at-Risk να(Cπθfw) is given by the (1− α)-quantile of the order

statistic
(
Cπθfw(τ(1)), . . . , C

πθ
fw

(τ(N))
)
.
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Similarly, let {τEj }Nj=1 be trajectories sampled independently from πE. If
(
CπEfw (τE(1)), . . . , C

πE
fw

(τE(N))
)
is the order

statistic of the sampled expert trajectories, then a consistent estimator ν̂α(CπEfw ) of the Value-at-Risk να(CπEfw ) is

given by the (1− α)-quantile of the order statistic
(
CπEfw (τE(1)), . . . , C

πE
fw

(τE(N))
)
.

Estimation of the Gradients

Corollary 6. Given trajectories {τj}Nj=1 sampled from πθ, trajectories {τEj }
NE
j=1 sampled from πE, and a cost

function parameter w ∈ W, a consistent estimator of ∇w(1 + λ)
(
ρλα[Cπθfw ]− ρλα[CπEfw ]

)
is given by

1

αN

N∑
j=1

(
α+ λ1{

C
πθ
fw

(τj)≥ν̂α(C
πθ
fw

)
})∇wCπθfw(τj)−

1

αNE

NE∑
j=1

(
α+ λ1{

C
πE
fw

(τEj )≥ν̂α(C
πE
fw

)
})∇wCπEfw (τEj ).

The two other gradients are estimated using standard Monte-Carlo techniques from the reinforcement learning
literature [Sutton et al., 2000, Ziebart et al., 2008].



Risk-Sensitive Generative Adversarial Imitation Learning

E Adding Noise to the Cost Function of Hopper and Walker

For each (deterministic) environment, we pre-train an expert’s policy πE using TRPO. We introduce stochasticity
in the cost function in a way that (i) increases the risk-sensitivity of the expert policy πE w.r.t. the modified cost
function and (ii) makes the environment stochastic enough to have a meaningful assessment of risk in terms of
tail performance.

Hopper: Given the deterministic cost function c(s, a) of the original implementation, we introduce randomness
into c(s, a) as follows: We generate 500 trajectories from the expert’s policy πE . Then, we run a K-Means
clustering algorithm with K = 15 over the set of collected state-action pairs D. We set {wi}K=15

i=1 to be the
relative proportion of the expert’s state-action pairs in the i-th cluster. These weights give us a rough estimate of
the occupancy measure of the expert’s policy. For any other (unobserved in the expert’s trajectories) state-action
pair (s, a) ∈ S ×A, we compute the closest observed state-action pair w.r.t. the Euclidean distance, i.e., (ŝ, â) ∈ D.
Let j be the index of the cluster that (ŝ, â) belongs to. We define the noisy cost function crandom(s, a) to be

crandom(s, a) :=
1

0.2 +
√
wj
|Z| c(s, a),

where Z ∼ N (0, 1) is a standard Gaussian random variable truncated between −10 and 10. The lower the value
of wj (i.e., the less ’time’ the expert spends in the region of the state-action space around (s, a)), the higher the
random gain 1

0.2+
√
wj
|Z|. Therefore, a low value of wj , combined with the random cost crandom(s, a), corresponds,

a posteriori, to a region the expert considers as risky.

Walker: We use the exact same procedure as in Hopper for Walker, with the cost function crandom defined as

crandom(s, a) :=
0.4√

max(0.01, wj − 0.02)
|Z| c(s, a),

where Z ∼ N (0, 1) is a standard Gaussian random variable truncated between −10 and 10.

The numerical values defined the modified cost functions cN (s, a) were chosen before running any imitation
learning algorithm.
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