A Proofs

A.1 Proof of Lemma 3.4

In parametric minimization problems, such as encountered in the definitions of ϕ -prox and ϕ -envelope, a sufficient condition for the continuity of the arg min map is given by uniform level boundedness [22, Definition 1.16 and Theorem 1.17] of the map $h: (z, v) \mapsto f(z) + \frac{1}{\lambda}\phi(v-z)$.

Definition A.1 (uniform level boundedness). We say a function $h : \mathbb{R}^m \times \mathbb{R}^m \to \overline{\mathbb{R}}$ with values h(z, v) is level-bounded in z locally uniformly in v if for each $\overline{v} \in \mathbb{R}^m$ and $\alpha \in \mathbb{R}$ there is a neighborhood V of \overline{v} along with a bounded set $X \subset \mathbb{R}^m$ such that

$$\{z: h(z,v) \le \alpha\} \subset X$$

for all $v \in V$.

In the next lemma we establish the uniform level boundedness of the map $h: (z, v, \xi) \mapsto f(z) + \frac{1}{\lambda}\phi(v-z) - \langle \xi, z \rangle$ from ϕ -prox-boundedness so that [22, Theorem 1.17] can be invoked to assert the continuity of ϕ -prox and ϕ envelope. The Lemma is stated in a more general form including an additional linear term $\langle \xi, z \rangle$, which is needed later on in the proof of Theorem 4.3, see Section A.2.

Lemma A.2. Let $f : \mathbb{R}^m \to \overline{\mathbb{R}}$ be proper lsc and ϕ -prox-bounded with threshold $\lambda_f > 0$. Then for any $\lambda \in (0, \lambda_f)$, the function $h : \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^m \to \overline{\mathbb{R}}$, defined via

$$h(z,\xi,v) := f(z) + \frac{1}{\lambda}\phi(v-z) - \langle \xi, z \rangle,$$

is level-bounded in z locally uniformly in (ξ, v) .

Proof. We assume the contrary: More precisely let $\lambda \in (0, \lambda_f)$ and assume that h is not level-bounded in z locally uniformly in v. On the one hand, this means that there exist $\bar{v}, \bar{\xi} \in \mathbb{R}^m$, $\alpha \in \mathbb{R}$ and sequences $v^{\nu} \to \bar{v}$, $\xi^{\nu} \to \bar{\xi}$ and $z^{\nu}, \|z^{\nu}\| \to \infty$ such that

$$f(z^{\nu}) + \frac{1}{\lambda}\phi(v^{\nu} - z^{\nu}) - \langle \xi^{\nu}, z^{\nu} \rangle \le \alpha.$$

On the other hand, we know that

$$f(z^{\nu}) + \frac{1}{\lambda'}\phi(v^{\nu} - z^{\nu}) \ge \beta,$$

for some $\lambda' > \lambda$, with $\lambda' \in (0, \lambda_f)$ and ν sufficiently large. Summing the inequalities yields:

$$\left(\frac{1}{\lambda} - \frac{1}{\lambda'}\right)\phi(v^{\nu} - z^{\nu}) - \langle \xi^{\nu}, z^{\nu} \rangle \le \alpha - \beta.$$

Due to the super-coercivity of ϕ , for $\nu \to \infty$ this yields $\infty \leq \alpha - \beta$, a contradiction.

Now we are ready to prove Lemma 3.4 invoking [22, Theorem 1.17]:

Lemma. Let $f : \mathbb{R}^m \to \overline{\mathbb{R}}$ be proper lsc and ϕ -prox-bounded with threshold $\lambda_f > 0$. Then for any $\lambda \in (0, \lambda_f)$, $P^{\phi}_{\lambda}f$ and $e^{\phi}_{\lambda}f$ have the following properties:

- (i) $P_{\lambda}^{\phi}f(v) \neq \emptyset$ is compact for all $v \in \operatorname{dom} e_{\lambda}^{\phi}f = \operatorname{dom} f + \operatorname{dom} \phi$, whereas $P_{\lambda}^{\phi}f(v) = \emptyset$ for $v \notin \operatorname{dom} e_{\lambda}^{\phi}f$.
- (ii) The ϕ -envelope $e^{\phi}_{\lambda} f$ is continuous relative to dom $e^{\phi}_{\lambda} f$.
- (iii) For any sequence $v^{\nu} \to \bar{v}$ contained in dom $e^{\phi}_{\lambda} f$ and $z^{\nu} \in P^{\phi}_{\lambda} f(v^{\nu})$ we have $\{z^{\nu}\}_{\nu \in \mathbb{N}}$ is bounded and all its cluster points \bar{z} lie in $P^{\phi}_{\lambda} f(\bar{v})$.

Proof. Obviously it holds for the domain that dom $e_{\lambda}^{\phi}f = \text{dom} f + \text{dom} \phi$. In view of Lemma A.2 (with $\xi = 0$) we assert that $h : (z, v) \mapsto f(z) + \frac{1}{\lambda}\phi(v-z)$ is level-bounded in z locally uniformly in v. Then we may invoke [22, Theorem 1.17] to assert that $P_{\lambda}^{\phi}f(v) \neq \emptyset$ is compact for any $v \in \text{dom} e_{\lambda}^{\phi}f$ whereas $P_{\lambda}^{\phi}f(v) = \emptyset$ for $v \notin \text{dom} e_{\lambda}^{\phi}f$

and in addition for any $\bar{v} \in \operatorname{dom} e_{\lambda}^{\phi} f$ and any sequence $z^{\nu} \in P_{\lambda}^{\phi} f(v^{\nu})$ with $v^{\nu} \to \bar{v}$ contained in $\operatorname{dom} e_{\lambda}^{\phi} f$, that $\{z^{\nu}\}_{\nu \in \mathbb{N}}$ is bounded. Furthermore, as ϕ is continuous relative to its domain, we know for some $\bar{z} \in P_{\lambda}^{\phi} f(\bar{v})$ that $h(\bar{z}, \cdot)$ is continuous relative to $\bar{z} + \operatorname{dom} \phi$ containing \bar{v} . Through [22, Theorem 1.17] all cluster points of the sequence $z^{\nu} \in P_{\lambda}^{\phi} f(v^{\nu})$ lie in $P_{\lambda}^{\phi} f(\bar{v})$ and $e_{\lambda}^{\phi} f(v^{\nu}) \to e_{\lambda}^{\phi} f(\bar{v})$ and therefore $e_{\lambda}^{\phi} f$ is continuous at \bar{v} relative to $\operatorname{dom} e_{\lambda}^{\phi} f$. Since this holds for all $\bar{v} \in \operatorname{dom} e_{\lambda}^{\phi} f$, $e_{\lambda}^{\phi} f$ is continuous relative to $\operatorname{dom} e_{\lambda}^{\phi} f$.

A.2 Proof of Theorem 4.3

In order to prove the desired statement we need the following intermediate result. For the sake of notational convenience recall the notion of Bregman distances as a short-hand notation for $\phi(w') - \phi(w) - \langle \nabla \phi(w), w' - w \rangle$: **Definition A.3** (Bregman distance). The ϕ -induced Bregman distance $B_{\phi} : \mathbb{R}^m \times \mathbb{R}^m \to \overline{\mathbb{R}}$ is defined by

$$B_{\phi}(w',w) = \begin{cases} \phi(w') - \phi(w) - \langle \nabla \phi(w), w' - w \rangle & \text{if } w \in \operatorname{int}(\operatorname{dom} \phi) \\ +\infty & otherwise. \end{cases}$$
(19)

Lemma A.4. Let $f : \mathbb{R}^m \to \overline{\mathbb{R}}$ proper lsc and ϕ -prox-bounded with threshold λ_f . In addition assume that f is finite and prox-regular at \overline{z} for $\overline{y} \in \partial f(\overline{z})$ such that the subgradient inequality (11) is satisfied by constants r > 0 and $\epsilon > 0$ and let $\overline{v} \in \overline{z} + \operatorname{dom} \phi$. Then the following inequality holds for all $z \in \mathbb{R}^m$ and $r_1 \ge \max\{r, \lambda_f^{-1}\}$ sufficiently large:

$$f(z) \ge f(\bar{z}) + \langle \bar{y}, z - \bar{z} \rangle - r_1 B_{\phi(\bar{v} - \cdot)}(z, \bar{z}).$$

$$\tag{20}$$

Proof. By prox-regularity of f we know there exist r > 0 and $\epsilon > 0$ such that the subgradient inequality

$$f(z) \ge f(\bar{z}) + \langle \bar{y}, z - \bar{z} \rangle - \frac{r}{2} \|z - \bar{z}\|^2, \tag{21}$$

holds for $||z - \bar{z}|| < \epsilon$. By Assumption (A3) and [4, Proposition 2.10] we have that

$$B_{\phi(\bar{v}-\cdot)}(z,\bar{z}) = \phi(\bar{v}-z) - \phi(\bar{v}-\bar{z}) + \langle \nabla \phi(\bar{v}-\bar{z}), z-\bar{z} \rangle \ge \frac{\mu}{2} \|z-\bar{z}\|^2,$$
(22)

for some $\mu > 0$. Summing (21) and (22) yields (20), which holds for any z with $||z - \bar{z}|| < \epsilon$ and $r_1 \ge \frac{r}{\mu}$. To show the assertion we prove that (20) also holds for any z with $||z - \bar{z}|| \ge \epsilon$ for $r_1 \ge \max\{\frac{r}{\mu}, \lambda_f^{-1}\}$ sufficiently large. By ϕ -prox-boundedness it holds for $\lambda \in (0, \lambda_f)$ and $\bar{v} \in \operatorname{dom} e_{\lambda}^{\phi} f$ that $+\infty > e_{\lambda}^{\phi} f(\bar{v}) > -\infty$. We have

$$f(z) \ge e_{\lambda}^{\phi} f(\bar{v}) - \frac{1}{\lambda} \phi(\bar{v} - z), \tag{23}$$

showing, that the desired inequality (20) is implied by

$$e_{\lambda}^{\phi}f(\bar{v}) - \frac{1}{\lambda}\phi(\bar{v}-z) \ge f(\bar{z}) + \langle \bar{y}, z - \bar{z} \rangle - r_1 B_{\phi(\bar{v}-\cdot)}(z,\bar{z}),$$

which is equivalent to

$$(r_1 - \lambda^{-1})B_{\phi(\bar{v} - \cdot)}(z, \bar{z}) \ge f(\bar{z}) - e_{\lambda}^{\phi}f(\bar{v}) + \langle \bar{y}, z - \bar{z} \rangle + \frac{1}{\lambda}\phi(\bar{v} - \bar{z}) - \frac{1}{\lambda} \langle \nabla \phi(\bar{v} - \bar{z}), z - \bar{z} \rangle,$$

and (using Cauchy-Schwarz) implied by

$$(r_1 - \lambda^{-1}) \frac{B_{\phi(\bar{v} - \cdot)}(z, \bar{z})}{\|z - \bar{z}\|} \ge \frac{f(\bar{z}) - e_{\lambda}^{\phi} f(\bar{v}) + \frac{1}{\lambda} \phi(\bar{v} - \bar{z})}{\|z - \bar{z}\|} + \|\bar{y} - \lambda^{-1} \nabla \phi(\bar{v} - \bar{z})\|.$$
(24)

Due to the super-coercivity of ϕ (24) holds for z with $||z - \bar{z}|| \ge \gamma$ for some $\gamma > 0$ sufficiently large. To make (24) also hold for z with $\epsilon \le ||z - \bar{z}|| < \gamma$ we can choose $r_1 > \max\{r, \lambda_f^{-1}\}$ sufficiently large as $B_{\phi(\bar{v}-\cdot)}(z, \bar{z})$ is bounded away from zero, due to the strict convexity of $\phi(\bar{v} - \cdot)$.

Throughout the proof we work with graphical localizations of set-valued mappings F, which are constructed graphically by intersecting the graph of F with some neighborhood of some reference point $(\bar{z}, \bar{y}) \in \text{gph } F$:

Definition A.5 (graphical localization). For $F : \mathbb{R}^m \rightrightarrows \mathbb{R}^n$ and a pair $(\bar{z}, \bar{y}) \in \operatorname{gph} F$, a graphical localization of F at \bar{z} for \bar{y} is a set-valued mapping T such that

$$\operatorname{gph} T = (U \times V) \cap \operatorname{gph} F$$

for some neighborhoods U of \bar{z} and V of \bar{y} , so that

$$T(z) := \begin{cases} F(z) \cap V & \text{if } z \in U, \\ \emptyset & \text{otherwise.} \end{cases}$$
(25)

In the proof of Theorem 4.3, we shall invoke the following generalized implicit function theorem specialized from [11, Theorem 2B.7], originally due to Robinson [20] for analyzing the solutions of parametric variational inequalities.

Theorem A.6 (generalized implicit function theorem). Consider a function $G : \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m$ and a set-valued map $T : \mathbb{R}^m \rightrightarrows \mathbb{R}^m$ with $(\bar{v}, \bar{z}) \in \text{int dom } G$ and $0 \in G(\bar{v}, \bar{z}) + T(\bar{z})$, and suppose that

$$\widehat{\operatorname{lip}}_{v}(G;(\bar{v},\bar{z})) := \limsup_{\substack{v,v' \to \bar{v} \\ z \to \bar{z} \\ v \neq v'}} \frac{\|G(v,z) - G(v',z)\|}{\|v - v'\|} \le \gamma < \infty.$$

Let $H : \mathbb{R}^m \to \mathbb{R}^m$ be a strict estimator of G w.r.t. z uniformly in v at (\bar{v}, \bar{z}) with constant μ , i.e.,

$$\widehat{\operatorname{lip}}_z(e;(\bar{v},\bar{z})) \le \mu < \infty \quad \text{for } e(v,z) = G(v,z) - H(z).$$

Suppose that $(H+T)^{-1}$ has a Lipschitz continuous single-valued localization around 0 for \bar{z} with modulus κ and $\kappa \mu < 1$. Then the solution mapping

$$S: v \in \mathbb{R}^m \mapsto \{z \in \mathbb{R}^m : 0 \in G(v, z) + T(z)\}$$

has a Lipschitz continuous single-valued localization around \bar{v} for \bar{z} with modulus $\frac{\kappa\gamma}{1-\kappa\mu}$.

We are now ready to prove the desired statement Theorem 4.3:

Theorem. Let $f : \mathbb{R}^m \to \overline{\mathbb{R}}$ proper lsc and ϕ -prox-bounded with threshold λ_f . Let $\overline{v} \in \overline{z} + \operatorname{dom} \phi$. Then for any $\lambda \in (0, \lambda_f)$ sufficiently small and f finite and prox-regular at \overline{z} for $\overline{y} \in \partial f(\overline{z})$ with

$$\bar{y} = \frac{1}{\lambda} \nabla \phi(\bar{v} - \bar{z})$$

the following statements hold true:

(i) $P^{\phi}_{\lambda}f$ is a singled-valued, Lipschitz map near \bar{v} such that $\bar{z} = P^{\phi}_{\lambda}f(\bar{v})$ and

$$P^{\phi}_{\lambda}f(v) = (I + \nabla\phi^* \circ \lambda T)^{-1}(v), \tag{26}$$

where T is the f-attentive ϵ -localization of ∂f near (\bar{z}, \bar{y}) , i.e. the set-valued mapping $T : \mathbb{R}^m \rightrightarrows \mathbb{R}^m$ defined by $T(z) := \{y \in \partial f(z) : \|y - \bar{y}\| < \epsilon\}$ if $\|z - \bar{z}\| < \epsilon$ and $f(z) < f(\bar{z}) + \epsilon$, and $T(z) := \emptyset$ otherwise.

(ii) $e^{\phi}_{\lambda} f$ is Lipschitz differentiable around \bar{v} with

$$\nabla e^{\phi}_{\lambda} f(v) = \frac{1}{\lambda} \nabla \phi(v-z).$$
⁽²⁷⁾

Proof. (i) Due to the prox-regularity at \bar{z} for \bar{y} with constants $\epsilon > 0$ and r > 0 and the ϕ -prox-boundedness of f with threshold λ_f we can invoke Lemma A.4 to assert that for some $\lambda \in (0, \min\{\lambda_f, r^{-1}\})$ sufficiently small the following inequality holds globally for all $z \neq \bar{z}$:

$$f(z) + \frac{1}{\lambda}\phi(\bar{v} - z) > f(\bar{z}) + \frac{1}{\lambda}\phi(\bar{v} - \bar{z}) + \langle \bar{y}, z - \bar{z} \rangle - \frac{1}{\lambda} \langle \nabla \phi(\bar{v} - \bar{z}), z - \bar{z} \rangle.$$

$$(28)$$

By assumption $\bar{y} = \frac{1}{\lambda} \nabla \phi(\bar{v} - \bar{z})$ showing that

$$f(z') + \frac{1}{\lambda}\phi(\bar{v} - z') > f(\bar{z}) + \frac{1}{\lambda}\phi(\bar{v} - \bar{z}),$$

for any $z' \neq \bar{z}$. Therefore we can assert $P^{\phi}_{\lambda} f(\bar{v}) = \bar{z}$.

Due to the ϕ -prox-boundedness of f and the coercivity of ϕ we can invoke Lemma A.2 to assert that $h(z,v) := f(z) + \frac{1}{\lambda}\phi(v-z)$ is level-bounded in z locally uniformly in v. By Lemma 3.4 it follows that $P_{\lambda}^{\phi}f(v) \neq \emptyset$ for any $v \in \operatorname{dom} e_{\lambda}^{\phi}f$. Furthermore, we assert, that for any sequence $z^{\nu} \in P_{\lambda}^{\phi}f(v^{\nu}), v^{\nu} \to \bar{v}$ we have $\{z^{\nu}\}$ is bounded and all its cluster points lie in $P_{\lambda}^{\phi}f(\bar{v}) = \bar{z}$, meaning $z^{\nu} \to \bar{z}$ and $e_{\lambda}^{\phi}f(v^{\nu}) \to e_{\lambda}^{\phi}(\bar{v})$. In addition, we have $f(z^{\nu}) \to f(\bar{z})$ as $e_{\lambda}^{\phi}f(v^{\nu}) = f(z^{\nu}) + \frac{1}{\lambda}\phi(v^{\nu} - z^{\nu}) \to e_{\lambda}^{\phi}f(\bar{v}) = f(\bar{z}) + \frac{1}{\lambda}\phi(\bar{v} - \bar{z})$. Overall this shows, that for any v, sufficiently near \bar{v} we have $z \in P_{\lambda}^{\phi}f(v), ||z - \bar{z}|| < \epsilon, |f(z) - f(\bar{z})| < \epsilon$ and $||\frac{1}{\lambda}\nabla\phi(v - z) - \bar{y}|| < \epsilon$, due to the continuity of $\nabla\phi$ on a neighborhood of $\bar{v} - \bar{z}$. From applying Fermat's rule [22, Theorem 10.1] to $P_{\lambda}^{\phi}f(v)$ we obtain

$$\frac{1}{\lambda}\nabla\phi(v-z)\in\partial f(z)$$

and we can assert that $\frac{1}{\lambda} \nabla \phi(v-z) \in T(z)$ via the arguments above. This shows that

$$\emptyset \neq P_{\lambda}^{\phi} f(v) \subset \left(T - \frac{1}{\lambda} \nabla \phi(v - \cdot)\right)^{-1}(0), \tag{29}$$

where ∂f is replaced by T. It is straightforward to verify, using the fact $(\nabla \phi)^{-1} = \nabla \phi^*$ from Lemma 3.2, that

$$\left(T - \frac{1}{\lambda}\nabla\phi(v - \cdot)\right)^{-1}(0) = (I + \nabla\phi^* \circ \lambda T)^{-1}(v).$$

We proceed showing that $(I + \nabla \phi^* \circ \lambda T)^{-1}$ is a single-valued Lipschitz map in a neighborhood of \bar{v} . Via the inclusion above this means that $P^{\phi}_{\lambda} f = (I + \nabla \phi^* \circ \lambda T)^{-1}$ on this neighborhood.

To this end, consider the function $h: \mathbb{R}^m \times \mathbb{R}^m \times \mathbb{R}^m \to \overline{\mathbb{R}}$ defined via $h(v, \xi, z) := f(z) + \frac{1}{\lambda}\phi(v-z) - \langle \xi, z \rangle$. In view of Lemma A.2 we assert that $h(v, \xi, z)$ is level-bounded in z locally uniformly in (v, ξ) . Through [22, Theorem 1.17] we know that for any sequence $\xi^{\nu} \to 0$ with $\inf_{z \in \mathbb{R}^m} h(\bar{v}, \xi^{\nu}, z) < \infty$ there is $z^{\nu} \in \arg\min_{z \in \mathbb{R}^m} h(\bar{v}, \xi^{\nu}, z) \neq \emptyset$ with $z^{\nu} \to \bar{z} = \arg\min_{z \in \mathbb{R}^m} h(\bar{v}, 0, z) = P_{\lambda}^{\phi} f(\bar{v})$ and $\inf_{z \in \mathbb{R}^m} h(\bar{v}, \xi^{\nu}, z) \to \inf_{z \in \mathbb{R}^m} h(\bar{v}, 0, z) = e_{\lambda}^{\phi} f(\bar{v})$.

From applying Fermat's rule [22, Theorem 10.1] to the minimization problem above we know that $\xi^{\nu} + \frac{1}{\lambda}\nabla\phi(\bar{v} - z^{\nu}) \in \partial f(z^{\nu})$ and for ν sufficiently large we have that $\|\xi^{\nu} + \frac{1}{\lambda}\nabla\phi(\bar{v} - z^{\nu}) - \bar{y}\| \leq \epsilon$ due to the continuity of $\nabla\phi$ on a neighborhood of $\bar{v} - \bar{z}$. In addition, we have $f(z^{\nu}) \rightarrow f(\bar{z})$ as $\inf_{z \in \mathbb{R}^m} h(\bar{v}, \xi^{\nu}, z) = f(z^{\nu}) + \frac{1}{\lambda}\phi(\bar{v} - z^{\nu}) - \langle \xi^{\nu}, z^{\nu} \rangle \rightarrow e_{\lambda}^{\phi}f(\bar{v}) = f(\bar{z}) + \frac{1}{\lambda}\phi(\bar{v} - \bar{z})$. Overall this means that for any ξ sufficiently near 0 we have:

$$\xi \in T(z) - \frac{1}{\lambda} \nabla \phi(\bar{v} - z)$$

for some z near \overline{z} , and ∂f is interchangeable with T.

Now pick any $(z^1, y^1), (z^2, y^2) \in \operatorname{gph} T$. Then it follows from (11) that

$$f(z^{2}) \ge f(z^{1}) + \langle y^{1}, z^{2} - z^{1} \rangle - \frac{r}{2} \| z^{2} - z^{1} \|^{2},$$
(30)

$$f(z^{1}) \ge f(z^{2}) + \langle y^{2}, z^{1} - z^{2} \rangle - \frac{r}{2} \| z^{1} - z^{2} \|^{2},$$
(31)

and furthermore, due to Assumption (A3) and [4, Proposition 2.10] we have that

$$B_{\phi(\bar{v}-\cdot)}(z^2, z^1) = \phi(\bar{v}-z^2) - \phi(\bar{v}-z^1) + \left\langle \nabla \phi(\bar{v}-z^1), z^2-z^1 \right\rangle \ge \frac{\mu}{2} \|z^2-z^1\|^2.$$

for some $\mu > 0$. Then we have

$$\phi(\bar{v}-z^2) \ge \phi(\bar{v}-z^1) - \left\langle \nabla \phi(\bar{v}-z^1), z^2 - z^1 \right\rangle + \frac{\mu}{2} \|z^2 - z^1\|^2, \tag{32}$$

$$\phi(\bar{v}-z^1) \ge \phi(\bar{v}-z^2) - \left\langle \nabla \phi(\bar{v}-z^2), z^1 - z^2 \right\rangle + \frac{\mu}{2} \|z^1 - z^2\|^2.$$
(33)

Summing the four inequalities yields for $\xi^1 := y^1 - \frac{1}{\lambda} \nabla \phi(\bar{v} - z^1)$ and $\xi^2 := y^2 - \frac{1}{\lambda} \nabla \phi(\bar{v} - z^2)$:

$$\langle z^1 - z^2, \xi^1 - \xi^2 \rangle \ge (\frac{\mu}{\lambda} - r) \| z^1 - z^2 \|^2,$$
(34)

Consequently, the map $T - \frac{1}{\lambda} \nabla \phi(\bar{v} - \cdot)$ is $(\frac{\mu}{\lambda} - r)$ -strongly monotone.

Define $H(z) := -\frac{1}{\lambda} \nabla \phi(\bar{v} - z), G(v, z) := -\frac{1}{\lambda} \nabla \phi(v - z)$ and e(v, z) := G(v, z) - H(z). Then the above argument implies that $\xi \mapsto (T + H)^{-1}(\xi)$ is a single-valued, $(\frac{\mu}{\lambda} - r)^{-1}$ -Lipschitz map in a neighbourhood of 0 such that $0 \in T(\bar{z}) + G(\bar{v}, \bar{z})$. Due to Assumption (A3) and [4, Proposition 2.10] $\nabla \phi$ is Lipschitz on a neighbourhood of $\bar{v} - \bar{z} \in$ int dom ϕ and we may conclude that $\widehat{\text{lip}}_v(G; (\bar{v}, \bar{z}))$ and $\widehat{\text{lip}}_z(e; (\bar{v}, \bar{z}))$ are finite. This implies that His a strict estimator of G w.r.t. z uniformly in v at $(\bar{v}, \bar{z}) \in$ int dom G. Invoking Theorem A.6, we assert that $v \mapsto \{z \in \mathbb{R}^m : 0 \in G(v, z) + T(z)\}$ has a single-valued, Lipschitz localization around \bar{v} for \bar{z} . Since $\bar{z} = P_{\lambda}^{\phi} f(\bar{v})$ is single-valued at \bar{v} and for any v near \bar{v} and $z \in P_{\lambda}^{\phi} f(v)$ it holds that z is near \bar{z} , we may conclude that $P_{\lambda}^{\phi} f(v) = \{z \in \mathbb{R}^m : 0 \in G(v, z) + T(z)\}$ is single-valued and Lipschitz on a neighborhood of \bar{v} .

(ii) Let (z, v), (z', v') be sufficiently close to (\bar{z}, \bar{v}) with $z = P_{\lambda}^{\phi} f(v)$, $z' = P_{\lambda}^{\phi} f(v')$. Then, by Fermat's rule [22, Theorem 10.1] it holds $y \in \partial f(z)$ such that $y = \frac{1}{\lambda} \nabla \phi(v-z)$. Furthermore, by assumption the subgradient inequality (11) holds true at $(z, y) \in \text{gph } T$. This means in particular that y is a proximal subgradient [22, Definition 8.45] of f at z. In view of [22, Proposition 8.46 (e)], we assert $y \in \partial f(z)$. Thus (and using the differentiability of ϕ on dom ϕ) one can derive

$$e_{\lambda}^{\phi}f(v') - e_{\lambda}^{\phi}f(v) = f(z') - f(z) + \frac{1}{\lambda}\phi(v'-z') - \frac{1}{\lambda}\phi(v-z)$$

$$\geq \langle y, z'-z \rangle + o(\|z'-z\|) + \frac{1}{\lambda} \langle \nabla \phi(v-z), (v'-v) - (z'-z) \rangle + o(\|(v'-v) - (z'-z)\|).$$
(35)

Using the conclusion from (i) that $v \mapsto z$ is a Lipschitz map near \bar{v} there is some α such that

$$||z' - z|| \le \alpha ||v' - v||.$$

This shows that o(||(v'-v) - (z'-z)||) + o(||z'-z||) = o(||v'-v||) and we get from (35) that

$$e_{\lambda}^{\phi}f(v') - e_{\lambda}^{\phi}f(v) - \frac{1}{\lambda} \left\langle \nabla\phi(v-z), v'-v \right\rangle \ge o(\|v'-v\|). \tag{36}$$

On the other hand, we have

$$e_{\lambda}^{\phi}f(v') = \inf_{z''}f(z'') + \frac{1}{\lambda}\phi(v'-z'') \le f(z) + \frac{1}{\lambda}\phi(v'-z).$$
(37)

Due to the differentiability of ϕ , we have

$$\phi(v'-z) = \phi(v-z) + \langle \nabla \phi(v-z), v'-v \rangle + o(\|v'-v\|).$$
(38)

This yields

$$e_{\lambda}^{\phi}f(v') - e_{\lambda}^{\phi}f(v) \leq f(z) + \frac{1}{\lambda}\phi(v'-z) - f(z) - \frac{1}{\lambda}\phi(v-z)$$
$$= \frac{1}{\lambda} \langle \nabla\phi(v-z), v'-v \rangle + o(\|v'-v\|).$$
(39)

Combining (36) and (39), we conclude that $e_{\lambda}^{\phi}f$ is differentiable at v and $\frac{1}{\lambda}\nabla\phi(v-z) = \nabla e_{\lambda}^{\phi}f(v)$. Since furthermore $\nabla\phi$ is Lipschitz around $\bar{v} - \bar{z}$ it holds that $\nabla e_{\lambda}^{\phi}f$ is the composition of two locally Lipschitz maps and therefore Lipschitz around \bar{v} .

References

 H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Lojasiewicz inequality. *Mathematics* of Operations Research, 35:438–457, 2010.

- [2] A. Auslender. Optimisation: Méthodes Numériques. Masson, 1976.
- [3] H. H. Bauschke, J. M. Borwein, and P. L. Combettes. Bregman monotone optimization algorithms. SIAM Journal on Control and Optimization, 42(2):596–636, 2003.
- [4] H. H. Bauschke and A. S. Lewis. Dykstras algorithm with Bregman projections: A convergence proof. Optimization, 48(4):409-427, 2000.
- [5] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.
- [6] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for nonconvex and nonsmooth problems. *Mathematical Programming*, 146(1-2):459–494, 2014.
- [7] Y. Censor and S. A. Zenios. Proximal minimization algorithm with D-functions. Journal of Optimization Theory and Applications, 73(3):451–464, 1992.
- [8] P. Chaudhari, A. Oberman, S. Osher, S. Soatto, and G. Carlier. Deep relaxation: partial differential equations for optimizing deep neural networks. *Research in the Mathematical Sciences*, 5(3):30, 2018.
- [9] P. L. Combettes and N. N. Reyes. Moreau's decomposition in Banach spaces. Mathematical Programming, 139(1-2):103-114, 2013.
- [10] Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly convex functions. SIAM Journal on Optimization, 29(1):207–239, 2019.
- [11] A. L. Dontchev and R. T. Rockafellar. Implicit Functions and Solution Mappings: A View From Variational Analysis. Springer, New York, 2009.
- [12] E. Laude, T. Wu, and D. Cremers. A nonconvex proximal splitting algorithm under Moreau-Yosida regularization. In Artificial Intelligence and Statistics (AISTATS), 2018.
- [13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
- [14] C. Lescarret. Applications "prox" dans un espace de Banach. Comptes Rendus de l'Académie des Sciences de Paris Série A, 265:676–678, 1967.
- [15] A. S. Lewis, D. R. Luke, and J. Malick. Local linear convergence for alternating and averaged nonconvex projections. *Foundations of Computational Mathematics*, 9(4):485–513, 2009.
- [16] J.-J. Moreau. Fonctions convexes duales et points proximaux dans un espace Hilbertien. Comptes Rendus de l'Académie des Sciences de Paris Série A, 255:2897–2899, 1962.
- [17] J.-J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Société Mathématique de France, 93(2):273–299, 1965.
- [18] P. Ochs. Local convergence of the heavy-ball method and iPiano for non-convex optimization. Journal of Optimization Theory and Applications, 177:153–180, 2018.
- [19] R. A. Poliquin and R. T. Rockafellar. Prox-regular functions in variational analysis. Trans. Amer. Math. Soc., 348:1805–1838, 1996.
- [20] S. M. Robinson. Strongly regular generalized equations. Mathematics of Operations Research, 5:43–62, 1980.
- [21] R. T. Rockafellar. Convex Analysis. Princeton University Press, New Jersey, 1970.
- [22] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer, New York, 1998.
- [23] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum in deep learning. In *International Conference on Machine Learning (ICML)*, pages 1139–1147, 2013.
- [24] M. Teboulle. Entropic proximal mappings with applications to nonlinear programming. Mathematics of Operations Research, 17(3):670–690, 1992.

- [25] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of Optimization Theory and Applications, 109(3):475–494, 2001.
- [26] D. Wexler. Prox-mappings associated with a pair of Legendre conjugate functions. *Revue française d'automatique informatique recherche opérationnelle*, 7(R2):39–65, 1973.
- [27] S. Zhang, A. Choromanska, and Y. LeCun. Deep learning with elastic averaging SGD. In Advances in Neural Information Processing Systems (NIPS), pages 685–693, 2015.