A PROOFS OF LEMMAS AND FACTS

A. 1 Proof of Lemma 4

The proof is very similar to the proof of Lemma 2 of Heckel et al. (2018). There are several cases of q_{1} and b_{2} to consider. We will show each by contradiction, starting with the assumption that the termination condition is false and both $\mathcal{E}_{\text {bad }}\left(q_{1}\right)$ and $\mathcal{E}_{\text {bad }}\left(b_{2}\right)$ do not occur, all under the event \mathcal{E}_{α}. Let $\mathcal{E}_{\text {good }}(i)$ denote the complement of $\mathcal{E}_{\text {bad }}(i)$. It also will be useful to define the quantity

$$
\begin{equation*}
m_{2}=\underset{i \in\{(k+1), \ldots,(k+h)\}}{\arg \max } \alpha_{i} \tag{15}
\end{equation*}
$$

such that $b_{2}=\arg \max _{i \in\left\{m_{2}, q_{2}\right\}} \alpha_{i}$.
i. When $q_{1} \leq k$ and $b_{2}>k+h$, we have by $\mathcal{E}_{\text {good }}\left(q_{1}\right)$ that

$$
\begin{equation*}
\widehat{d}_{q_{1}}+\alpha_{q_{1}}<\widehat{d}_{q_{1}}+3 \alpha_{q_{1}} \leq \gamma \tag{16}
\end{equation*}
$$

and similarly that $\widehat{d}_{b_{2}}-\alpha_{b_{2}}>\gamma$ by $\mathcal{E}_{\text {good }}\left(b_{2}\right)$. Since $\widehat{d}_{q_{2}}-\alpha_{q_{2}} \geq \widehat{d}_{m_{2}}-\alpha_{m_{2}}$, we have that $\widehat{d}_{q_{2}}-\alpha_{q_{2}}>\gamma$ in both the case that $b_{2}=m_{2}$ and $b_{2}=q_{2}$. Together, this implies that the termination condition (4) is true, which violates our assumption.
ii. When $q_{1} \leq k$ and $k<b_{2} \leq k+h$, we have first by $\mathcal{E}_{\text {good }}\left(\overline{q_{1}}\right)$ that $\widehat{d}_{q_{1}}+3 \alpha_{q_{1}} \leq \gamma$. Starting from here, and using the definition of q_{1}, we have for all $i \in \widehat{\mathcal{S}}_{\text {close }}$,

$$
\begin{align*}
\gamma & \geq \widehat{d}_{q_{1}}+\alpha_{q_{1}}+2 \alpha_{q_{1}} \\
& \geq \widehat{d}_{i}+\alpha_{i}+2 \alpha_{q_{1}} \\
& \geq d_{i}+2 \alpha_{q_{1}} \\
& >d_{i} . \tag{17}
\end{align*}
$$

Now we let Δ denote $d_{k+1+h}-d_{k}$. By definition of b_{2}, using $\mathcal{E}_{\text {good }}\left(b_{2}\right)$, we have that $\alpha_{j} \leq \Delta / 4$ for all $j \in \widehat{\mathcal{S}}_{\text {middle }} \cup\left\{q_{2}\right\}$. Then we can start from $\gamma>\widehat{d}_{q_{1}}+\alpha_{q_{1}}$ to conclude that for all $j \in \widehat{\mathcal{S}}_{\text {middle }} \cup\left\{q_{2}\right\}$,

$$
\begin{aligned}
\gamma & >\widehat{d}_{q_{1}}+\alpha_{q_{1}} \\
& \stackrel{(i)}{>} \widehat{d}_{q_{2}}-\alpha_{q_{2}} \\
& \geq \widehat{d}_{q_{2}}-\frac{\Delta}{4} \\
& \geq \widehat{d}_{j}-\frac{\Delta}{4} \\
& \geq d_{j}-\alpha_{j}-\frac{\Delta}{4}
\end{aligned}
$$

$$
\begin{equation*}
\geq d_{j}-\frac{\Delta}{2} \tag{18}
\end{equation*}
$$

where (i) comes from our assumption that the terminating condition (4) is false. Combining (17) and (18) along with $\gamma+\Delta / 2=d_{k+1+h}$, we obtain that $d_{k+1+h}>d_{i}$ for all $i \in \widehat{\mathcal{S}} \cup\left\{q_{2}\right\}$, which is a contradiction, since there can be at most $k+h$ values of d_{i} that are smaller than d_{k+1+h}.
iii. When $k<q_{1} \leq k+h$ and $b_{2}>k+h$, the case is similar to the previous case, except that we need to bound α_{i} for $i \in \widehat{\mathcal{S}}_{\text {middle }}$ in a different way. By $\mathcal{E}_{\text {good }}\left(b_{2}\right), \widehat{d}_{q_{2}} \geq \widehat{d}_{b_{2}}$, and $\alpha_{b_{2}} \geq \alpha_{q_{2}}$, we have analogously to (17), for all $i \in \widehat{\mathcal{S}}_{\text {far }}$,

$$
\begin{align*}
\gamma & \leq \widehat{d}_{b_{2}}-3 \alpha_{b_{2}} \\
& \leq \widehat{d}_{q_{2}}-\alpha_{q_{2}}-2 \alpha_{b_{2}} \\
& \leq d_{i}-2 \alpha_{b_{2}} . \tag{19}
\end{align*}
$$

Equivalently, $d_{i} \geq \gamma+2 \alpha_{b_{2}}$. Since there are $n-k-h$ values of i for which this inequality holds, it must hold for d_{k+1+h}, so we obtain

$$
\begin{equation*}
\alpha_{b_{2}} \leq \frac{d_{k+1+h}-\gamma}{2}=\frac{\Delta}{4} \tag{20}
\end{equation*}
$$

By definition of $b_{2}, \alpha_{i} \leq \Delta / 4$ for all $i \in \widehat{\mathcal{S}}_{\text {middle }} \cup$ $\left\{q_{2}\right\}$, and a contradiction can be reached similarly as in case ii.
iv. For the case when both $q_{1}, b_{2} \in\{k+1, \ldots, k+h\}$, we first show that at least one of $\gamma<\widehat{d}_{q_{1}}+\alpha_{q_{1}}$ or $\gamma>\widehat{d}_{q_{2}}-\alpha_{q_{2}}$ is true. To see this, first suppose the former is false. Then using that the terminating condition (4) is false, we have

$$
\begin{equation*}
\gamma \geq \widehat{d}_{q_{1}}+\alpha_{q_{1}}>\widehat{d}_{q_{2}}-\alpha_{q_{2}} \tag{21}
\end{equation*}
$$

Now that we know that at least one of these inequalities holds, and we proceed similarly for each. First suppose that the former inequality, $\gamma<\widehat{d}_{q_{1}}+\alpha_{q_{1}}$, holds. Using that by $\mathcal{E}_{\text {good }}\left(q_{1}\right)$ and $\mathcal{E}_{\text {good }}\left(b_{2}\right)$ we have $\alpha_{i} \leq \Delta / 4$ for all $i \in\left\{q_{1}, q_{2}\right\} \cup$ $\widehat{\mathcal{S}}_{\text {middle }}$, we have that, for all $i \in\left\{q_{1}, q_{2}\right\} \cup \widehat{\mathcal{S}}_{\text {middle }}$,

$$
\begin{align*}
\gamma & <\widehat{d}_{q_{1}}+\alpha_{q_{1}} \\
& \leq \widehat{d}_{i}+\alpha_{q_{1}} \\
& \leq d_{i}+\alpha_{i}+\alpha_{q_{1}} \\
& \leq d_{i}+\frac{\Delta}{2} \tag{22}
\end{align*}
$$

We also have for all $j \in \widehat{\mathcal{S}}_{\text {far }}$ that

$$
\begin{aligned}
\gamma & <\widehat{d}_{q_{1}}+\alpha_{q_{1}} \\
& \leq \widehat{d}_{q_{2}}-\alpha_{q_{2}}+\alpha_{q_{2}}+\alpha_{q_{1}}
\end{aligned}
$$

$$
\begin{align*}
& \leq \widehat{d}_{j}-\alpha_{j}+\alpha_{q_{2}}+\alpha_{q_{1}} \\
& \leq d_{j}+\alpha_{q_{2}}+\alpha_{q_{1}} \\
& \leq d_{j}+\frac{\Delta}{2} \tag{23}
\end{align*}
$$

Combining (22) and (23), we have that $d_{i}>d_{k}$ for all $i \in\left\{q_{1}\right\} \cup \widehat{\mathcal{S}}_{\text {middle }} \cup \widehat{\mathcal{S}}_{\text {far }}$, which is a contradiction, since at most $n-k$ values of i can satisfy this inequality.
The case that $\gamma>\widehat{d}_{q_{2}}-\alpha_{q_{2}}$ is entirely analogous.
v. When $q_{1}>k+h$ or $b_{2} \leq k$, we can make similar arguments to the previous cases to reach a contradiction.

A. 2 Proof of Fact 5

First, when $i \leq k$, we have

$$
\begin{align*}
\widehat{d}_{i}+3 \alpha_{i} & \leq d_{i}+4 \alpha_{i} \\
& \leq d_{i}+\frac{\Delta_{i}}{2} \\
& \leq \frac{d_{k+1+h}+d_{i}}{2} \leq \gamma \tag{24}
\end{align*}
$$

where the last inequality uses $d_{i} \leq d_{k}$, so $\mathcal{E}_{\text {bad }}(i)$ does not occur. This is similarly shown for $i>k+h$. For $k<i \leq k+h$, that $\mathcal{E}_{\text {bad }}(i)$ does not occur follows immediately from $\alpha_{i} \leq \Delta_{i} / 8 \leq \Delta_{i} / 4$.

A. 3 Proof of Fact 6

Recalling that $\alpha_{i}(u)=\sqrt{\frac{2 \beta(u, \delta / n)}{u}}$, at $\alpha_{i}(u)=\Delta_{i} / 8$ we have that $u=2\left(\Delta_{i} / 8\right)^{-2} \beta\left(u, \delta^{\prime}\right)$, so we need to bound the greatest fixed point u^{*} of

$$
f(u)=2\left(\Delta_{i} / 8\right)^{-2} \beta\left(u, \delta^{\prime}\right)
$$

Let $u_{0}=2\left(\Delta_{i} / 8\right)^{-2}$, and note that for all $u \geq u_{0}$,

$$
\begin{align*}
f^{\prime}(u) & =\frac{2\left(\Delta_{i} / 8\right)^{-2}(2)}{u \log (1.12 u)} \\
& \leq \frac{2\left(\Delta_{i} / 8\right)^{-2}(2)}{2\left(\Delta_{i} / 8\right)^{-2} \log \left((1.12) 2\left(\Delta_{i} / 8\right)^{-2}\right)} \\
& \leq \frac{2}{\log ((1.12) 32)} \\
& <1 \tag{25}
\end{align*}
$$

The second inequality holds because $\Delta_{i} \leq 2$. Suppose that $u^{*}>u_{0}$. Using Taylor's theorem, we have that for some $z \geq u_{0}$,

$$
\begin{align*}
f\left(u_{0}\right) & =f\left(u^{*}\right)+f^{\prime}(z)\left(u_{0}-u^{*}\right) \\
& =u^{*}\left(1-f^{\prime}(z)\right)+u_{0} f^{\prime}(z) \tag{26}
\end{align*}
$$

Then

$$
\begin{align*}
u^{*} & =\frac{f\left(u_{0}\right)-u_{0} f^{\prime}(z)}{1-f^{\prime}(z)} \\
& \leq \frac{f\left(u_{0}\right)}{1-f^{\prime}\left(u_{0}\right)} \tag{27}
\end{align*}
$$

So, we can bound the greatest fixed point of f as

$$
\begin{align*}
u^{*} & \leq \max \left\{u_{0}, \frac{f\left(u_{0}\right)}{1-f^{\prime}\left(u_{0}\right)}\right\} \\
& =2\left(\Delta_{i} / 8\right)^{-2} \max \left\{1, \frac{\beta\left(2\left(\Delta_{i} / 8\right)^{-2}, \delta^{\prime}\right)}{1-2 / \log ((1.12) 32)}\right\} \\
& =c_{1} \Delta_{i}^{-2} \beta\left(2\left(\Delta_{i} / 8\right)^{-2}, \delta^{\prime}\right) \tag{28}
\end{align*}
$$

where $c_{1}=128 /(1-2 / \log ((1.12) 32))$. Since $\widetilde{T}_{i} \leq$ $u^{*}+1$, letting $c_{2}=c_{1}+1$,

$$
\begin{equation*}
\widetilde{T}_{i} \leq \frac{c_{2}}{\Delta_{i}^{2}} \log \left(125 \frac{n}{\delta} \log \left(\frac{(1.12) 128}{\Delta_{i}^{2}}\right)\right) \tag{29}
\end{equation*}
$$

Then for c sufficiently large,

$$
\begin{equation*}
\widetilde{T}_{i} \leq c \log \left(\frac{n}{\delta}\right) \frac{\log \left(2 \log \left(2 / \Delta_{i}\right)\right)}{\Delta_{i}^{2}} \tag{30}
\end{equation*}
$$

B ADDITIONAL THEOREM 2 PROOF DETAILS

In this section we provide details on bounding $\sum_{i \in \mathcal{S}^{\prime}(\nu)} \mathbb{E}_{\nu}\left[N_{i}\right]$ that we omitted in the proof of Theorem 2. We consider the set $\mathcal{M}=\left\{\ell_{1}, \ldots, \ell_{h+1}\right\} \subseteq$ $\mathcal{S}_{1}(\nu)$ and construct an alternative distribution ν^{\prime} such that under that distribution $\mathcal{M} \subseteq \mathcal{S}_{2}\left(\nu^{\prime}\right)$. Then under ν^{\prime}, if \mathcal{A} succeeds, then at most h elements of $\mathcal{S}_{2}\left(\nu^{\prime}\right)$ can be in $\widehat{\mathcal{S}}$, meaning that at least one element of \mathcal{M} is not in $\widehat{\mathcal{S}}$ and that \mathcal{E} does not occur. So, if \mathcal{A} succeeds with probability at least $1-\delta$, then both $\mathrm{P}_{\nu}[\mathcal{E}] \geq 1-\delta$ and $\mathrm{P}_{\nu^{\prime}}[\mathcal{E}] \leq \delta$.
Our alternative distribution ν^{\prime} is defined as

$$
\nu_{i}^{\prime}= \begin{cases}\nu_{k+1+h}, & i \in \mathcal{M} \\ \nu_{i}, & \text { otherwise }\end{cases}
$$

Again, to avoid ties, for $\ell \in \mathcal{M}$, one should take $\nu_{\ell}^{\prime}=$ $\nu_{k+1+h}+\varepsilon$ and let $\varepsilon \rightarrow 0$, but we omit this detail. The remainder of the arguments are entirely analogous to the case shown previously, giving us the bound

$$
\sum_{i \in \mathcal{S}_{1}(\nu)} \mathbb{E}_{\nu}\left[N_{i}\right] \geq \log \frac{1}{2 \delta} \sum_{i=1}^{k-h} \frac{d_{k+1+h}\left(1-d_{k+1+h}\right)}{\left(d_{i}-d_{k+1+h}\right)^{2}}
$$

