A PROOFS OF LEMMAS AND FACTS

A.1 Proof of Lemma 4

The proof is very similar to the proof of Lemma 2 of Heckel et al. (2018). There are several cases of q_1 and b_2 to consider. We will show each by contradiction, starting with the assumption that the termination condition is false and both $\mathcal{E}_{\text{bad}}(q_1)$ and $\mathcal{E}_{\text{bad}}(b_2)$ do not occur, all under the event \mathcal{E}_{α} . Let $\mathcal{E}_{\text{good}}(i)$ denote the complement of $\mathcal{E}_{\text{bad}}(i)$. It also will be useful to define the quantity

$$m_2 = \arg\max_{i \in \{(k+1), \dots, (k+h)\}} \alpha_i$$
(15)

such that $b_2 = \arg \max_{i \in \{m_2, q_2\}} \alpha_i$.

i. When $q_1 \leq k$ and $b_2 > k+h$, we have by $\mathcal{E}_{good}(q_1)$ that

$$\widehat{d}_{q_1} + \alpha_{q_1} < \widehat{d}_{q_1} + 3\alpha_{q_1} \le \gamma \tag{16}$$

and similarly that $\hat{d}_{b_2} - \alpha_{b_2} > \gamma$ by $\mathcal{E}_{\text{good}}(b_2)$. Since $\hat{d}_{q_2} - \alpha_{q_2} \geq \hat{d}_{m_2} - \alpha_{m_2}$, we have that $\hat{d}_{q_2} - \alpha_{q_2} > \gamma$ in both the case that $b_2 = m_2$ and $b_2 = q_2$. Together, this implies that the termination condition (4) is true, which violates our assumption.

ii. When $q_1 \leq k$ and $k < b_2 \leq k + h$, we have first by $\mathcal{E}_{good}(q_1)$ that $\hat{d}_{q_1} + 3\alpha_{q_1} \leq \gamma$. Starting from here, and using the definition of q_1 , we have for all $i \in \hat{\mathcal{S}}_{close}$,

$$\gamma \geq \hat{d}_{q_1} + \alpha_{q_1} + 2\alpha_{q_1}$$

$$\geq \hat{d}_i + \alpha_i + 2\alpha_{q_1}$$

$$\geq d_i + 2\alpha_{q_1}$$

$$> d_i. \tag{17}$$

Now we let Δ denote $d_{k+1+h} - d_k$. By definition of b_2 , using $\mathcal{E}_{\text{good}}(b_2)$, we have that $\alpha_j \leq \Delta/4$ for all $j \in \widehat{\mathcal{S}}_{\text{middle}} \cup \{q_2\}$. Then we can start from $\gamma > \widehat{d}_{q_1} + \alpha_{q_1}$ to conclude that for all $j \in \widehat{\mathcal{S}}_{\text{middle}} \cup \{q_2\}$,

$$\begin{split} \gamma &> \widehat{d}_{q_1} + \alpha_{q_1} \\ \stackrel{(i)}{>} \widehat{d}_{q_2} - \alpha_{q_2} \\ &\geq \widehat{d}_{q_2} - \frac{\Delta}{4} \\ &\geq \widehat{d}_j - \frac{\Delta}{4} \\ &\geq d_j - \alpha_j - \frac{\Delta}{4} \end{split}$$

$$\geq d_j - \frac{\Delta}{2},\tag{18}$$

where (i) comes from our assumption that the terminating condition (4) is false. Combining (17) and (18) along with $\gamma + \Delta/2 = d_{k+1+h}$, we obtain that $d_{k+1+h} > d_i$ for all $i \in \widehat{S} \cup \{q_2\}$, which is a contradiction, since there can be at most k+hvalues of d_i that are smaller than d_{k+1+h} .

iii. When $k < q_1 \le k + h$ and $b_2 > k + h$, the case is similar to the previous case, except that we need to bound α_i for $i \in \widehat{\mathcal{S}}_{\text{middle}}$ in a different way. By $\mathcal{E}_{\text{good}}(b_2)$, $\widehat{d}_{q_2} \ge \widehat{d}_{b_2}$, and $\alpha_{b_2} \ge \alpha_{q_2}$, we have analogously to (17), for all $i \in \widehat{\mathcal{S}}_{\text{far}}$,

$$\gamma \leq \hat{d}_{b_2} - 3\alpha_{b_2}$$

$$\leq \hat{d}_{q_2} - \alpha_{q_2} - 2\alpha_{b_2}$$

$$\leq d_i - 2\alpha_{b_2}.$$
 (19)

Equivalently, $d_i \geq \gamma + 2\alpha_{b_2}$. Since there are n-k-h values of *i* for which this inequality holds, it must hold for d_{k+1+h} , so we obtain

$$\alpha_{b_2} \le \frac{d_{k+1+h} - \gamma}{2} = \frac{\Delta}{4}.$$
 (20)

By definition of b_2 , $\alpha_i \leq \Delta/4$ for all $i \in \widehat{\mathcal{S}}_{\text{middle}} \cup \{q_2\}$, and a contradiction can be reached similarly as in case ii.

iv. For the case when both $q_1, b_2 \in \{k+1, \ldots, k+h\}$, we first show that at least one of $\gamma < \hat{d}_{q_1} + \alpha_{q_1}$ or $\gamma > \hat{d}_{q_2} - \alpha_{q_2}$ is true. To see this, first suppose the former is false. Then using that the terminating condition (4) is false, we have

$$\gamma \ge \widehat{d}_{q_1} + \alpha_{q_1} > \widehat{d}_{q_2} - \alpha_{q_2}. \tag{21}$$

Now that we know that at least one of these inequalities holds, and we proceed similarly for each. First suppose that the former inequality, $\gamma < \hat{d}_{q_1} + \alpha_{q_1}$, holds. Using that by $\mathcal{E}_{\text{good}}(q_1)$ and $\mathcal{E}_{\text{good}}(b_2)$ we have $\alpha_i \leq \Delta/4$ for all $i \in \{q_1, q_2\} \cup \widehat{S}_{\text{middle}}$, we have that, for all $i \in \{q_1, q_2\} \cup \widehat{S}_{\text{middle}}$,

$$\gamma < \hat{d}_{q_1} + \alpha_{q_1}$$

$$\leq \hat{d}_i + \alpha_{q_1}$$

$$\leq d_i + \alpha_i + \alpha_{q_1}$$

$$\leq d_i + \frac{\Delta}{2}.$$
(22)

We also have for all $j \in \widehat{\mathcal{S}}_{\text{far}}$ that

$$\gamma < \hat{d}_{q_1} + \alpha_{q_1}$$
$$\leq \hat{d}_{q_2} - \alpha_{q_2} + \alpha_{q_2} + \alpha_{q_1}$$

$$\leq \hat{d}_j - \alpha_j + \alpha_{q_2} + \alpha_{q_1}$$

$$\leq d_j + \alpha_{q_2} + \alpha_{q_1}$$

$$\leq d_j + \frac{\Delta}{2}.$$
 (23)

Combining (22) and (23), we have that $d_i > d_k$ for all $i \in \{q_1\} \cup \widehat{S}_{\text{middle}} \cup \widehat{S}_{\text{far}}$, which is a contradiction, since at most n - k values of i can satisfy this inequality.

The case that $\gamma > \hat{d}_{q_2} - \alpha_{q_2}$ is entirely analogous.

v. When $q_1 > k + h$ or $b_2 \leq k$, we can make similar arguments to the previous cases to reach a contradiction.

A.2 Proof of Fact 5

First, when $i \leq k$, we have

$$\widehat{d}_{i} + 3\alpha_{i} \leq d_{i} + 4\alpha_{i}
\leq d_{i} + \frac{\Delta_{i}}{2}
\leq \frac{d_{k+1+h} + d_{i}}{2} \leq \gamma,$$
(24)

where the last inequality uses $d_i \leq d_k$, so $\mathcal{E}_{bad}(i)$ does not occur. This is similarly shown for i > k + h. For $k < i \leq k + h$, that $\mathcal{E}_{bad}(i)$ does not occur follows immediately from $\alpha_i \leq \Delta_i/8 \leq \Delta_i/4$.

A.3 Proof of Fact 6

Recalling that $\alpha_i(u) = \sqrt{\frac{2\beta(u,\delta/n)}{u}}$, at $\alpha_i(u) = \Delta_i/8$ we have that $u = 2(\Delta_i/8)^{-2}\beta(u,\delta')$, so we need to bound the greatest fixed point u^* of

$$f(u) = 2(\Delta_i/8)^{-2}\beta(u,\delta').$$

Let $u_0 = 2(\Delta_i/8)^{-2}$, and note that for all $u \ge u_0$,

$$f'(u) = \frac{2(\Delta_i/8)^{-2}(2)}{u\log(1.12u)}$$

$$\leq \frac{2(\Delta_i/8)^{-2}(2)}{2(\Delta_i/8)^{-2}\log((1.12)2(\Delta_i/8)^{-2})}$$

$$\leq \frac{2}{\log((1.12)32)}$$

$$< 1.$$
(25)

The second inequality holds because $\Delta_i \leq 2$. Suppose that $u^* > u_0$. Using Taylor's theorem, we have that for some $z \geq u_0$,

$$f(u_0) = f(u^*) + f'(z)(u_0 - u^*)$$

= $u^*(1 - f'(z)) + u_0 f'(z).$ (26)

Then

$$u^{*} = \frac{f(u_{0}) - u_{0}f'(z)}{1 - f'(z)}$$
$$\leq \frac{f(u_{0})}{1 - f'(u_{0})}.$$
(27)

So, we can bound the greatest fixed point of f as

$$u^* \le \max\left\{u_0, \frac{f(u_0)}{1 - f'(u_0)}\right\}$$

= $2(\Delta_i/8)^{-2} \max\left\{1, \frac{\beta(2(\Delta_i/8)^{-2}, \delta')}{1 - 2/\log((1.12)32)}\right\}$
= $c_1 \Delta_i^{-2} \beta(2(\Delta_i/8)^{-2}, \delta'),$ (28)

where $c_1 = \frac{128}{(1 - 2)\log((1.12)32)}$. Since $\widetilde{T}_i \leq u^* + 1$, letting $c_2 = c_1 + 1$,

$$\widetilde{T}_{i} \leq \frac{c_{2}}{\Delta_{i}^{2}} \log \left(125 \frac{n}{\delta} \log \left(\frac{(1.12)128}{\Delta_{i}^{2}} \right) \right).$$
(29)

Then for c sufficiently large,

$$\widetilde{T}_i \le c \log\left(\frac{n}{\delta}\right) \frac{\log(2\log(2/\Delta_i))}{\Delta_i^2}.$$
 (30)

B ADDITIONAL THEOREM 2 PROOF DETAILS

In this section we provide details on bounding $\sum_{i \in S_1(\nu)} \mathbb{E}_{\nu} [N_i]$ that we omitted in the proof of Theorem 2. We consider the set $\mathcal{M} = \{\ell_1, \ldots, \ell_{h+1}\} \subseteq S_1(\nu)$ and construct an alternative distribution ν' such that under that distribution $\mathcal{M} \subseteq S_2(\nu')$. Then under ν' , if \mathcal{A} succeeds, then at most h elements of $S_2(\nu')$ can be in \widehat{S} , meaning that at least one element of \mathcal{M} is not in \widehat{S} and that \mathcal{E} does not occur. So, if \mathcal{A} succeeds with probability at least $1 - \delta$, then both $\mathbb{P}_{\nu}[\mathcal{E}] \geq 1 - \delta$ and $\mathbb{P}_{\nu'}[\mathcal{E}] \leq \delta$.

Our alternative distribution ν' is defined as

$$\nu_i' = \begin{cases} \nu_{k+1+h}, & i \in \mathcal{M} \\ \nu_i, & \text{otherwise.} \end{cases}$$

Again, to avoid ties, for $\ell \in \mathcal{M}$, one should take $\nu'_{\ell} = \nu_{k+1+h} + \varepsilon$ and let $\varepsilon \to 0$, but we omit this detail. The remainder of the arguments are entirely analogous to the case shown previously, giving us the bound

$$\sum_{i \in \mathcal{S}_1(\nu)} \mathbb{E}_{\nu} \left[N_i \right] \ge \log \frac{1}{2\delta} \sum_{i=1}^{k-h} \frac{d_{k+1+h}(1 - d_{k+1+h})}{(d_i - d_{k+1+h})^2}.$$