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A PROOFS OF LEMMAS AND
FACTS

A.1 Proof of Lemma 4

The proof is very similar to the proof of Lemma 2 of
Heckel et al. (2018). There are several cases of q1 and
b2 to consider. We will show each by contradiction,
starting with the assumption that the termination con-
dition is false and both Ebad(q1) and Ebad(b2) do not
occur, all under the event Eα. Let Egood(i) denote the
complement of Ebad(i). It also will be useful to define
the quantity

m2 = argmax
i∈{(k+1),...,(k+h)}

αi (15)

such that b2 = argmaxi∈{m2,q2} αi.

i. When q1 ≤ k and b2 > k+h, we have by Egood(q1)
that

d̂q1 + αq1 < d̂q1 + 3αq1 ≤ γ (16)

and similarly that d̂b2 − αb2 > γ by Egood(b2).
Since d̂q2 − αq2 ≥ d̂m2 − αm2 , we have that
d̂q2 − αq2 > γ in both the case that b2 = m2

and b2 = q2. Together, this implies that the ter-
mination condition (4) is true, which violates our
assumption.

ii. When q1 ≤ k and k < b2 ≤ k + h, we have first
by Egood(q1) that d̂q1 + 3αq1 ≤ γ. Starting from
here, and using the definition of q1, we have for
all i ∈ Ŝclose,

γ ≥ d̂q1 + αq1 + 2αq1

≥ d̂i + αi + 2αq1

≥ di + 2αq1

> di. (17)

Now we let ∆ denote dk+1+h − dk. By def-
inition of b2, using Egood(b2), we have that
αj ≤ ∆/4 for all j ∈ Ŝmiddle ∪ {q2}. Then we can
start from γ > d̂q1 + αq1 to conclude that for all
j ∈ Ŝmiddle ∪ {q2},

γ > d̂q1 + αq1

(i)
> d̂q2 − αq2

≥ d̂q2 −
∆

4

≥ d̂j −
∆

4

≥ dj − αj −
∆

4

≥ dj −
∆

2
, (18)

where (i) comes from our assumption that the ter-
minating condition (4) is false. Combining (17)
and (18) along with γ +∆/2 = dk+1+h, we ob-
tain that dk+1+h > di for all i ∈ Ŝ ∪ {q2}, which
is a contradiction, since there can be at most k+h
values of di that are smaller than dk+1+h.

iii. When k < q1 ≤ k + h and b2 > k + h, the case is
similar to the previous case, except that we need
to bound αi for i ∈ Ŝmiddle in a different way.
By Egood(b2), d̂q2 ≥ d̂b2 , and αb2 ≥ αq2 , we have
analogously to (17), for all i ∈ Ŝfar,

γ ≤ d̂b2 − 3αb2

≤ d̂q2 − αq2 − 2αb2

≤ di − 2αb2 . (19)

Equivalently, di ≥ γ + 2αb2 . Since there are
n− k − h values of i for which this inequality
holds, it must hold for dk+1+h, so we obtain

αb2 ≤
dk+1+h − γ

2
=

∆

4
. (20)

By definition of b2, αi ≤ ∆/4 for all i ∈ Ŝmiddle ∪
{q2}, and a contradiction can be reached similarly
as in case ii.

iv. For the case when both q1, b2 ∈ {k+1, . . . , k+h},
we first show that at least one of γ < d̂q1 + αq1 or
γ > d̂q2−αq2 is true. To see this, first suppose the
former is false. Then using that the terminating
condition (4) is false, we have

γ ≥ d̂q1 + αq1 > d̂q2 − αq2 . (21)

Now that we know that at least one of these
inequalities holds, and we proceed similarly for
each. First suppose that the former inequality,
γ < d̂q1 + αq1 , holds. Using that by Egood(q1) and
Egood(b2) we have αi ≤ ∆/4 for all i ∈ {q1, q2} ∪
Ŝmiddle, we have that, for all i ∈ {q1, q2}∪Ŝmiddle,

γ < d̂q1 + αq1

≤ d̂i + αq1

≤ di + αi + αq1

≤ di +
∆

2
. (22)

We also have for all j ∈ Ŝfar that

γ < d̂q1 + αq1

≤ d̂q2 − αq2 + αq2 + αq1
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≤ d̂j − αj + αq2 + αq1

≤ dj + αq2 + αq1

≤ dj +
∆

2
. (23)

Combining (22) and (23), we have that di > dk
for all i ∈ {q1} ∪ Ŝmiddle ∪ Ŝfar, which is a contra-
diction, since at most n− k values of i can satisfy
this inequality.
The case that γ > d̂q2 −αq2 is entirely analogous.

v. When q1 > k + h or b2 ≤ k, we can make sim-
ilar arguments to the previous cases to reach a
contradiction.

A.2 Proof of Fact 5

First, when i ≤ k, we have

d̂i + 3αi ≤ di + 4αi

≤ di +
∆i

2

≤ dk+1+h + di
2

≤ γ, (24)

where the last inequality uses di ≤ dk, so Ebad(i) does
not occur. This is similarly shown for i > k + h. For
k < i ≤ k + h, that Ebad(i) does not occur follows im-
mediately from αi ≤ ∆i/8 ≤ ∆i/4.

A.3 Proof of Fact 6

Recalling that αi(u) =
√

2β(u,δ/n)
u , at αi(u) = ∆i/8

we have that u = 2(∆i/8)
−2β(u, δ′), so we need to

bound the greatest fixed point u∗ of

f(u) = 2(∆i/8)
−2β(u, δ′).

Let u0 = 2(∆i/8)
−2, and note that for all u ≥ u0,

f ′(u) =
2(∆i/8)

−2(2)

u log(1.12u)

≤ 2(∆i/8)
−2(2)

2(∆i/8)−2 log((1.12)2(∆i/8)−2)

≤ 2

log((1.12)32)

< 1. (25)

The second inequality holds because ∆i ≤ 2. Suppose
that u∗ > u0. Using Taylor’s theorem, we have that
for some z ≥ u0,

f(u0) = f(u∗) + f ′(z)(u0 − u∗)

= u∗(1− f ′(z)) + u0f
′(z). (26)

Then

u∗ =
f(u0)− u0f

′(z)

1− f ′(z)

≤ f(u0)

1− f ′(u0)
. (27)

So, we can bound the greatest fixed point of f as

u∗ ≤ max

{
u0,

f(u0)

1− f ′(u0)

}
= 2(∆i/8)

−2 max

{
1,

β(2(∆i/8)
−2, δ′)

1− 2/ log((1.12)32)

}
= c1∆

−2
i β(2(∆i/8)

−2, δ′), (28)

where c1 = 128/(1 − 2/ log((1.12)32)). Since T̃i ≤
u∗ + 1, letting c2 = c1 + 1,

T̃i ≤
c2
∆2

i

log

(
125

n

δ
log

(
(1.12)128

∆2
i

))
. (29)

Then for c sufficiently large,

T̃i ≤ c log
(n
δ

) log(2 log(2/∆i))

∆2
i

. (30)

B ADDITIONAL THEOREM 2
PROOF DETAILS

In this section we provide details on bounding∑
i∈S1(ν)

Eν [Ni] that we omitted in the proof of The-
orem 2. We consider the set M = {ℓ1, . . . , ℓh+1} ⊆
S1(ν) and construct an alternative distribution ν′ such
that under that distributionM⊆ S2(ν′). Then under
ν′, if A succeeds, then at most h elements of S2(ν′) can
be in Ŝ, meaning that at least one element ofM is not
in Ŝ and that E does not occur. So, if A succeeds with
probability at least 1− δ, then both Pν [E ] ≥ 1− δ and
Pν′ [E ] ≤ δ.

Our alternative distribution ν′ is defined as

ν′i =

{
νk+1+h, i ∈M
νi, otherwise.

Again, to avoid ties, for ℓ ∈ M, one should take ν′ℓ =
νk+1+h+ε and let ε→ 0, but we omit this detail. The
remainder of the arguments are entirely analogous to
the case shown previously, giving us the bound

∑
i∈S1(ν)

Eν [Ni] ≥ log
1

2δ

k−h∑
i=1

dk+1+h(1− dk+1+h)

(di − dk+1+h)2
.


