A Appendix

Here, we report the proofs missing from the main text.

A. 1 Details of Example 1

Consider the function $f(x)=\frac{1}{2} x^{2}$. The gradient in t-th iteration is $\nabla f\left(x_{t}\right)=x_{t}$. Let the stochastic gradient be defined as $\boldsymbol{g}_{t}=\nabla f\left(x_{t}\right)+\xi_{t}$, where $P\left(\xi_{t}=\sigma_{t}\right)=\frac{7}{15}, P\left(\xi_{t}=-\frac{3}{2} \sigma_{t}\right)=\frac{1}{5}$ and $P\left(\xi_{t}=-\frac{1}{2} \sigma_{t}\right)=\frac{1}{3}$.
Let $A \triangleq \sum_{i=1}^{t-1} g_{i}^{2}+\beta$. Then

$$
\left\langle\mathbb{E}_{t} \eta_{t+1} \boldsymbol{g}_{t}, \nabla f\left(x_{t}\right)\right\rangle=\alpha\left[\frac{7}{15} \frac{\left(x_{t}+\sigma_{t}\right) x_{t}}{\left[A+\left(x_{t}+\sigma_{t}\right)^{2}\right]^{\frac{1}{2}+\epsilon}}+\frac{1}{5} \frac{\left(x_{t}-\frac{3}{2} \sigma_{t}\right) x_{t}}{\left[A+\left(x_{t}-\frac{3}{2} \sigma_{t}\right)^{2}\right]^{\frac{1}{2}+\epsilon}}+\frac{1}{3} \frac{\left(x_{t}-\frac{1}{2} \sigma_{t}\right) x_{t}}{\left[A+\left(x_{t}-\frac{1}{2} \sigma_{t}\right)^{2}\right]^{\frac{1}{2}+\epsilon}}\right]
$$

This expression can be negative, for example, setting $x_{t}=1, \sigma_{t}=10, A=10, \epsilon=0$ or $\epsilon=0.1$.

A. 2 Proof of Lemma 2

Lemma 9. Let $a_{i} \geq 0, \cdots, T$ and $f:[0,+\infty) \rightarrow[0,+\infty)$ nonincreasing function. Then

$$
\sum_{t=1}^{T} a_{t} f\left(a_{0}+\sum_{i=1}^{t} a_{i}\right) \leq \int_{a_{0}}^{\sum_{t=0}^{T} a_{t}} f(x) d x
$$

Proof. Denote by $s_{t}=\sum_{i=0}^{t} a_{i}$.

$$
a_{i} f\left(s_{i}\right)=\int_{s_{i-1}}^{s_{i}} f\left(s_{i}\right) d x \leq \int_{s_{i-1}}^{s_{i}} f(x) d x
$$

Summing over $i=1, \cdots, T$, we have the stated bound.
Proof of Lemma 2. The proof is immediate from Lemma 9.

A.3 Proofs of Section 6.1

Proof of Lemma 4. From (4), for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{d}$, we have

$$
f(\boldsymbol{x}+\boldsymbol{y}) \leq f(\boldsymbol{x})+\langle\nabla f(\boldsymbol{x}), \boldsymbol{y}\rangle+\frac{M}{2}\|\boldsymbol{y}\|^{2}
$$

Take $\boldsymbol{y}=-\frac{1}{M} \nabla f(\boldsymbol{x})$, to have

$$
f(\boldsymbol{x}+\boldsymbol{y}) \leq f(\boldsymbol{x})+\left(\frac{1}{2 M}-\frac{1}{M}\right)\|\nabla f(\boldsymbol{x})\|^{2}
$$

Hence,

$$
\|\nabla f(\boldsymbol{x})\|^{2} \leq 2 M(f(\boldsymbol{x})-f(\boldsymbol{x}+\boldsymbol{y})) \leq 2 M\left(f(\boldsymbol{x})-\min _{\boldsymbol{u}} f(\boldsymbol{u})\right)
$$

Proof of Lemma 5. If $A \leq B x$, then $x \leq C(2 B x)^{\frac{1}{2}+\epsilon}$, so $x \leq\left[C(2 B)^{\frac{1}{2}+\epsilon}\right]^{\frac{1}{1 / 2-\epsilon}}$. And if $A>B x$, then $x<$ $C(2 A)^{\frac{1}{2}+\epsilon}$. Taking the maximum of the two cases, we have the stated bound.

Proof of Lemma 6. Assume that $B x>A$. We have that

$$
x^{2} \leq(A+B x)(C+D \ln (A+B x))<2 B x(C+D \ln (2 B x))<2 B x(C+2 D \sqrt{2 B x})
$$

that is

$$
x<2 B C+4 B D \sqrt{2 B x}
$$

We can solve this inequality, to obtain

$$
x<32 B^{3} D^{2}+2 B C+8 B^{2} D \sqrt{C}
$$

On the other hand, if $B x \leq A$, we have $x \leq \frac{A}{B}$. Taking the sum of these two case, we have the stated bound.

Proof of Lemma 7. Let $f(x)=(x+y)^{p}-x^{p}-y^{p}$. We can see that $f^{\prime}(x)=p(x+y)^{p-1}-p x^{p-1} \leq 0$ when $x, y \geq 0$. So $f(x) \leq f(0)=0$. The inequality holds.

Lemma 10. If $x>0, \alpha>0$, then $\ln (x) \leq \alpha\left(x^{\frac{1}{\alpha}}-1\right)$.

Proof of Lemma 10. Let $f(x)=\ln (x)-\alpha x^{\frac{1}{\alpha}}+\alpha . f^{\prime}(x)=\frac{1}{x}-x^{\frac{1}{\alpha}-1}$ is positive when $0<x<1, f^{\prime}(1)=0$ and $f^{\prime}(x)<0$ when $x>1$. So $f(x) \leq f(1)=0$. The inequality holds.

Proof of Lemma 8. Using the assumption on the noise, we have

$$
\begin{aligned}
& \exp \left(\frac{\mathbb{E}\left[\max _{1 \leq i \leq T}\left\|\nabla f\left(\boldsymbol{x}_{i}\right)-\boldsymbol{g}\left(\boldsymbol{x}_{i}, \xi_{i}\right)\right\|^{2}\right]}{\sigma^{2}}\right) \leq \mathbb{E}\left[\exp \left(\frac{\max _{1 \leq i \leq T}\left\|\nabla f\left(\boldsymbol{x}_{i}\right)-\boldsymbol{g}\left(\boldsymbol{x}_{i}, \xi_{i}\right)\right\|^{2}}{\sigma^{2}}\right)\right] \\
& \quad=\mathbb{E}\left[\max _{1 \leq i \leq T} \exp \left(\frac{\left\|\nabla f\left(\boldsymbol{x}_{i}\right)-\boldsymbol{g}\left(\boldsymbol{x}_{i}, \xi_{i}\right)\right\|^{2}}{\sigma^{2}}\right)\right] \leq \sum_{i=1}^{T} \mathbb{E}\left[\exp \left(\frac{\left\|\nabla f\left(\boldsymbol{x}_{i}\right)-\boldsymbol{g}\left(\boldsymbol{x}_{i}, \xi_{i}\right)\right\|^{2}}{\sigma^{2}}\right)\right] \\
& \quad=\sum_{i=1}^{T} \mathbb{E}\left[\mathbb{E}_{i}\left[\exp \left(\frac{\left\|\nabla f\left(\boldsymbol{x}_{i}\right)-\boldsymbol{g}\left(\boldsymbol{x}_{i}, \xi_{i}\right)\right\|^{2}}{\sigma^{2}}\right)\right]\right] \leq T e
\end{aligned}
$$

that implies

$$
\begin{equation*}
\mathbb{E}\left[\max _{1 \leq i \leq T}\left\|\nabla f\left(\boldsymbol{x}_{i}\right)-\boldsymbol{g}\left(\boldsymbol{x}_{i}, \xi_{i}\right)\right\|^{2}\right] \leq \sigma^{2}(1+\ln T) \tag{12}
\end{equation*}
$$

Hence, when $\epsilon>0$, we have

$$
\begin{aligned}
\mathbb{E}\left[\sum_{t=1}^{T} \eta_{t}^{2}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}\right] & =\mathbb{E}\left[\sum_{t=1}^{T} \eta_{t+1}^{2}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}+\sum_{t=1}^{T}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}\left(\eta_{t}^{2}-\eta_{t+1}^{2}\right)\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{T} \eta_{t+1}^{2}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}+\sum_{t=1}^{T}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}\left(\eta_{t}+\eta_{t+1}\right)\left(\eta_{t}-\eta_{t+1}\right)\right] \\
& \leq \mathbb{E}\left[\sum_{t=1}^{T} \eta_{t+1}^{2}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}+\sum_{t=1}^{T} 2 \eta_{t}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}\left(\eta_{t}-\eta_{t+1}\right)\right] \\
& \leq \frac{\alpha^{2}}{2 \epsilon \beta^{2 \epsilon}}+2 \eta_{1} \mathbb{E}\left[\max _{1 \leq t \leq T} \eta_{t}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}\right] \\
& \leq \frac{\alpha^{2}}{2 \epsilon \beta^{2 \epsilon}}+4 \eta_{1} \mathbb{E}\left[\max _{1 \leq t \leq T} \eta_{t}\left(\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)-\nabla f\left(\boldsymbol{x}_{t}\right)\right\|^{2}+\left\|\nabla f\left(\boldsymbol{x}_{t}\right)\right\|^{2}\right)\right] \\
& \leq \frac{\alpha^{2}}{2 \epsilon \beta^{2 \epsilon}}+4 \eta_{1}^{2}(1+\ln T) \sigma^{2}+4 \eta_{1} \mathbb{E}\left[\sum_{t=1}^{T} \eta_{t}\left\|\nabla f\left(\boldsymbol{x}_{t}\right)\right\|^{2}\right] \\
& =\frac{\alpha^{2}}{2 \epsilon \beta^{2 \epsilon}}+\frac{4 \alpha^{2}}{\beta^{1+2 \epsilon}}(1+\ln T) \sigma^{2}+\frac{4 \alpha}{\beta^{\frac{1}{2}+\epsilon}} \mathbb{E}\left[\sum_{t=1}^{T} \eta_{t}\left\|\nabla f\left(\boldsymbol{x}_{t}\right)\right\|^{2}\right]
\end{aligned}
$$

where in second inequality we used Lemma 2 and in fourth one we used (12). Note that the analysis after the second inequality also holds when $\epsilon=0$.

And when $\epsilon=0$, we have

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{t=1}^{T} \eta_{t+1}^{2}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}\right]=\mathbb{E}\left[\sum_{t=1}^{T} \frac{\alpha^{2}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}}{\left(\beta+\sum_{i=1}^{t}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{i}, \xi_{t}\right)\right\|^{2}\right)}\right] \\
& \leq 2 \alpha^{2} \mathbb{E}\left[\ln \left(\sqrt{\beta+\sum_{t=1}^{T}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}}\right]\right] \\
& \leq 2 \alpha^{2} \mathbb{E}\left[\ln \left(\sqrt{\beta+2 \sum_{t=1}^{T}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)-\nabla f\left(\boldsymbol{x}_{t}\right)\right\|^{2}}+\sqrt{2 \sum_{t=1}^{T}\left\|\nabla f\left(\boldsymbol{x}_{t}\right)\right\|^{2}}\right)\right] \\
& \leq 2 \alpha^{2} \ln \left(\sqrt{\beta+2 T \sigma^{2}}+\sqrt{2} \mathbb{E}\left[\sqrt{\sum_{t=1}^{T}\left\|\nabla f\left(\boldsymbol{x}_{t}\right)\right\|^{2}}\right]\right)
\end{aligned}
$$

where in first inequality we used Lemma 10 and in the third one we used Jensen's inequality. Putting things together, we have

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{t=1}^{T} \eta_{t}^{2}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}\right]=\mathbb{E}\left[\sum_{t=1}^{T} \eta_{t+1}^{2}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}+\sum_{t=1}^{T}\left\|\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}\left(\eta_{t}^{2}-\eta_{t+1}^{2}\right)\right] \\
& \leq 2 \alpha^{2} \ln \left(\sqrt{\beta+2 T \sigma^{2}}+\sqrt{2} \mathbb{E}\left[\sqrt{\sum_{t=1}^{T}\left\|\nabla f\left(\boldsymbol{x}_{t}\right)\right\|^{2}}\right]\right)+\frac{4 \alpha^{2}}{\beta}(1+\ln T) \sigma^{2}+\frac{4 \alpha}{\beta^{\frac{1}{2}}} \mathbb{E}\left[\sum_{t=1}^{T} \eta_{t}\left\|\nabla f\left(\boldsymbol{x}_{t}\right)\right\|^{2}\right]
\end{aligned}
$$

A. 4 Proofs of Section 5

Proof of Lemma 3. From (4), we have

$$
\begin{aligned}
f\left(\boldsymbol{x}_{t+1}\right) & \leq f\left(\boldsymbol{x}_{t}\right)+\left\langle\nabla f\left(\boldsymbol{x}_{t}\right), \boldsymbol{x}_{t+1}-\boldsymbol{x}_{t}\right\rangle+\frac{M}{2}\left\|\boldsymbol{x}_{t+1}-\boldsymbol{x}_{t}\right\|^{2} \\
& =f\left(\boldsymbol{x}_{t}\right)+\left\langle\nabla f\left(\boldsymbol{x}_{t}\right), \boldsymbol{\eta}_{t}\left(\nabla f\left(\boldsymbol{x}_{t}\right)-\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right)\right\rangle-\left\langle\nabla f\left(\boldsymbol{x}_{t}\right), \boldsymbol{\eta}_{t} \nabla f\left(\boldsymbol{x}_{t}\right)\right\rangle+\frac{M}{2}\left\|\boldsymbol{\eta}_{t} \boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2} .
\end{aligned}
$$

Taking the conditional expectation with respect to $\xi_{1}, \cdots, \xi_{t-1}$, we have that

$$
E_{t}\left[\left\langle\nabla f\left(\boldsymbol{x}_{t}\right), \boldsymbol{\eta}_{t}\left(\nabla f\left(\boldsymbol{x}_{t}\right)-\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right)\right\rangle\right]=\left\langle\nabla f\left(\boldsymbol{x}_{t}\right), \boldsymbol{\eta}_{t} \nabla f\left(\boldsymbol{x}_{t}\right)-\boldsymbol{\eta}_{t} \mathbb{E}_{t}\left[\boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right]\right\rangle=0
$$

Hence, from the law of total expectation, we have

$$
\mathbb{E}\left[\left\langle\nabla f\left(\boldsymbol{x}_{t}\right), \boldsymbol{\eta}_{t} \nabla f\left(\boldsymbol{x}_{t}\right)\right\rangle\right] \leq \mathbb{E}\left[f\left(\boldsymbol{x}_{t}\right)-f\left(\boldsymbol{x}_{t+1}\right)+\frac{M}{2}\left\|\boldsymbol{\eta}_{t} \boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}\right]
$$

Summing over $t=1$ to T and lower bounding $f\left(\boldsymbol{x}_{T+1}\right)$ with f^{\star}, we have the stated bound.
Proof of Lemma 1. Since the series $\sum_{t=1}^{\infty} a_{t}$ diverges, given that $\sum_{t=1}^{\infty} a_{t} b_{t}$ converges, we necessarily have $\liminf _{t \rightarrow \infty} b_{t}=0$. So there exists a subsequence $\left\{b_{i(t)}\right\}$ of $\left\{b_{t}\right\}$ such that $\lim _{t \rightarrow \infty} b_{i(t)}=0$.
Let us proceed by contradiction and assume that there exists some $\alpha>0$ and some other subsequence $\left\{b_{m(t)}\right\}$ of $\left\{b_{t}\right\}$ such that $b_{m(t)} \geq \alpha$ for all t. In this case, we can construct a third subsequence $\left\{b_{j(t)}\right\}$ of $\left\{b_{t}\right\}$ where the subindices $j(t)$ are chosen in the following way:

$$
j(0)=\min \left\{l \geq 0: b_{l} \geq \alpha\right\}
$$

and, given $j(2 t)$,

$$
\begin{gather*}
j(2 t+1)=\min \left\{l \geq j(2 t): b_{l} \leq \frac{1}{2} \alpha\right\}, \tag{13}\\
j(2 t+2)=\min \left\{l \geq j(2 t+1): b_{l} \leq \frac{1}{2} \alpha\right\} . \tag{14}
\end{gather*}
$$

Note that the existence of $\left\{b_{i(t)}\right\}$ and $\left\{b_{m(t)}\right\}$ guarantees that $j(t)$ is well defined. Also by (13) and (14)

$$
b_{l} \leq \frac{\alpha}{2} \text { for } j(2 t) \leq l \leq j(2 t+1)-1
$$

Then, denoting $\phi_{t}=\sum_{l=2 t}^{j(2 t+1)-1} a_{l}$, we have

$$
\infty>\sum_{t=1}^{\infty} a_{t} b_{t} \geq \sum_{t=1}^{\infty} \sum_{l=2 t}^{j(2 t+1)-1} a_{l} b_{l} \leq \frac{\alpha}{2} \sum_{t=1}^{\infty} \phi_{t}
$$

Therefore, we have $\lim _{t \rightarrow \infty} \phi_{t}=0$.
On the other hand, by (13) and (14), we have $b_{j(2 t)} \geq \alpha, b_{j(2 t+1)} \leq \frac{1}{\alpha}$, so that

$$
\frac{\alpha}{2} \leq b_{j(2 t)}-b_{j(2 t+1)}=\sum_{l=j(2 t)}^{j(2 t+1)-1}\left(b_{l}-b_{l+1}\right) \leq \sum_{l=j(2 t)}^{j(2 t+1)-1} K a_{l}=K \phi_{t} .
$$

So $\phi_{t} \geq \frac{\alpha}{2 K}$, which is in contradiction with $\lim _{t \rightarrow \infty} \phi_{t}=0$. Therefore, b_{t} goes to zero.

Proof of Theorem 2. We proceed similarly to the proof of Theorem 1, to get

$$
\mathbb{E}\left[\sum_{t=1}^{\infty}\left\langle\nabla f\left(\boldsymbol{x}_{t}\right), \boldsymbol{\eta}_{t} \nabla f\left(\boldsymbol{x}_{t}\right)\right\rangle\right] \leq f\left(\boldsymbol{x}_{1}\right)-f\left(\boldsymbol{x}^{\star}\right)+\frac{M}{2} \mathbb{E}\left[\sum_{t=1}^{\infty}\left\|\boldsymbol{\eta}_{t} \boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|_{2}^{2}\right] .
$$

Observe that

$$
\sum_{t=1}^{\infty}\left\|\boldsymbol{\eta}_{t} \boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\|^{2}=\sum_{t=1}^{\infty} \sum_{i=1}^{d} \eta_{t, i}^{2} \boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)_{i}^{2}=\sum_{i=1}^{d} \sum_{t=1}^{\infty} \eta_{t, i}^{2} \boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)_{i}^{2}<\infty,
$$

where the last inequality comes from the same reasoning in (5). Hence, we have

$$
\mathbb{E}\left[\sum_{t=1}^{\infty}\left\langle\nabla f\left(\boldsymbol{x}_{t}\right), \boldsymbol{\eta}_{t} \nabla f\left(\boldsymbol{x}_{t}\right)\right\rangle\right]<\infty .
$$

Hence, with probability 1, we have

$$
\sum_{t=1}^{\infty}\left\langle\nabla f\left(\boldsymbol{x}_{t}\right), \boldsymbol{\eta}_{t} \nabla f\left(\boldsymbol{x}_{t}\right)\right\rangle=\sum_{t=1}^{\infty} \sum_{j=1}^{d} \eta_{t, j} \nabla f\left(\boldsymbol{x}_{t}\right)_{j}^{2}=\sum_{j=1}^{d} \sum_{t=1}^{\infty} \eta_{t, j} \nabla f\left(\boldsymbol{x}_{t}\right)_{j}^{2}<\infty .
$$

and, for any $j=1, \cdots, d$,

$$
\sum_{t=1}^{\infty} \eta_{t, j}\left(\nabla f\left(\boldsymbol{x}_{t}\right)\right)_{j}^{2}<\infty
$$

Now, observe that the Lipschitzness of f and the bounded support of the noise on the gradients gives

$$
\sum_{t=1}^{\infty} \eta_{t, j}=\sum_{t=1}^{\infty} \frac{\alpha}{\left(\beta+\sum_{i=1}^{t-1}\left(g\left(\boldsymbol{x}_{i}, \xi_{i}\right)_{j}\right)^{2}\right)^{1 / 2+\epsilon}} \geq \sum_{t=1}^{\infty} \frac{\alpha}{\left(\beta+2(t-1)\left(L^{2}+S^{2}\right)\right)^{1 / 2+\epsilon}}=\infty .
$$

Using the fact the f is L-Lipschitz and M-smooth, we also have

$$
\begin{aligned}
& \left|\left(\left(\nabla f\left(\boldsymbol{x}_{t+1}\right)\right)_{j}\right)^{2}-\left(\left(\nabla f\left(\boldsymbol{x}_{t}\right)\right)_{j}\right)^{2}\right|=\left(\left(\nabla f\left(\boldsymbol{x}_{t+1}\right)\right)_{j}+\left(\nabla f\left(\boldsymbol{x}_{t}\right)\right)_{j}\right) \cdot\left|\left(\nabla f\left(\boldsymbol{x}_{t+1}\right)\right)_{j}-\left(\nabla f\left(\boldsymbol{x}_{t}\right)\right)_{j}\right| \\
& \quad \leq 2 L M\left\|\boldsymbol{x}_{t+1}-\boldsymbol{x}_{t}\right\|=2 L M\left\|\boldsymbol{\eta}_{t} \boldsymbol{g}\left(\boldsymbol{x}_{t}, \xi_{t}\right)\right\| \leq 2 L M(L+S) \eta_{t} .
\end{aligned}
$$

Hence, we case use Lemma 1 to obtain

$$
\lim _{t \rightarrow \infty}\left(\left(\nabla f\left(\boldsymbol{x}_{t}\right)\right)_{j}\right)^{2}=0 .
$$

For the second statement, observe that, with probability 1 ,

$$
\left.\sum_{t=1}^{\infty}\left(\left(\nabla f\left(\boldsymbol{x}_{t}\right)\right)_{j}\right)^{2} t^{1 / 2-\epsilon} \frac{\alpha}{t\left(2 L^{2}+2 S^{2}+\beta\right)^{1 / 2+\epsilon}} \leq \sum_{t=1}^{\infty} \eta_{t, j}\left(\nabla f\left(\boldsymbol{x}_{t}\right)\right)_{j}\right)^{2}<\infty .
$$

Hence, noting that $\sum_{t=1}^{\infty} \frac{1}{t}=\infty$, we have that $\liminf _{t \rightarrow \infty}\left(\left(\nabla f\left(\boldsymbol{x}_{t}\right)\right)_{j}\right)^{2} t^{1 / 2-\epsilon}=0$.

