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A Appendix

Here, we report the proofs missing from the main text.

A.1 Details of Example 1

Consider the function f(x) = 1
2x

2. The gradient in t-th iteration is ∇f(xt) = xt. Let the stochastic gradient be
defined as gt = ∇f(xt) + ξt, where P (ξt = σt) = 7

15 , P (ξt = − 3
2σt) = 1

5 and P (ξt = − 1
2σt) = 1

3 .

Let A ,
∑t−1
i=1 g

2
i + β. Then

〈Etηt+1gt,∇f(xt)〉 = α

[
7

15

(xt + σt)xt

[A+ (xt + σt)2]
1
2+ε

+
1

5

(xt − 3
2σt)xt

[A+ (xt − 3
2σt)

2]
1
2+ε

+
1

3

(xt − 1
2σt)xt

[A+ (xt − 1
2σt)

2]
1
2+ε

]
.

This expression can be negative, for example, setting xt = 1, σt = 10, A = 10, ε = 0 or ε = 0.1.

A.2 Proof of Lemma 2

Lemma 9. Let ai ≥ 0, · · · , T and f : [0,+∞)→ [0,+∞) nonincreasing function. Then

T∑
t=1

atf

(
a0 +

t∑
i=1

ai

)
≤
∫ ∑T

t=0 at

a0

f(x)dx.

Proof. Denote by st =
∑t
i=0 ai.

aif(si) =

∫ si

si−1

f(si)dx ≤
∫ si

si−1

f(x)dx.

Summing over i = 1, · · · , T , we have the stated bound.

Proof of Lemma 2. The proof is immediate from Lemma 9.

A.3 Proofs of Section 6.1

Proof of Lemma 4. From (4), for any x,y ∈ Rd, we have

f(x+ y) ≤ f(x) + 〈∇f(x),y〉+
M

2
‖y‖2.

Take y = − 1
M∇f(x), to have

f(x+ y) ≤ f(x) +

(
1

2M
− 1

M

)
‖∇f(x)‖2.

Hence,
‖∇f(x)‖2 ≤ 2M(f(x)− f(x+ y)) ≤ 2M(f(x)−min

u
f(u)).

Proof of Lemma 5. If A ≤ Bx, then x ≤ C(2Bx)
1
2+ε, so x ≤

[
C(2B)

1
2+ε
] 1

1/2−ε
. And if A > Bx, then x <

C(2A)
1
2+ε. Taking the maximum of the two cases, we have the stated bound.

Proof of Lemma 6. Assume that Bx > A. We have that

x2 ≤ (A+Bx)(C +D ln(A+Bx)) < 2Bx(C +D ln(2Bx)) < 2Bx(C + 2D
√

2Bx),

that is
x < 2BC + 4BD

√
2Bx.
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We can solve this inequality, to obtain

x < 32B3D2 + 2BC + 8B2D
√
C.

On the other hand, if Bx ≤ A, we have x ≤ A
B . Taking the sum of these two case, we have the stated bound.

Proof of Lemma 7. Let f(x) = (x + y)p − xp − yp. We can see that f ′(x) = p(x + y)p−1 − pxp−1 ≤ 0 when
x, y ≥ 0. So f(x) ≤ f(0) = 0. The inequality holds.

Lemma 10. If x > 0, α > 0, then ln(x) ≤ α(x
1
α − 1).

Proof of Lemma 10. Let f(x) = ln(x)− αx 1
α + α. f ′(x) = 1

x − x
1
α−1 is positive when 0 < x < 1, f ′(1) = 0 and

f ′(x) < 0 when x > 1. So f(x) ≤ f(1) = 0. The inequality holds.

Proof of Lemma 8. Using the assumption on the noise, we have

exp

(
E
[
max1≤i≤T ‖∇f(xi)− g(xi, ξi)‖2

]
σ2

)
≤ E

[
exp

(
max1≤i≤T ‖∇f(xi)− g(xi, ξi)‖2

σ2

)]

= E
[

max
1≤i≤T

exp

(
‖∇f(xi)− g(xi, ξi)‖2

σ2

)]
≤

T∑
i=1

E
[
exp

(
‖∇f(xi)− g(xi, ξi)‖2

σ2

)]

=

T∑
i=1

E
[
Ei
[
exp

(
‖∇f(xi)− g(xi, ξi)‖2

σ2

)]]
≤ Te,

that implies

E
[

max
1≤i≤T

‖∇f(xi)− g(xi, ξi)‖2
]
≤ σ2(1 + lnT ). (12)

Hence, when ε > 0, we have

E

[
T∑
t=1

η2t ‖g(xt, ξt)‖2
]

= E

[
T∑
t=1

η2t+1‖g(xt, ξt)‖2 +

T∑
t=1

‖g(xt, ξt)‖2(η2t − η2t+1)

]

= E

[
T∑
t=1

η2t+1‖g(xt, ξt)‖2 +

T∑
t=1

‖g(xt, ξt)‖2(ηt + ηt+1)(ηt − ηt+1)

]

≤ E

[
T∑
t=1

η2t+1‖g(xt, ξt)‖2 +

T∑
t=1

2ηt‖g(xt, ξt)‖2(ηt − ηt+1)

]

≤ α2

2εβ2ε
+ 2η1E

[
max
1≤t≤T

ηt‖g(xt, ξt)‖2
]

≤ α2

2εβ2ε
+ 4η1E

[
max
1≤t≤T

ηt
(
‖g(xt, ξt)−∇f(xt)‖2 + ‖∇f(xt)‖2

)]
≤ α2

2εβ2ε
+ 4η21(1 + lnT )σ2 + 4η1E

[
T∑
t=1

ηt‖∇f(xt)‖2
]

=
α2

2εβ2ε
+

4α2

β1+2ε
(1 + lnT )σ2 +

4α

β
1
2+ε

E

[
T∑
t=1

ηt‖∇f(xt)‖2
]
,

where in second inequality we used Lemma 2 and in fourth one we used (12). Note that the analysis after the
second inequality also holds when ε = 0.
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And when ε = 0, we have

E

[
T∑
t=1

η2t+1‖g(xt, ξt)‖2
]

= E

[
T∑
t=1

α2‖g(xt, ξt)‖2

(β +
∑t
i=1 ‖g(xi, ξt)‖2)

]

≤ 2α2E

ln


√√√√β +

T∑
t=1

‖g(xt, ξt)‖2


≤ 2α2E

ln


√√√√β + 2

T∑
t=1

‖g(xt, ξt)−∇f(xt)‖2 +

√√√√2

T∑
t=1

‖∇f(xt)‖2


≤ 2α2 ln

√β + 2Tσ2 +
√

2E


√√√√ T∑

t=1

‖∇f(xt)‖2



where in first inequality we used Lemma 10 and in the third one we used Jensen’s inequality. Putting things
together, we have

E

[
T∑
t=1

η2t ‖g(xt, ξt)‖2
]

= E

[
T∑
t=1

η2t+1‖g(xt, ξt)‖2 +

T∑
t=1

‖g(xt, ξt)‖2(η2t − η2t+1)

]

≤ 2α2 ln

√β + 2Tσ2 +
√

2E


√√√√ T∑

t=1

‖∇f(xt)‖2

+
4α2

β
(1 + lnT )σ2 +

4α

β
1
2

E

[
T∑
t=1

ηt‖∇f(xt)‖2
]

A.4 Proofs of Section 5

Proof of Lemma 3. From (4), we have

f(xt+1) ≤ f(xt) + 〈∇f(xt),xt+1 − xt〉+
M

2
‖xt+1 − xt‖2

= f(xt) + 〈∇f(xt),ηt(∇f(xt)− g(xt, ξt))〉 − 〈∇f(xt),ηt∇f(xt)〉+
M

2
‖ηtg(xt, ξt)‖2.

Taking the conditional expectation with respect to ξ1, · · · , ξt−1, we have that

Et[〈∇f(xt),ηt(∇f(xt)− g(xt, ξt))〉] = 〈∇f(xt),ηt∇f(xt)− ηtEt[g(xt, ξt)]〉 = 0.

Hence, from the law of total expectation, we have

E [〈∇f(xt),ηt∇f(xt)〉] ≤ E
[
f(xt)− f(xt+1) +

M

2
‖ηtg(xt, ξt)‖2

]
.

Summing over t = 1 to T and lower bounding f(xT+1) with f?, we have the stated bound.

Proof of Lemma 1. Since the series
∑∞
t=1 at diverges, given that

∑∞
t=1 atbt converges, we necessarily have

lim inft→∞ bt = 0. So there exists a subsequence {bi(t)} of {bt} such that limt→∞ bi(t) = 0.

Let us proceed by contradiction and assume that there exists some α > 0 and some other subsequence {bm(t)}
of {bt} such that bm(t) ≥ α for all t. In this case, we can construct a third subsequence {bj(t)} of {bt} where the
subindices j(t) are chosen in the following way:

j(0) = min{l ≥ 0 : bl ≥ α}
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and, given j(2t),

j(2t+ 1) = min{l ≥ j(2t) : bl ≤
1

2
α}, (13)

j(2t+ 2) = min{l ≥ j(2t+ 1) : bl ≤
1

2
α}. (14)

Note that the existence of {bi(t)} and {bm(t)} guarantees that j(t) is well defined. Also by (13) and (14)

bl ≤
α

2
for j(2t) ≤ l ≤ j(2t+ 1)− 1.

Then, denoting φt =
∑j(2t+1)−1
l=2t al, we have

∞ >

∞∑
t=1

atbt ≥
∞∑
t=1

j(2t+1)−1∑
l=2t

albl ≤
α

2

∞∑
t=1

φt.

Therefore, we have limt→∞ φt = 0.

On the other hand, by (13) and (14), we have bj(2t) ≥ α, bj(2t+1) ≤ 1
α , so that

α

2
≤ bj(2t) − bj(2t+1) =

j(2t+1)−1∑
l=j(2t)

(bl − bl+1) ≤
j(2t+1)−1∑
l=j(2t)

Kal = Kφt.

So φt ≥ α
2K , which is in contradiction with limt→∞ φt = 0. Therefore, bt goes to zero.

Proof of Theorem 2. We proceed similarly to the proof of Theorem 1, to get

E

[ ∞∑
t=1

〈∇f(xt),ηt∇f(xt)〉

]
≤ f(x1)− f(x?) +

M

2
E

[ ∞∑
t=1

‖ηtg(xt, ξt)‖22

]
.

Observe that
∞∑
t=1

‖ηtg(xt, ξt)‖2 =

∞∑
t=1

d∑
i=1

η2t,ig(xt, ξt)
2
i =

d∑
i=1

∞∑
t=1

η2t,ig(xt, ξt)
2
i <∞,

where the last inequality comes from the same reasoning in (5). Hence, we have

E

[ ∞∑
t=1

〈∇f(xt),ηt∇f(xt)〉

]
<∞.

Hence, with probability 1, we have

∞∑
t=1

〈∇f(xt),ηt∇f(xt)〉 =

∞∑
t=1

d∑
j=1

ηt,j∇f(xt)
2
j =

d∑
j=1

∞∑
t=1

ηt,j∇f(xt)
2
j <∞.

and, for any j = 1, · · · , d,
∞∑
t=1

ηt,j(∇f(xt))
2
j <∞.

Now, observe that the Lipschitzness of f and the bounded support of the noise on the gradients gives

∞∑
t=1

ηt,j =

∞∑
t=1

α

(β +
∑t−1
i=1(g(xi, ξi)j)2)1/2+ε

≥
∞∑
t=1

α

(β + 2(t− 1)(L2 + S2))1/2+ε
=∞.
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Using the fact the f is L-Lipschitz and M -smooth, we also have∣∣((∇f(xt+1))j)
2 − ((∇f(xt))j)

2
∣∣ = ((∇f(xt+1))j + (∇f(xt))j) · |(∇f(xt+1))j − (∇f(xt))j |

≤ 2LM‖xt+1 − xt‖ = 2LM‖ηtg(xt, ξt)‖ ≤ 2LM(L+ S)ηt.

Hence, we case use Lemma 1 to obtain
lim
t→∞

((∇f(xt))j)
2 = 0.

For the second statement, observe that, with probability 1,

∞∑
t=1

((∇f(xt))j)
2t

1/2−ε α

t(2L2 + 2S2 + β)1/2+ε
≤
∞∑
t=1

ηt,j(∇f(xt))j)
2 <∞.

Hence, noting that
∑∞
t=1

1
t =∞, we have that lim inft→∞((∇f(xt))j)

2t1/2−ε = 0.


