
Adversarial Discrete Sequence Generation without Explicit Neural
Networks as Discriminators

Zhongliang Li Tian Xia, Xingyu Lou, Kaihe Xu, Shaojun Wang, Jing Xiao
Wright State University Ping An Technology

Abstract

This paper presents a novel approach to train
GANs for discrete sequence generation with-
out resorting to an explicit neural network
as the discriminator. We show that when an
alternative mini-max optimization procedure
is performed for the value function where a
closed form solution for the discriminator ex-
ists in the maximization step, it is equivalent
to directly optimizing the Jensen-Shannon
divergence (JSD) between the generator’s dis-
tribution and the empirical distribution over
the training data without sampling from the
generator, thus optimizing the JSD becomes
computationally tractable to train the genera-
tor that generates sequences of discrete data.
Extensive experiments on synthetic data and
real-world tasks demonstrate significant im-
provements over existing methods to train
GANs that generate discrete sequences.

1 Introduction

Discrete sequence generation is an important problem
in unsupervised learning, and recently neural auto-
regressive models such as LSTMs have shown excellent
performance (Graves, 2013), (Mikolov et al., 2010).
A common approach to train an LSTM model is to
maximize the log-likelihood of each ground-truth to-
ken given previous observed tokens (Graves, 2013),
(Mikolov et al., 2010). However, maximum likelihood
estimation (MLE) typically suffers from exposure bias
(Bengio et al., 2015), (Ranzato et al., 2016), i.e., the dis-
crepancy between training and inference stages. During
inference, each token is generated based on previously
generated tokens, while during training ground-truth

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

tokens are used at each time step. A scheduled sam-
pling approach (Bengio et al., 2015) is presented to
address this problem, but is proven to be fundamentally
inconsistent (Huszár, 2015).

Adversarial training has emerged as a powerful
paradigm to train deep generative models. The genera-
tive adversarial nets (GANs) (Goodfellow et al., 2014)
that use a discriminator to guide the training of the
generator have enjoyed considerable success in gener-
ating real-valued data such as images. However, they
have a very limited success to generate sequences of
discrete data due to the difficulty of passing the gra-
dient update from the discriminator to the generator
because of the discrete output from the generator.

Attempts have been made to overcome such difficulties,
which can be categorized into two paths. One path is
to provide a continuous approximation of the discrete
distribution (i.e., multinomial) on discrete sequence to
make the model end-to-end differentiable. Distinctive
works are TextGAN (Zhang et al., 2017), FMD-tGAN
(Chen et al., 2018) and GumbelSoftmax GAN (Kusner
and Hernández-Lobato, 2016). Most popular path is
to treat discrete sequence generation as a sequential
decision making process (Bachman and Precup, 2015),
which can be potentially solved by reinforcement learn-
ing (RL) techniques (Sutton and Barto, 2018). The
generative model is treated as an agent with a stochas-
tic parameterized policy, the state is the generated
tokens so far and the action is the next token to be
generated. To overcome the difficulty that the gradi-
ent cannot pass back to the generative model when
the output is discrete, the gradient of the generator
is estimated via the policy-gradient algorithm (Sutton
and Barto, 2018). Representative works include Seq-
GAN (Yu et al., 2017), LeakGAN (Guo et al., 2018),
RankGAN (Lin et al., 2017) and MaskGAN (Fedus
et al., 2018). Although promising results have been
achieved, one major disadvantage with such RL-based
strategies is that they typically yield high-variance
gradient estimates, which is hard to overcome.

In this work, we present a novel RL-free approach to
train GANs for discrete sequence generation without

Adversarial Discrete Sequence Generation without Explicit Neural Networks as Discriminators

resorting to an explicit neural network as the discrimi-
nator. We show that when an alternative mini-max op-
timization procedure is performed for the value function
where a closed form solution for the discriminator exists
in the maximization step, it is equivalent to directly op-
timizing the JSD between the generator’s distribution
and the empirical distribution over the training data,
where the corresponding Kullback–Leibler (KL) diver-
gence related to the generator’s distribution and the
empirical distribution over the training data is reduced
to the sum over the training data. Thus surprisingly
sampling from the generator over the entire space is
not needed anymore, and there is no need to use the
policy-gradient algorithm to compute the gradient of
the generator. Optimizing the JSD becomes computa-
tionally tractable to train the generator that generates
sequences of discrete data. We conduct extensive ex-
periments on synthetic data and real-world tasks to
demonstrate significant improvements in terms of gen-
eration quality based on either negative log-likelihood
on the true distribution for synthetic data or BLEU
statistics for real data over existing RL-based methods
to train GANs that generate discrete sequences.

2 Related Work

In the original GAN paper (Goodfellow et al., 2014),
theoretical studies have been developed for the opti-
mality of the two-player minimax game and its global
convergence in the functional space of probability den-
sity functions. The optimal discriminator is derived
with obscurities between the GAN training objective
with respect to the true but unknown data distribu-
tion, and its empirical counterpart used in practical
training. Following the framework of empirical pro-
cess in machine learning theory (Mohri et al., 2012),
in the work of (Sinn and Rawat, 2018), the authors
present a more rigorous mathematical analysis about
the training of GAN to make a clear distinction between
training with respect to the true but unknown data
distribution, and its empirical counterpart. However
the authors couldn’t explore the particular property
of the empirical distribution over training data to sim-
plify the training algorithm as we’re doing in this work,
instead they pursue the idea of smoothing the JSD by
incorporating noise in the input distributions of the
discriminator, and the generator densities are replaced
by kernel density estimates.

Huszar (2015) studies a fundamental problem in unsu-
pervised learning and generative models: the choices of
objective functions. He argues that the key organizing
principle should be that the objective function used
for training a probabilistic model matches the way the
model will ultimately be used. It’s well known that
MLE is equivalent to minimizing the KL divergence

between the empirical data distribution and the model
distribution. However MLE tends to favor approxima-
tions of model distribution that overgeneralize the data
distribution. Instead the reverse KL divergence is a
good metric of evaluating generative models for percep-
tual quality, and it tends to favor under-generalization.
The JSD is a kind of combination of these two KL diver-
gences, and minimizing JSD would exhibit a behavior
that is a kind of halfway between the two extremes.
However the author couldn’t propose any training algo-
rithms to directly minimizing JSD beyond the original
GAN paper (Goodfellow et al., 2014).

Various methods have been proposed for adversarial
discrete sequence generation using the policy-gradient
algorithm (Chen et al., 2018; Fedus et al., 2018; Guo
et al., 2018; Lin et al., 2017; Subramanian et al., 2017;
Zhang et al., 2017) in RL. In SeqGAN (Yu et al.,
2017), the data generation process is modeled as a RL
problem, the state is previously generated sub-sequence,
the action is the next token to be generated, and the
generator is a stochastic policy that maps current state
to a distribution over the action space. Monte Carlo
(MC) search is employed to approximate the state-
action value. After the whole sequence is generated,
it’s fed to the discriminator to distinguish real and
generated sample sequence, to get reward for updating
the policy. LeakGAN (Guo et al., 2018) is an extension
of SeqGAN that provides richer award information from
the discriminator to the generator using techniques in
hierarchical reinforcement learning (Vezhnevets et al.,
2017). RankGAN (Lin et al., 2017) replaces the original
binary classifier discriminator with a ranking model by
taking a softmax over the expected cosine distances
from the generated sequences to the real data. Finally
Mask-GAN (Fedus et al., 2018) employs an actor-critic
training procedure to provide rewards at each time step,
thus reducing the high-variance of the gradient updates
in a high action-space environment when operating at
word-level in natural language. Nevertheless, in our
approach, by exploring the particular property of the
empirical distribution on training data, we proof that
optimal discriminator has a closed form solution, and
there is no need to use neural network to approximate
the discriminator, and computing JSD can be purely
based on training data, which implies that training the
generator is purely based on training data, and policy
gradient algorithm becomes unnecessary.

3 Adversarial Training without
Explicit Neural Networks as
Discriminators

In the well-known adversarial modeling framework
(Goodfellow et al., 2014), there are two players, one

Zhongliang Li, Tian Xia, Xinyu Lou, Kaihe Xu, Shaojun Wang, Jing Xiao

is called the generator represented by a differentiable
function G, the other is the discriminator represented
by a differentiable function D. The generator G creates
samples that are intended to come from the same dis-
tribution as the training data, the discriminator D(x)
examines samples to determine whether they are real or
fake via representing the probability that x came from
the data rather than G. The discriminator D is trained
to maximize the probability of assigning the correct
label to both training examples and samples from G.
The generator G is simultaneously trained to minimize
log(1 �D(x)) where x is generated by G. Thus, the
discriminator D and the generator G play the following
two-player minimax game with distinguishability game
value function V (G;D)

min
G

max
D

V (G;D) = Ex�~pdata(x) log[D(x)]

+ Ex�pG(x)[log(1�D(x))]
(1)

where ~pdata(x) denotes the empirical distribution of X
over training data C = fx1; � � � ; xNg with N samples,
and

~pdata(x) =

(
1
N if x 2 C
0 otherwise

In all existing works of GANs (Goodfellow, 2016), two
neural networks are used to represent the discriminator
D and the generator G respectively, and an alternative
mini-max optimization procedure is performed for the
training of these two neural networks, where a mini-
batch stochastic gradient ascend algorithm maximizing
the value function V (G;D) is used to train D and the
mini-batch samples are selected from training data set
C, and then a mini-batch stochastic gradient descend
algorithm minimizing the value function V (G;D) to
train G and the mini-batch samples are generated by
G, this procedure is repeated until convergence.

In this paper, instead of using two neural networks for
the discriminator D and the generator G respectively,
we propose an approach that uses a neural network
for the generator G but not for the discriminator D,
an alternative mini-max optimization procedure is per-
formed for the value function (1) where a closed form
solution for the discriminator D exists in the maximiza-
tion step, and it can be shown by Proposition 1 that it
is equivalent to directly optimizing the JSD between
the model’s distribution and the empirical distribution
~pdata(x) of X over the training data C that is tractable,
especially when x is a sequence. Thus, directly optimiz-
ing the JSD between the model’s distribution and the
empirical distribution ~pdata(x) of X over the training
data C implies an alternative minimax optimization
procedure is implicitly performed with respect to the
generator G and the discriminator D.

Proposition 1. When optimizing the value function

V (G;D), for any given generator G, the optimal dis-
criminator D�G(x) is

D�G(x) =

(
~pdata(x)

~pdata(x)+pg(x) if x 2 C
0 otherwise

and the value function at the optimal discriminator
D�G(x) becomes

V (G;D�G(x)) =2JSD(~pdata(x) k pG(x))� log 4

=
X
x2C

~pdata log[
~pdata(x)

~pdata(x) + pG(x)
]

+
X
x2C

pG(x)[log
pG(x)

~pdata(x) + pG(x)
]

(2)

where JSD(p k q) is the Jensen-Shannon divergence
between two distributions p and q, and is symmetric.

Proof: Given any generator G(x), the training criterion
for the discriminator D(x) is to maximize the value
function V (G;D) in (1) and could be re-written as.

V (G;D) =
X
x2C

~pdata log[D(x)] +

Z
x=2C

0 log[D(x)]

+
X
x2C

pG(x)[log(1�D(x))]

+

Z
x=2C

pG(x)[log(1�D(x))]dx

(3)

Taking derivative with respect to D(x), we have

@V (G;D)

@D(x)
=

(
~pdata(x)
D(x) �

pG(x)
(1�D(x)) if x 2 C

� pG(x)
(1�D(x)) otherwise

Thus, the optimal solution for D(x) is

D�G(x) =

(
p̂data(x)

p̂data(x)+pG(x) if x 2 C
0 otherwise

(4)

Plug (4) into (3), we have

V (G;D�G(x)) =
X
x2C

~pdata log[
~pdata(x)

~pdata(x) + pG(x)
]

+
X
x2C

pG(x)[log
pG(x)

~pdata(x) + pG(x)
]

+

Z
x=2C

pG(x)[log(1� 0)]dx

=
X
x2C

~pdata log[
~pdata(x)

~pdata(x) + pG(x)
]

+
X
x2C

pG(x)[log
pG(x)

~pdata(x) + pG(x)
]

Adversarial Discrete Sequence Generation without Explicit Neural Networks as Discriminators

On the other hand,

2JSD(~pdata (x) k pG (x)) � log 4

= KL (~pdata (x) k ~pdata (x) + pG (x))

+ KL (pG (x) k ~pdata (x) + pG (x))

= Ex � ~pdata (x) log[
~pdata (x)

~pdata (x) + pG (x)
]

+ Ex � pG (x) [log
pG (x)

~pdata (x) + pG (x)
]

=
X

x 2C

~pdata (x) log[
~pdata (x)

~pdata (x) + pG (x)
]

+
Z

x=2C
0 log[

0
0 + pG (x)

]

+
X

x 2C

pG (x)[log
pG (x)

~pdata (x) + pG (x)

+
Z

x=2C
pG (x)[log

pG (x)
0 + pG (x)

]

=
X

x 2C

~pdata (x) log[
~pdata (x)

~pdata (x) + pG (x)
]

+
X

x 2C

pG (x)[log
pG (x)

~pdata (x) + pG (x)
]

(5)

Thus, equation (2) is true. �

In the original GAN paper (Goodfellow et al., 2014),
similar proof was given by assumingG has enough
capacity to cover data distribution without distinc-
tion between the true but unknown data distribution
and the empirical data distribution ~pdata (x), let alone
further exploring the empirical data distribution's prop-
erty that it's 0 everywhere except on training data set
C. Previous works (Chen et al., 2018), (Fedus et al.,
2018), (Guo et al., 2018), (Huszár, 2015), (Lin et al.,
2017), (Yu et al., 2017) don't realize this property
and claim that it is intractable to directly optimize
JSD(~pdata (x) k pG (x)) when X is a high-dimensional
data or a structured data such as a sequence, so
they have to use REINFORCE (Williams, 1992) al-
gorithm and Monte Carlo search approximation (Yu
et al., 2017) or an actor-critic (Fedus et al., 2018) et
al. But in fact, equation (2) shows that to compute
JSD(~pdata (x) k pG (x)) , we need only to consider the
samples over training data setC, which it's indeed
computationally tractable, and no sampling is needed
in contrast to those in many GANs. This is especially
advantageous over those that handle discrete sequences
(Chen et al., 2018), (Fedus et al., 2018), (Guo et al.,
2018), (Lin et al., 2017), (Yu et al., 2017).

Since the optimal solution for the discriminator D has
a closed form solution given by equation (4), thus, re-
sorting to a neural network that has a limited capacity
and is trained with limited data to represent the dis-

criminator D might not fully recover D �
G (x), it leads to

a sub-optimal solution and thus is in fact unnecessary.

The form of D �
G (x) given by equation (4) implies that

any sample generated byG that is not the same as in
the training data set C should be treated as fake and
discarded since the corresponding value onD is 0 and
the value function V(G; D �

G (x)) is 0. Thus unlike in
existing methods that a neural network is used as the
discriminator, and the generator generates arbitrary
samples and the discriminator gives a con�dence value
as coming from real or fake, in our approach, the opti-
mal discriminator D �

G (x) just ignores any samples not
the same as in the training dataC, and only considers
the samples the same as in the training dataC and
gives a con�dence value as coming from real. The gen-
erator assigns a probability to each sample inC and
evaluate the e�ect of each sample on the value function.
This means that the generator only needs the same
samples as in the training dataC to maximize the value
function as shown by equation (2).

In the work of (Arjovsky and Bottou, 2017), the au-
thors show that when the data distribution and the
generator distribution have supports that are disjoint
or lie on low dimensional manifolds, the optimal dis-
criminator will be perfect and its gradient will be zero
almost everywhere. For the traditional GAN, when
a neural network is used to approximate the optimal
discriminator better, either the gradient of the gen-
erator vanishes or unstable behavior appears in prac-
tice. They propose an improved alternative deemed
Wasserstein-GAN (Arjovsky et al., 2017) to overcome
these problems. Sinn and Rawat (2018) similarly but
in a much simpler way prove that vanishing gradient
and unstable behavior are an inevitable consequence
unless the training samples coincide with the generated
samples from the generator. In our approach, we force
the generator to work on the support of empirical data
distribution, and the manifold of pG (x) has to line up
perfectly with the empirical data distribution ~pdata (x).
Vanishing gradient or unstable behavior during training
should be avoided.

As discussed before, Proposition 1 shows that directly
optimizing the JSD between the model's distribution
and the empirical data distribution ~pdata (x) of X over
the training data Cimplies that an alternative mini-max
optimization procedure is implicitly performed with
respect to the generatorG having parameters� and the
discriminator D with an optimal form given by D �

G (x).
The training algorithm in our approach is indeed an
adversarial training. The traditional training algorithm
for GANs requires �nding the Nash equilibrium of
a game and the discriminator must be synchronized
well with the generator during training, this is a more
di�cult problem than optimizing an objective function

Zhongliang Li, Tian Xia, Xinyu Lou, Kaihe Xu, Shaojun Wang, Jing Xiao

as we are doing in this paper.

Now assume that we use a neural network with pa-
rameters � as the generatorG, then the probability of
sample x on the generator is denoted asp�

G (x), and
the optimal discriminator is denoted as D �

G � (x). Now
by the result in (2), let's look at how to compute the
gradient of JSD(~pdata (x) k p�

G (x)) for a given sample
x 2 C as below.

@JSD(~pdata (x) k p�
G (x))

@�

/ � ~pdata (x)
@log(~pdata (x) + p�

G (x))
@�

+
@(p�

G (x) log p�
G (x))

@�

�
@(p�

G (x) log(~pdata (x) + p�
G (x)))

@�

= �
~pdata (x)p�

G (x)
~pdata (x) + p�

G (x)
@logp�

G (x)
@�

+ p�
G (x)(log p�

G (x) + 1)
@logp�

G (x)
@�

� p�
G (x) log(~pdata (x) + p�

G (x))
@logp�

G (x)
@�

� p�
G (x)

1
~pdata (x) + p�

G (x)
p�

G (x)
@logp�

G (x)
@�

= p�
G (x)[log p�

G (x) � log(~pdata (x) + p�
G (x))]

@logp�
G (x)

@�

= p�
G (x)[log(1 � D �

G � (x))]
@logp�

G (x)
@�

This result shows that the gradient of JSD(~pdata (x) k
p�

G (x)) for a given samplex 2 C is a modi�cation of
the gradient of the log-likelihood, and we use stochastic
gradient descent (SGD) to optimize the JSD between
the generator's output distribution and the empirical
data distribution purely based on training data. When
we use a mini-batch version of SGD in our implemen-
tation, we stack a few sequences together. Since the
gradient has a term ofp�

G (x), which makes the gradient
really small, thus, we have to adapt the learning rate
for each time step, moreover there is a large variation
for the value of this term among these sequences, it
becomes extremely hard to train the model. To over-
come these problems, we normalize the term ofp�

G (x)
over the batch of sequences to make this term to be
either close to 1 or 0, and the training becomes quite
stable and easy to tune. The variation for the value of
log(1 � D �

G � (x)) is small, so we don't do normalization
for this term.

4 Experimental Results

The experiments consist of two parts: synthetic data
experiments and real-world scenarios' experiments with
four standard benchmarks: Chinese Poems, MS COCO
captions, Obama Speech and EMNLP2017 WMT news.

We compare the proposed approach with four base-
line models, i.e., MLE, SeqGAN (Yu et al., 2017),
RankGAN (Lin et al., 2017) and LeakGAN (Guo et al.,
2018).

For RL-based approaches such as SeqGAN and
RankGAN, a key idea for success is the initialization
of the policy in the REINFORCE algorithm to make
sure that the model can e�ectively deal with the large
action space of discrete sequence generation. Instead
of starting from a poor random policy and training
the model to converge towards the optimal policy, the
generator is �rst trained with the cross-entropy loss for
a number of epochs using the ground truth sequences.
This ensures that we start o� with a much better pol-
icy than random because now the model can focus on
a good part of the search space. For LeakGAN, as
proposed in (Guo et al., 2018), an interleaving of su-
pervised training (i.e. MLE) and adversarial training
(i.e. GAN) instead of full GAN after the pre-training
is performed to train the model. For our approach, we
either train the generator directly without pre-training
or with MLE as pre-training.

4.1 Experiments on Synthetic Data

We conduct a simulated test with synthetic data simi-
lar to (Yu et al., 2017). We use a randomly initialized
LSTM as the true model, aka, the oracleGoracle , to gen-
erate the real data distribution poracle (x t jx1; � � � ; x t � 1).
In our experiments, the parameters of the LSTM are
initialized by the normal distribution N (0; 1). Then
10,000 sequences of length 20 and 40 are generated
respectively as the training set C for the generative
models.

Once the generatorG� is learned through a learning
algorithm, at the test stage, we useG� to generate
100,000 sequence samples, and calculate negative log-
likelihood for each sample byGoracle and their average
score, denoted asNLL oracle corresponding to the reverse
KL divergence for perceptual quality (Huszár, 2015).

Length MLE SeqGan RankGan LeakGan Ours
20 9.04 8.74 8.25 7.04 5.50
40 10.41 10.31 9.96 7.19 4.27

Table 1: The overall NLL oracle performance on syn-
thetic data.

The overall NLL oracle performance is presented in Table
1 for sequence length 20 and 40 respectively. We only
report our results without pre-training. Since the eval-
uation metric is fundamentally instructive, we can see
that our approach outperforms MLE and the RL-based
baselines, i.e., SeqGAN, RankGAN and LeakGAN, sig-
ni�cantly.

Adversarial Discrete Sequence Generation without Explicit Neural Networks as Discriminators

Figure 1: Learning curves of theNLL oracle w.r.t. the
training epochs when the generated sequence length is
20.

The learning curves of theNLL oracle w.r.t. the training
epochs are depicted in Figures 1 and 2 for sequence
length 20 and 40 respectively. We include our results
both without pre-training and with pre-training. For
our method with pre-training, it has already shown
observable performance superiority compared to other
models, which indicates that the proposed RL-free
approach itself brings improvement over the previous
ones. Our method without pre-training shows a faster
speed of convergence, and the local minimum it explores
is signi�cantly better than previous results. The results
demonstrate the e�ectiveness of our proposed RL-free
approach for generating both short and long discrete
sequences.

The gradient of JSD(~pdata (x) k p�
G (x)) for a given

sample x 2 C has a term that is the empirical distri-
bution for a sample x, in theory, it is 1

N . But we �nd
that the results are not sensitive to the value of this
term. Figures 3 and 4 illustrate the learning curves
of the NLL oracle w.r.t. the training epochs when the
generated sequence length is 20 and 40 respectively,
and we vary N in this term from 2, 16, 128, 256 and
512 respectively. WhenN is 128, we get the best re-
sult, but the di�erences are not that much signi�cant
from other values. We think, it is mainly due to the
normalization for p�

G (x), the value of N doesn't have a
large e�ect on the learning curve.

4.2 Experiments on Real-world Scenarios

For experiments on real-world scenarios, we choose four
data sets: Chinese poem composition data set (Zhang
and Lapata, 2014) as short length text generation,

Figure 2: Learning curves of theNLL oracle w.r.t. the
training epochs when the generated sequence length is
40.

COCO image captions data set (Chen et al., 2015)
as mid-length text generation, and Obama political
speech data set (https://github.com/samim23/obama-
rnn) as well as the EMNLP2017 WMT News data
set (http://statmt.org/wmt17/translation-task.html)
as long text generation.

Regarding to the Chinese poem composition data set,
the Obama political speech data set and EMNLP2017
WMT News data set, we take 60 percent for our train-
ing, 20 percent for validating, and 20 percent for testing.
While for the COCO image captions data set, we follow
previous work's partition (Chen et al., 2015), which
consists of only training data and test data, and the
models are obtained from the last iteration.

The BLEU score (Papineni et al., 2002) is originally cre-
ated to automatically measure the quality of machine
translation results (Papineni et al. 2002). Here we use
the BLEU score to judge the similarity between the
generated texts and the human-created texts, where
the main idea is to compare the similarity between the
results created by machine and the references provided
by human. Speci�cally, for poem evaluation, we set n-
gram to be 2 (BLEU-2) since most words (dependency)
in classical Chinese poems consist of one or two charac-
ters (Yi et al., 2017) and for the similar reason, we use
BLEU-2, BLEU-3, BLEU-4 and BLEU-5 or BLEU-2,
BLEU-3 and BLEU-4 to evaluate COCO image caption,
Obama political speech or EMNLP2017 WMT News
generation performance respectively. To compute the
BLEU either on validation or test data set, we �rst
generate 5000 sentences by the model learned from the
training set. Then we calculate the co-occurrencen-
grams between the generated sentences and the testing

Zhongliang Li, Tian Xia, Xinyu Lou, Kaihe Xu, Shaojun Wang, Jing Xiao

Figure 3: The learning curves of theNLL oracle w.r.t.
the training epochs with di�erent values of N when
the generated sequence length is 20.

data, which are required in evaluating the BLUE score.

Especially, all BLEU scores reported here are computed
from our own implementation. We notice that all open
source codes of previous works such as SeqGAN (Yu
et al., 2017), RankGAN (Lin et al., 2017) and Leak-
GAN (Chen et al., 2018) are using the BLEU function
from NLTK (https://www.nltk.org), a popular natural
language processing library. But that implementation
is not an e�cient way to compute BLEU scores for our
tasks, since it compares each generated sequence with
each sequence in the test data set, and compute the
n-grams for both sequences in order to obtain BLEU
score. When the set of generated sequences and the
one of sequences in the test data set are long, this im-
plementation runs very slowly in practice. There is an
e�cient way to compute the BLEU scores by following
the standard BLEU score de�nition, we can optimize it
based on our task: The sequences in validation or test
data set are �xed, so we pre-compute theirn-grams in
advance, then compare with each generated sequence
to get the BLEU scores. This signi�cantly fastens the
speed to obtain the BLEU scores.

The Chinese poem composition data set is a corpus of
16,394 Chinese quatrains, each containing four lines of
twenty characters in total, the vocabulary size is 1200.
To focus on a fully automatic solution and stay general,
we do not use any prior knowledge of special structure
rules in Chinese poems such as speci�c phonological
rules. Since each line quite short, we use the BLEU-2
scores as the evaluating metrics. The experimental
results are provided in Table 2. The results on Chinese
poem composition data set indicate that our approach
successfully handles the short text generation tasks.

Figure 4: The learning curves of theNLL oracle w.r.t.
the training epochs with di�erent values of N when
the generated sequence length is 40.

BLEU-2
MLE 0.421

SeqGAN 0.511
RankGAN 0.523
LeakGAN 0.408

Ours 0.536

Table 2: The testing performance measured by BLEU-2
on the Chinese poem composition data set.

The COCO image captions data set contains groups of
image-description pairs. We take the image captions
as the text to generate. Note that the COCO image
captions data set is not a long text data set, in which
most sentences are of about 10 words. Thus, we apply
some pre-processing on the data set. The COCO Image
Captions training data set consists of 20,734 words and
417,126 sentences. We remove the words with frequency
lower than 10 as well as the sentence containing them.
After the pre-processing, the data set includes 4,980
words. The authors of this data set randomly sam-
ple 80,000 sentences for the training set, and another
5,000 for the test set. So we just use this �xed par-
tition, which can be found in their Github repository
(https://github.com/CR-Gjx/LeakGAN). The BLEU
scores results on the COCO image captions data set
are provided in Table 3. The results indicate that in
most cases our approach performs better than all of
the baseline models in mid-length text generation task.

In the Obama political speech generation task, we use
a corpus, which is a collection of 11,092 paragraphs
from Obama's political speeches and the vocabulary
size is 4357. The results of BLEU scores are provided in

	Introduction
	Related Work
	Adversarial Training without Explicit Neural Networks as Discriminators
	Experimental Results
	Experiments on Synthetic Data
	Experiments on Real-world Scenarios

	Conclusion and Future Work

