
Clustering Time Series with Nonlinear Dynamics

APPENDICES
A MODEL EXTENSIONS

A.1 Multidimensional Time Series

Although this paper only considers examples in which eachx(n)
t ! R and each y(n)

t is one-dimensional, our
model and inference algorithm can be extended to cases in which observed time series and/or latent states have
multiple dimensions. For example, as demonstrated in Section 5.2 of (Heng et al., 2017), cSMC scales well with a
64-dimensional vector time series model, suggesting that our proposed clustering approach with particle Þltering
is also applicable to multivariate series.

A.2 Finite Mixture of Time Series

It is simple to convert our model into one in which the true number of clustersK is known a priori. Instead of
using a Dirichlet process, we can simply use a Dirichlet(!) distribution in which ! is a K -dimensional vector
with each ! (k) > 0 for k = 1 , . . . , K . Then, we can modify Equation 2 as:

q | ! " Dirichlet(!),

z(1) , . . . , z(N) | q " Multinomial(N, q),

" (k) | G " G, 1 # k # K,

where q is an intermediary variable that is easy to integrate over.

The resultant inference algorithm is simpler. The only necessary modiÞcation to Algorithm 1 is that, when
sampling cluster assignments, there is no longer any need for an auxiliary integer parameterm $ 1 to represent
the inÞnite mixture. Thus, Equation 6 becomes

p(z(n) = k | Z (! n) , !) =
N (k)

N %1 + ! (k)
, k = 1 , . . . , K,

whereN (k) is the number of cluster assignments equal tok in Z (! n) . The process of sampling cluster parameters
remains exactly the same as in the inÞnite mixture case.

B CONTROLLED SEQUENTIAL MONTE CARLO

A key step in sampling both the cluster assignments and the cluster parameters of Algorithm 1 is computing the
parameter likelihood p(y | ") for an observation vector y = y1, . . . , yT and a given set of parameters" .

Recall the state-space model formulation:

x1 | " " h(x1; "),

xt | xt ! 1, " " f (xt ! 1, xt ; "), 1 < t # T,

yt | xt , " " g(xt , yt ; "), 1 # t # T.

B.1 Bootstrap Particle Filter

The bootstrap particle Þlter (BPF) of Doucet et al. (2001) is based on a sequential importance sampling procedure
that iteratively approximates each Þltering distribution p(xt | y1, . . . , yt , ") with a set of S particles { x1

t , . . . , xS
t }

so that

öp(y | ") =
T!

t =1

"
1
S

S#

s=1

g(xs
t , yt ; ")

$

is an unbiased estimate of the parameter likelihoodp(y | "). Algorithm 2 provides a review of this algorithm.

A. Lin, Y. Zhang, J. Heng, S. A. Allsop, K. M. Tye, P. E. Jacob, D. Ba

Algorithm 2 BootstrapParticleFilter (y , " , f , g, h)
1: for s = 1 , . . . , S do
2: Samplexs

1 " h(x1; ") and weight ws
1 = g(xs

1, y1; ").
3: end for
4: Normalize { ws

1} S
s=1 = { ws

1} S
s=1 /

% S
s=1 ws

1.
5: for t = 2 , . . . , T do
6: for s = 1 , . . . , S do
7: Resample ancestor indexa " Categorical(w1

t ! 1, . . . , wS
t ! 1).

8: Samplexs
t " f (xa

t ! 1, xt ; ") and weight ws
t = g(xs

t , yt ; ").
9: end for

10: Normalize { ws
t } S

s=1 = { ws
t } S

s=1 /
% S

s=1 ws
t .

11: end for
12: return Particles {{ xs

1} S
s=1 , . . . , { xs

T } S
s=1 }

There are a variety of algorithms for the resampling step of Line 7. We use the systematic resampling method.

A common problem with the BPF is that although its estimate of p(y | ") is unbiased, this approximation may
have high variance for certain observation vectorsy . The variance can be reduced at the price of increasing the
number of particles, yet this often signiÞcantly increases computation time and is therefore unsatisfactory. To
remedy our problem, we follow the work of Heng et al. (2017) in using controlled sequential Monte Carlo (cSMC)
as an alternative to the standard bootstrap particle Þlter.

B.2 Twisted Sequential Monte Carlo

The basic idea of cSMC is to run several iterations of twisted sequential Monte Carlo, a process in which we
redeÞne the modelÕs state transition densityf , initial prior h, and state-dependent likelihoodg in a way that
allows the BPF to produce lower-variance estimates without changing the parameter likelihoodp(y | "). See also
Guarniero et al. (2017) for a di!erent iterative approach. Using a policy " = { " 1, . . . , " T } in which each " t is a
positive and bounded function, we deÞne,

h! (x1; ") =
h(x1; ") á" 1(x1)

H ! (")
,

f !
t (xt ! 1, xt ; ") =

f (xt ! 1, xt ; ") á" t (xt)
F !

t (xt ! 1; ")
, 1 < t # T,

where H ! (") =
&

h(x1; ")" 1(x1)dx1 and F !
t (xt ! 1; ") =

&
f (xt ! 1, xt ; ")" t (xt)dxt are normalization terms for the

probability densities h! and f !
t , respectively. To ensure that the parameter likelihood estimate öp(y | ") remains

unbiased under the twisted model, we deÞne the twisted state-dependent likelihoodsg!
1 , . . . , g!

T as functions that
satisfy:

öp(x , y | ") = h! (x1; ") á
T!

t =2

f !
t (xt ! 1, xt ; ") á

T!

t =1

g!
t (xt , yt ; ")

h(x1; ") á
T!

t =2

f (xt ! 1, xt ; ") á
T!

t =1

g(xt , yt ; ") =
h(x1; ")" 1(x1)

H ! (")
á

T!

t =2

f (xt ! 1, xt ; ")" t (xt ; ")
F !

t (xt ! 1; ")
á

T!

t =1

g!
t (xt , yt ; ")

T!

t =1

g(xt , yt ; ") =
" 1(x1)
H ! (")

á
T!

t =2

" t (xt)
F !

t (xt ! 1; ")
á

T!

t =1

g!
t (xt , yt ; ").

Clustering Time Series with Nonlinear Dynamics

This equality can be maintained if we deÞneg!
1 , . . . , g!

T as follows,

g!
1 (x1, y1; ") =

H ! (") ág(x1, y1; ") áF !
2 (x1; ")

" 1(x1)
,

g!
t (xt , yt ; ") =

g(xt , yt ; ") áF !
t +1 (xt ; ")

" t (xt)
, 1 < t < T,

g!
T (xT , yT ; ") =

g(xT , yT ; ")
" T (xT)

.

Thus, the parameter likelihood estimate of the twisted model is

öp! (y | ") =
T!

t =1

"
1
S

S#

s=1

g!
t (xs

t , yt ; ")

$

.

The BPF is simply a degenerate case of twisted SMC in which" t = 1 for all t.

B.3 Determining the Optimal Policy " "

The variance of the estimate öp! comes from the state-dependent likelihoodg. Thus, to minimize the variance,
we would like g!

t to be as uniform as possible with respect toxt . Let the optimal policy be denoted " " . It follows
that

" "
T (xT) = g(xT , yT ; "),

" "
t (xt) = g(xt , yt ; ") áF ! !

t +1 (xt ; "), 1 # t < T.

Under " " , the likelihood estimate öp! !
(y | ") = H ! !

= p(y | ") has zero variance. However, it may be infeasible for
us to use" " in many cases, because the BPF algorithm requires us to samplext from f ! !

t for all t. For example,
under " " , we would have

f ! !

T (xT ! 1, xT ; ") & f (xT ! 1, xT ; ") á" "
T (xT) = f (xT ! 1, xT ; ") ág(xT , yT ; "),

which may be impossible to directly sample from iff and g form an intractable posterior (e.g. if f is Gaussian
and g is binomial). In such a case, we must choose a suboptimal policy" .

B.4 Choosing a Policy " for the Neuroscience Application

Recall the point-process state-space model (Equation 4), in which we have

h(x1; ") = N (x1 | x0 + µ, # 0),

f (xt ! 1, xt ; ") = N (xt | xt ! 1, #),

g(xt , yt) = Binomial
'

M áR,
expxt

1 + exp xt

(
,

where we deÞne the parameters" = { µ, log# } and x0, #0, M, R are supplied constants.

Here, we can show thatF ! !

t +1 (xt ; ") =
&

f (xt , xt +1 ; ")" "
t +1 (xt +1)dxt +1 must be log-concave inxt . This further

implies that for all t, " "
t (xt) = g(xt , yt) áF ! !

t +1 (xt ; ") is a log-concave function ofxt since the product of two
log-concave functions is log-concave. Hence, we have shown that the optimal policy" " = { " "

1 , . . . , " "
T } is a series

of log-concave functions. This justiÞes the approximation of each" "
t (xt) with a Gaussian function,

" t (xt) = exp(%at x2
t %bt xt %ct), (at , bt , ct) ! R3,

and thus, f !
t (xt ! 1, xt ; ") & f (xt ! 1, xt ; ") á" t (xt) is also a Gaussian density that is easy to sample from when

running the BPF algorithm.

A. Lin, Y. Zhang, J. Heng, S. A. Allsop, K. M. Tye, P. E. Jacob, D. Ba

We want to Þnd the values of (at , bt , ct) that enforce " t ' " "
t for all t. One simple way to accomplish this goal is

to Þnd the (at , bt , ct) that minimizes the least-squares di!erence between" t and " "
t in log-space. That is, given

a set of samples{ x1
t , . . . , xS

t } for the random variable xt , we solve for:

(at , bt , ct) = arg min
(at ,bt ,ct)# R3

S#

s=1

[log" t (xs
t) %log" "

t (xs
t)]2

= arg min
(at ,bt ,ct)# R3

S#

s=1

)
%(at (xs

t)2 + bt (xs
t) + ct) %log" "

t (xs
t)

*2
.

Also note that in a slight abuse of notation, we redeÞne for allt < T ,

" "
t (xt) = g(xt , yt) áF !

t +1 (xt ; "),

because when performing approximate backwards recursion, it is not possible to analytically solve for the in-
tractable integral F ! "

t +1 (xt ; ").

In the aforementioned least-squares optimization problem, there is one additional constraint that we must take
into account. Recall that f !

t (xt ! 1, xt ; ") & f (xt ! 1, xt ; ")á" t (xt) is a Gaussian pdf that we sample from. Therefore,
we must ensure that the variance of this distribution is positive, which places a constraint on" t and more
speciÞcally, the domain of (at , bt , ct). Using properties of Gaussians, we can perform algebraic manipulation to
work out the following parameterizations of h! and f !

t :

h! (x1; ") = N
'

x1

+
+
+

! 1
0 á(x0 + µ) %b1

! 1
0 + 2a1

,
1

! 1
0 + 2a1

(
,

f !
t (xt ! 1, xt ; ") = N

'
xt

+
+
+

! 1 áxt ! 1 %bt

! 1 + 2at
,

1
! 1 + 2at

(
, 1 < t # T.

The corresponding normalizing terms for these densities are

H ! (") =
1

(
1 + 2a1#0

exp
'

! 1
0 á(x0 + µ) %(b1)2

2(# ! 1
0 + 2a1)

%
(x0 + µ)2

2#0
%c1

(
,

F !
t (xt ! 1; ") =

1
(

1 + 2at #
exp

'
! 1 áxt ! 1 %(bt)2

2(# ! 1 + 2at)
%

x2
t ! 1

2#
%ct

(
, 1 < t # T.

Thus, to obtain (at , bt , ct) and consequently" t for all t, we solve the aforementioned least-squares minimization
problem subject to the following constraints:

a1 > %
1

2#0
, at > %

1
2#

, 1 < t # T.

B.5 Full cSMC Algorithm

The full controlled sequential Monte Carlo algorithm iterates on twisted SMC for L iterations, building a series
of policies " $1%, " $2%, . . . , " $L %over time. Given two policies "& and " , we can deÞne

h! " á! (x1) & h! "
(x1)" 1(x1) = h(x1; ") á" &

1(x1) á" 1(x1),

f ! " á!
t (xt ! 1, xt ; ") & f ! "

t (xt ! 1, xt ; ") á" t (xt) = f (xt ! 1, xt ; ") á" &
t (xt) á" t (xt), 1 < t # T.

We can see from these relationships that twisting the original model using "& and then twisting the new model
using " has the same e!ect as twisting the original model using a cumulative policy " where each "t (xt) =
" &

t (xt) á" t (xt). We state the full cSMC algorithm in Algorithm 3.

Clustering Time Series with Nonlinear Dynamics

Algorithm 3 ControlledSMC(y , g, µ, # , x0, #0, L)

1: DeÞnef (xt ! 1, xt ; ") = N (xt | xt ! 1, #) and h(x1; ") = N (x1 | x0 + µ, # 0).
2: DeÞne parameters" = { µ, log# } .
3: Collect particles { xs

1} S
s=1 , . . . , { xs

T } S
s=1 from BootstrapParticleFilter (y , " , f , g, h).

4: Initialize " &= { " &
1, . . . , " &

T } where "&
t (xt) = 1 for all t = 1 , . . . , T.

5: Initialize g! "

t (xt , yt) = g(xt , yt) for all t = 1 , . . . , T.

6: Initialize a$0%
t = 0 , b$0%

t = 0 , c$0%
t = 0 for all t = 1 , . . . , T.

7: for $= 1 , . . . , L do
// Approximate backward recursion to determine policy and associated functions

8: DeÞne" "
T (xT) = g! "

T (xT , yT).
9: for t = T, . . . , 2 do

10: Solve (a$"%
t , b$"%

t , c$"%
t) = arg min (at ,bt ,ct)

% S
s=1

)
%(at (xs

t)2 + bt (xs
t) + ct) %log" "

t (xs
t)

*2
subject to at >

%1/ (2#) %
% "! 1

" " =0 a$" " %
t using linear regression.

11: DeÞne new policy function" t (xt) = exp(%a$"%
t x2

t %b$"%
t xt %c$"%

t).
12: DeÞne cumulative policy function " t (xt) = " &

t (xt) á" t (xt) = exp(%At x2
t % Bt xt % Ct) where At =

% "
" " =0 a$" " %

t , Bt =
% "

" " =0 b$" " %
t , and Ct =

% "
" " =0 c$" " %

t .
13: DeÞnef !

t (xt ! 1, xt ; ") and F !
t (xt ! 1; ").

14: if t = T then
15: DeÞneg!

T (xT , yT) = g(xT , yT)/ " T (xT).
16: else
17: DeÞneg!

t (xt , yt) = g(xt , yt) áF !
t +1 (xt ; ")/ " t (xt).

18: end if
19: DeÞne" "

t ! 1(xt ! 1) = g! "

t ! 1(xt ! 1, yt ! 1) áF !
t (xt ! 1; ")/F ! "

t (xt ! 1; ").
20: end for
21: Solve (a$"%

1 , b$"%
1 , c$"%

1) = arg min (a1 ,b1 ,c1)
% S

s=1

)
%(a1(xs

1)2 + b1(xs
1) + c1) %log" "

1 (xs
1)

*2
subject to a1 >

%1/ (2#0) %
% "! 1

" " =0 a$" " %
1 using linear regression.

22: DeÞne new policy function" 1(x1) = exp(%a$"%
1 x2

1 %b$"%
1 x1 %c$"%

1).
23: DeÞne cumulative policy function "1(x1) = " &

1(x1) á" 1(x1) = exp(%A1x2
t % B1xt % C1) where A1 =

% "
" " =0 a$" " %

1 , B1 =
% "

" " =0 b$" " %
1 , and C1 =

% "
" " =0 c$" " %

1 .
24: DeÞne "-twisted initial prior h! (x1; ") and H ! (").
25: DeÞneg!

1 (x1, y1) = H ! (") ág(x1, y1) áF !
2 (x1; ")/ " 1(x1).

// Forward bootstrap particle Þlter to sample particles and compute weights
26: for s = 1 , . . . , S do
27: Samplexs

1 " h! (x1) and weight ws
1 = g!

1 (xs
1, y1).

28: end for
29: Normalize { ws

1} S
s=1 = { ws

1} S
s=1 /

% S
s=1 ws

1.
30: for t = 2 , . . . , T do
31: for s = 1 , . . . , S do
32: Resample ancestor indexa " Categorical(w1

t ! 1, . . . , wS
t ! 1).

33: Samplexs
t " f !

t (xa
t ! 1, xt ; ") and weight ws

t = g!
t (xs

t , yt).
34: end for
35: Normalize { ws

t } S
s=1 = { ws

t } S
s=1 /

% S
s=1 ws

t .
36: end for
37: Update " &= ".
38: end for
39: return Likelihood estimate öp! (y | ").

A. Lin, Y. Zhang, J. Heng, S. A. Allsop, K. M. Tye, P. E. Jacob, D. Ba

C MULTIPLE GIBBS SAMPLES WITH OPTIMAL CO-OCCURENCE
MATRIX

This section extends the method of selecting clusters detailed in Section 4.1. After running the DPnSSM inference
algorithm (Algorithm 1), we construct co-occurrence matrices! $i %for i = 1 , . . . , I (Equation 10). Then, we select
the optimal Gibbs sample i " . If there are J > 1 Gibbs samplesi 1, . . . , i J such that ! $i j %= ! $i ! %for j = 1 , . . . , J ,
our Þnal cluster parameters" " can be redeÞned as the average among the corresponding parameter samples,

" " =
1
J

J#

j =1

" $i j %' E[" | Z = Z "]. (15)

This averaging must be preceded by a permutation of each set of" (1) , . . . , " (K) ! " $i !
j %to Þx any potential label

switching.

D ROBUSTNESS OF MODEL TO STIMULUS MISSPECIFICATION

We extend the results of Section 4.2 by testing the robustness of the model under cases in which there is a
mismatch between the true stimulus onset and the modelÕs speciÞcation of the stimulus onset. In particular, we
Þrst examine the case in which the model overpredicts the true stimulus onset. Figure 8 presents heatmaps of
the mean co-occurrence matrix! in cases in which the modelÕs anticipation of the stimulus falls 40 ms, 80 ms,
and 160 ms behind the true onset. Table 4 lists the parameters chosen in the Þnal clustering of the data in these
three cases. In all experiments, we use the same data generation process as detailed in Section 4.2.1 and the
same modeling process as detailed in Section 4.2.2.

1 2 3 4 5 6 7 8 9 10 15 14 13 12 11 16 17 18 19 20 21 22 23 24 25

25
24
23
22
21
20
19
18
17
16
11
12
13
14
15
10
9
8
7
6
5
4
3
2
1

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 23 22 21 25 24 11 15 12 14 13 16 17 18 19 20

20
19
18
17
16
13
14
12
15
11
24
25
21
22
23
10
9
8
7
6
5
4
3
2
1

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 23 22 21 15 13 24 12 11 14 25 16 17 18 19 20

20
19
18
17
16
25
14
11
12
24
13
15
21
22
23
10
9
8
7
6
5
4
3
2
1

0.2

0.4

0.6

0.8

1.0

Figure 8: Results from running the DPnSSM inference algorithm in cases in which the model speciÞes the
stimulus as occurring (left) 40 ms, (center) 80 ms, and (right) 160 msafter the true onset. At 40 ms, the
ground-truth clustering can be recovered, but this ability decays as the time di!erence increases.

Table 4: Final cluster parameters for model stimulus delay. As expected, the absolute value ofµ" (k) decreases
for all k as time mismatch increases.

40 ms model delay 80 ms model delay 160 ms model delay
k µ" (k) log# " (k) # of Neurons µ" (k) log# " (k) # of Neurons µ" (k) log# " (k) # of Neurons
1 +0 .86 %10.86 5 +0 .80 %10.95 5 +0 .65 %10.79 5
2 %0.88 %12.12 5 %0.84 %12.45 5 %0.76 %12.48 5
3 +0 .02 %10.31 5 %0.62 %6.23 6 +0 .01 %9.36 10
4 +0 .94 %5.53 5 +0 .05 %10.77 4 +0 .57 %5.47 5
5 %0.87 %5.91 5 +0 .87 %5.52 5

Next, we examine the case in which the model underpredicts the true stimulus onset Ð by 10 ms, 20 ms, and 40
ms. This set of results is less robust than the previous one. Heatmaps are given in Figure 9, while parameters
are given in Table 5.

Clustering Time Series with Nonlinear Dynamics

1 2 3 4 5 6 7 8 9 10 23 22 21 25 24 11 15 12 14 13 16 17 18 19 20

20
19
18
17
16
13
14
12
15
11
24
25
21
22
23
10
9
8
7
6
5
4
3
2
1

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 23 22 21 24 25 9 8 7 6 10 11 12 14 15 13 16 17 18 19 20

20
19
18
17
16
13
15
14
12
11
10
6
7
8
9

25
24
21
22
23
5
4
3
2
1

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 8 9 10 23 22 24 25 7 14 15 11 12 13 16 17 18 19 20 21

21
20
19
18
17
16
13
12
11
15
14
7

25
24
22
23
10
9
8
6
5
4
3
2
1

0.2

0.4

0.6

0.8

1.0

Figure 9: Results from running the DPnSSM inference algorithm in cases in which the model speciÞes the
stimulus as occurring (left) 10 ms, (center) 20 ms, and (right) 40 msbefore the true onset. At 10 ms, the
ground-truth clustering can almost be fully recovered, but this ability signiÞcantly decays as the time di!erence
increases. For a true stimulus delay of 40 ms, there even exists one cluster containing both excited and inhibited
neurons.

Table 5: Final cluster parameters for true stimulus delay.

10 ms stimulus delay 20 ms stimulus delay 40 ms stimulus delay
k µ" (k) log# " (k) # of Neurons µ" (k) log# " (k) # of Neurons µ" (k) log# " (k) # of Neurons
1 +0 .93 %10.45 5 +0 .91 %10.37 5 +0 .79 %8.71 5
2 %0.90 %12.47 4 %0.63 %6.52 10 %0.89 %11.5 4
3 %0.66 %6.08 6 +0 .03 %10.02 5 %0.34 %5.93 5
4 +0 .07 %10.96 5 +0 .67 %5.31 5 +0 .02 %10.41 5
5 +0 .82 %5.44 5 +0 .34 %4.96 6

E ADDITIONAL RASTER PLOTS FOR CUE DATA OVER TIME

�500 0 500 1000 1500
Time (ms)

(a)

1

16

30

45

T
ri
al

s

�500 0 500 1000 1500
Time (ms)

(b)

1

16

30

45

T
ri
al

s

�500 0 500 1000 1500
Time (ms)

(c)

1

16

30

45

T
ri

al
s

Figure 10: Overlaid raster plots of additional neuronal clusters found in Section 4.3.2 for (a) clusterk = 2 with
eight neurons and slightly inhibited/sustained responses, (b) clusterk = 4 with four neurons and more strongly
inhibited/variable responses, and (c) cluster k = 2 with a single neuron and a delayed excited e!ect. A black
dot at (%, r) indicates a spike from one of the neurons in the corresponding cluster at time%during trial r . The
vertical green line indicates cue onset.

A. Lin, Y. Zhang, J. Heng, S. A. Allsop, K. M. Tye, P. E. Jacob, D. Ba

F DETAILS OF CSMC VS. BPF EXPERIMENT

This section describes the experimental setup of Section 4.4 that is used to produce Figure 7. Computational cost
is Þxed at approximately 35 milliseconds per likelihood evaluation for either method. For the bootstrap particle
Þlter (BPF), we use S = 1024 particles. For controlled sequential Monte Carlo (cSMC), we useS = 64 particles
and L = 3 iterations. All parameter log-likelihood evaluations are performed on a representative real neuronÕs cue
data over time y , as described in Section 4.3.1. For each particle Þltering method, letv(µ, #) = Var[logp(y | ")],
where " = [µ, log#]' . Figure 7 plots empirical estimates of öv of v over di!erent values of (µ, #) for the two
methods. For each empirical variance estimate, we use 500 estimates of logp(y | "). As log # decreases, cSMC
performs substantially better than BPF, especially for extreme values ofµ.

