
Clustering Time Series with Nonlinear Dynamics

APPENDICES

A MODEL EXTENSIONS

A.1 Multidimensional Time Series

Although this paper only considers examples in which each x(n)
t 2 R and each y(n)t is one-dimensional, our

model and inference algorithm can be extended to cases in which observed time series and/or latent states have
multiple dimensions. For example, as demonstrated in Section 5.2 of (Heng et al., 2017), cSMC scales well with a
64-dimensional vector time series model, suggesting that our proposed clustering approach with particle filtering
is also applicable to multivariate series.

A.2 Finite Mixture of Time Series

It is simple to convert our model into one in which the true number of clusters K is known a priori. Instead of
using a Dirichlet process, we can simply use a Dirichlet(↵) distribution in which ↵ is a K-dimensional vector
with each ↵(k) > 0 for k = 1, . . . ,K. Then, we can modify Equation 2 as:

q | ↵ ⇠ Dirichlet(↵),

z(1), . . . , z(N) | q ⇠ Multinomial(N, q),

✓

(k) | G ⇠ G, 1 k K,

where q is an intermediary variable that is easy to integrate over.

The resultant inference algorithm is simpler. The only necessary modification to Algorithm 1 is that, when
sampling cluster assignments, there is no longer any need for an auxiliary integer parameter m � 1 to represent
the infinite mixture. Thus, Equation 6 becomes

p(z(n) = k | Z(�n),↵) =
N (k)

N � 1 + ↵(k)
, k = 1, . . . ,K,

where N (k) is the number of cluster assignments equal to k in Z(�n). The process of sampling cluster parameters
remains exactly the same as in the infinite mixture case.

B CONTROLLED SEQUENTIAL MONTE CARLO

A key step in sampling both the cluster assignments and the cluster parameters of Algorithm 1 is computing the
parameter likelihood p(y | ✓) for an observation vector y = y1, . . . , yT and a given set of parameters ✓.

Recall the state-space model formulation:

x1 | ✓ ⇠ h(x1;✓),

xt | xt�1,✓ ⇠ f(xt�1, xt;✓), 1 < t T,

yt | xt,✓ ⇠ g(xt, yt;✓), 1 t T.

B.1 Bootstrap Particle Filter

The bootstrap particle filter (BPF) of Doucet et al. (2001) is based on a sequential importance sampling procedure
that iteratively approximates each filtering distribution p(xt | y1, . . . , yt,✓) with a set of S particles {x1

t , . . . , x
S
t }

so that

p̂(y | ✓) =
TY

t=1

1

S

SX

s=1

g(xs
t , yt;✓)

!

is an unbiased estimate of the parameter likelihood p(y | ✓). Algorithm 2 provides a review of this algorithm.

A. Lin, Y. Zhang, J. Heng, S. A. Allsop, K. M. Tye, P. E. Jacob, D. Ba

Algorithm 2 BootstrapParticleFilter(y, ✓, f , g, h)

1: for s = 1, . . . , S do
2: Sample xs

1 ⇠ h(x1;✓) and weight ws
1 = g(xs

1, y1;✓).
3: end for
4: Normalize {ws

1}Ss=1 = {ws
1}Ss=1/

PS
s=1 w

s
1.

5: for t = 2, . . . , T do
6: for s = 1, . . . , S do
7: Resample ancestor index a ⇠ Categorical(w1

t�1, . . . , w
S
t�1).

8: Sample xs
t ⇠ f(xa

t�1, xt;✓) and weight ws
t = g(xs

t , yt;✓).
9: end for

10: Normalize {ws
t }Ss=1 = {ws

t }Ss=1/
PS

s=1 w
s
t .

11: end for
12: return Particles {{xs

1}Ss=1, . . . , {xs
T }Ss=1}

There are a variety of algorithms for the resampling step of Line 7. We use the systematic resampling method.

A common problem with the BPF is that although its estimate of p(y | ✓) is unbiased, this approximation may
have high variance for certain observation vectors y. The variance can be reduced at the price of increasing the
number of particles, yet this often significantly increases computation time and is therefore unsatisfactory. To
remedy our problem, we follow the work of Heng et al. (2017) in using controlled sequential Monte Carlo (cSMC)
as an alternative to the standard bootstrap particle filter.

B.2 Twisted Sequential Monte Carlo

The basic idea of cSMC is to run several iterations of twisted sequential Monte Carlo, a process in which we
redefine the model’s state transition density f , initial prior h, and state-dependent likelihood g in a way that
allows the BPF to produce lower-variance estimates without changing the parameter likelihood p(y |✓). See also
Guarniero et al. (2017) for a di↵erent iterative approach. Using a policy � = {�1, . . . , �T } in which each �t is a
positive and bounded function, we define,

h�(x1;✓) =
h(x1;✓) · �1(x1)

H�(✓)
,

f�
t (xt�1, xt;✓) =

f(xt�1, xt;✓) · �t(xt)

F �
t (xt�1;✓)

, 1 < t T,

where H�(✓) =
R
h(x1;✓)�1(x1)dx1 and F �

t (xt�1;✓) =
R
f(xt�1, xt;✓)�t(xt)dxt are normalization terms for the

probability densities h� and f�
t , respectively. To ensure that the parameter likelihood estimate p̂(y | ✓) remains

unbiased under the twisted model, we define the twisted state-dependent likelihoods g�1 , . . . , g
�
T as functions that

satisfy:

p̂(x,y | ✓) = h�(x1;✓) ·
TY

t=2

f�
t (xt�1, xt;✓) ·

TY

t=1

g�t (xt, yt;✓)

h(x1;✓) ·
TY

t=2

f(xt�1, xt;✓) ·
TY

t=1

g(xt, yt;✓) =
h(x1;✓)�1(x1)

H�(✓)
·

TY

t=2

f(xt�1, xt;✓)�t(xt;✓)

F �
t (xt�1;✓)

·
TY

t=1

g�t (xt, yt;✓)

TY

t=1

g(xt, yt;✓) =
�1(x1)

H�(✓)
·

TY

t=2

�t(xt)

F �
t (xt�1;✓)

·
TY

t=1

g�t (xt, yt;✓).

Clustering Time Series with Nonlinear Dynamics

This equality can be maintained if we define g�1 , . . . , g
�
T as follows,

g�1 (x1, y1;✓) =
H�(✓) · g(x1, y1;✓) · F �

2 (x1;✓)

�1(x1)
,

g�t (xt, yt;✓) =
g(xt, yt;✓) · F �

t+1(xt;✓)

�t(xt)
, 1 < t < T,

g�T (xT , yT ;✓) =
g(xT , yT ;✓)

�T (xT)
.

Thus, the parameter likelihood estimate of the twisted model is

p̂�(y | ✓) =
TY

t=1

1

S

SX

s=1

g�t (xs
t , yt;✓)

!
.

The BPF is simply a degenerate case of twisted SMC in which �t = 1 for all t.

B.3 Determining the Optimal Policy �⇤

The variance of the estimate p̂� comes from the state-dependent likelihood g. Thus, to minimize the variance,
we would like g�t to be as uniform as possible with respect to xt. Let the optimal policy be denoted �⇤. It follows
that

�⇤T (xT) = g(xT , yT ;✓),

�⇤t (xt) = g(xt, yt;✓) · F �⇤

t+1(xt;✓), 1 t < T.

Under �⇤, the likelihood estimate p̂�
⇤
(y |✓) = H�⇤

= p(y |✓) has zero variance. However, it may be infeasible for

us to use �⇤ in many cases, because the BPF algorithm requires us to sample xt from f�⇤

t for all t. For example,
under �⇤, we would have

f�⇤

T (xT�1, xT ;✓) / f(xT�1, xT ;✓) · �⇤T (xT) = f(xT�1, xT ;✓) · g(xT , yT ;✓),

which may be impossible to directly sample from if f and g form an intractable posterior (e.g. if f is Gaussian
and g is binomial). In such a case, we must choose a suboptimal policy �.

B.4 Choosing a Policy � for the Neuroscience Application

Recall the point-process state-space model (Equation 4), in which we have

h(x1;✓) = N (x1 | x0 + µ, 0),

f(xt�1, xt;✓) = N (xt | xt�1,),

g(xt, yt) = Binomial

✓
M · R,

expxt

1 + expxt

◆
,

where we define the parameters ✓ = {µ, log } and x0, 0,M,R are supplied constants.

Here, we can show that F �⇤

t+1(xt;✓) =
R
f(xt, xt+1;✓)�⇤t+1(xt+1)dxt+1 must be log-concave in xt. This further

implies that for all t, �⇤t (xt) = g(xt, yt) · F �⇤

t+1(xt;✓) is a log-concave function of xt since the product of two
log-concave functions is log-concave. Hence, we have shown that the optimal policy �⇤ = {�⇤1 , . . . , �⇤T } is a series
of log-concave functions. This justifies the approximation of each �⇤t (xt) with a Gaussian function,

�t(xt) = exp(�atx
2
t � btxt � ct), (at, bt, ct) 2 R3,

and thus, f�
t (xt�1, xt;✓) / f(xt�1, xt;✓) · �t(xt) is also a Gaussian density that is easy to sample from when

running the BPF algorithm.

A. Lin, Y. Zhang, J. Heng, S. A. Allsop, K. M. Tye, P. E. Jacob, D. Ba

We want to find the values of (at, bt, ct) that enforce �t ⇡ �⇤t for all t. One simple way to accomplish this goal is
to find the (at, bt, ct) that minimizes the least-squares di↵erence between �t and �⇤t in log-space. That is, given
a set of samples {x1

t , . . . , x
S
t } for the random variable xt, we solve for:

(at, bt, ct) = arg min
(at,bt,ct)2R3

SX

s=1

[log �t(x
s
t) � log �⇤t (xs

t)]
2

= arg min
(at,bt,ct)2R3

SX

s=1

⇥
�(at(x

s
t)

2 + bt(x
s
t) + ct) � log �⇤t (xs

t)
⇤2

.

Also note that in a slight abuse of notation, we redefine for all t < T ,

�⇤t (xt) = g(xt, yt) · F �
t+1(xt;✓),

because when performing approximate backwards recursion, it is not possible to analytically solve for the in-
tractable integral F �⇤

t+1(xt;✓).

In the aforementioned least-squares optimization problem, there is one additional constraint that we must take
into account. Recall that f�

t (xt�1, xt;✓) / f(xt�1, xt;✓)·�t(xt) is a Gaussian pdf that we sample from. Therefore,
we must ensure that the variance of this distribution is positive, which places a constraint on �t and more
specifically, the domain of (at, bt, ct). Using properties of Gaussians, we can perform algebraic manipulation to
work out the following parameterizations of h� and f�

t :

h�(x1;✓) = N
✓
x1

���
 �1
0 · (x0 + µ) � b1
 �1
0 + 2a1

,
1

 �1
0 + 2a1

◆
,

f�
t (xt�1, xt;✓) = N

✓
xt

���
 �1 · xt�1 � bt
 �1 + 2at

,
1

 �1 + 2at

◆
, 1 < t T.

The corresponding normalizing terms for these densities are

H�(✓) =
1p

1 + 2a1 0
exp

✓
 �1
0 · (x0 + µ) � (b1)2

2(�1
0 + 2a1)

� (x0 + µ)2

2 0
� c1

◆
,

F �
t (xt�1;✓) =

1p
1 + 2at

exp

✓
 �1 · xt�1 � (bt)2

2(�1 + 2at)
�

x2
t�1

2
� ct

◆
, 1 < t T.

Thus, to obtain (at, bt, ct) and consequently �t for all t, we solve the aforementioned least-squares minimization
problem subject to the following constraints:

a1 > � 1

2 0
, at > � 1

2
, 1 < t T.

B.5 Full cSMC Algorithm

The full controlled sequential Monte Carlo algorithm iterates on twisted SMC for L iterations, building a series
of policies �h1i, �h2i, . . . , �hLi over time. Given two policies �0 and �, we can define

h�0·�(x1) / h�0
(x1)�1(x1) = h(x1;✓) · �0

1(x1) · �1(x1),

f�0·�
t (xt�1, xt;✓) / f�0

t (xt�1, xt;✓) · �t(xt) = f(xt�1, xt;✓) · �0
t(xt) · �t(xt), 1 < t T.

We can see from these relationships that twisting the original model using �0 and then twisting the new model
using � has the same e↵ect as twisting the original model using a cumulative policy � where each �t(xt) =
�0
t(xt) · �t(xt). We state the full cSMC algorithm in Algorithm 3.

Clustering Time Series with Nonlinear Dynamics

Algorithm 3 ControlledSMC(y, g, µ, , x0, 0, L)

1: Define f(xt�1, xt;✓) = N (xt | xt�1,) and h(x1;✓) = N (x1 | x0 + µ, 0).
2: Define parameters ✓ = {µ, log }.
3: Collect particles {xs

1}Ss=1, . . . , {xs
T }Ss=1 from BootstrapParticleFilter(y, ✓, f , g, h).

4: Initialize �0 = {�0
1, . . . ,�

0
T } where �0

t(xt) = 1 for all t = 1, . . . , T .

5: Initialize g�
0

t (xt, yt) = g(xt, yt) for all t = 1, . . . , T .

6: Initialize ah0it = 0, bh0it = 0, ch0it = 0 for all t = 1, . . . , T .
7: for ` = 1, . . . , L do

// Approximate backward recursion to determine policy and associated functions

8: Define �⇤T (xT) = g�
0

T (xT , yT).
9: for t = T, . . . , 2 do

10: Solve (ah`it , bh`it , ch`it) = arg min(at,bt,ct)

PS
s=1

⇥
�(at(xs

t)
2 + bt(xs

t) + ct) � log �⇤t (xs
t)
⇤2

subject to at >

�1/(2) �
P`�1

`0=0 a
h`0i
t using linear regression.

11: Define new policy function �t(xt) = exp(�ah`it x2
t � bh`it xt � ch`it).

12: Define cumulative policy function �t(xt) = �0
t(xt) · �t(xt) = exp(�Atx2

t � Btxt � Ct) where At =
P`

`0=0 a
h`0i
t , Bt =

P`
`0=0 b

h`0i
t , and Ct =

P`
`0=0 c

h`0i
t .

13: Define f�
t (xt�1, xt;✓) and F�

t (xt�1;✓).
14: if t = T then
15: Define g�T (xT , yT) = g(xT , yT)/�T (xT).
16: else
17: Define g�t (xt, yt) = g(xt, yt) · F�

t+1(xt;✓)/�t(xt).
18: end if
19: Define �⇤t�1(xt�1) = g�

0

t�1(xt�1, yt�1) · F�
t (xt�1;✓)/F�0

t (xt�1;✓).
20: end for
21: Solve (ah`i1 , bh`i1 , ch`i1) = arg min(a1,b1,c1)

PS
s=1

⇥
�(a1(xs

1)
2 + b1(xs

1) + c1) � log �⇤1 (xs
1)
⇤2

subject to a1 >

�1/(2 0) �
P`�1

`0=0 a
h`0i
1 using linear regression.

22: Define new policy function �1(x1) = exp(�ah`i1 x2
1 � bh`i1 x1 � ch`i1).

23: Define cumulative policy function �1(x1) = �0
1(x1) · �1(x1) = exp(�A1x2

t � B1xt � C1) where A1 =
P`

`0=0 a
h`0i
1 , B1 =

P`
`0=0 b

h`0i
1 , and C1 =

P`
`0=0 c

h`0i
1 .

24: Define �-twisted initial prior h�(x1;✓) and H�(✓).
25: Define g�1 (x1, y1) = H�(✓) · g(x1, y1) · F�

2 (x1;✓)/�1(x1).
// Forward bootstrap particle filter to sample particles and compute weights

26: for s = 1, . . . , S do
27: Sample xs

1 ⇠ h�(x1) and weight ws
1 = g�1 (xs

1, y1).
28: end for
29: Normalize {ws

1}Ss=1 = {ws
1}Ss=1/

PS
s=1 w

s
1.

30: for t = 2, . . . , T do
31: for s = 1, . . . , S do
32: Resample ancestor index a ⇠ Categorical(w1

t�1, . . . , w
S
t�1).

33: Sample xs
t ⇠ f�

t (xa
t�1, xt;✓) and weight ws

t = g�t (xs
t , yt).

34: end for
35: Normalize {ws

t }Ss=1 = {ws
t }Ss=1/

PS
s=1 w

s
t .

36: end for
37: Update �0 = �.
38: end for
39: return Likelihood estimate p̂�(y | ✓).

A. Lin, Y. Zhang, J. Heng, S. A. Allsop, K. M. Tye, P. E. Jacob, D. Ba

C MULTIPLE GIBBS SAMPLES WITH OPTIMAL CO-OCCURENCE
MATRIX

This section extends the method of selecting clusters detailed in Section 4.1. After running the DPnSSM inference
algorithm (Algorithm 1), we construct co-occurrence matrices ⌦hii for i = 1, . . . , I (Equation 10). Then, we select
the optimal Gibbs sample i⇤. If there are J > 1 Gibbs samples i1, . . . , iJ such that ⌦hiji = ⌦hi⇤i for j = 1, . . . , J ,
our final cluster parameters ⇥⇤ can be redefined as the average among the corresponding parameter samples,

⇥⇤ =
1

J

JX

j=1

⇥hiji ⇡ E[⇥ | Z = Z⇤]. (15)

This averaging must be preceded by a permutation of each set of ✓(1), . . . ,✓(K) 2 ⇥hi⇤j i to fix any potential label
switching.

D ROBUSTNESS OF MODEL TO STIMULUS MISSPECIFICATION

We extend the results of Section 4.2 by testing the robustness of the model under cases in which there is a
mismatch between the true stimulus onset and the model’s specification of the stimulus onset. In particular, we
first examine the case in which the model overpredicts the true stimulus onset. Figure 8 presents heatmaps of
the mean co-occurrence matrix ⌦ in cases in which the model’s anticipation of the stimulus falls 40 ms, 80 ms,
and 160 ms behind the true onset. Table 4 lists the parameters chosen in the final clustering of the data in these
three cases. In all experiments, we use the same data generation process as detailed in Section 4.2.1 and the
same modeling process as detailed in Section 4.2.2.

1 2 3 4 5 6 7 8 9 10 15 14 13 12 11 16 17 18 19 20 21 22 23 24 25

25
24
23
22
21
20
19
18
17
16
11
12
13
14
15
10
9
8
7
6
5
4
3
2
1

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 23 22 21 25 24 11 15 12 14 13 16 17 18 19 20

20
19
18
17
16
13
14
12
15
11
24
25
21
22
23
10
9
8
7
6
5
4
3
2
1

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 23 22 21 15 13 24 12 11 14 25 16 17 18 19 20

20
19
18
17
16
25
14
11
12
24
13
15
21
22
23
10
9
8
7
6
5
4
3
2
1

0.2

0.4

0.6

0.8

1.0

Figure 8: Results from running the DPnSSM inference algorithm in cases in which the model specifies the
stimulus as occurring (left) 40 ms, (center) 80 ms, and (right) 160 ms after the true onset. At 40 ms, the
ground-truth clustering can be recovered, but this ability decays as the time di↵erence increases.

Table 4: Final cluster parameters for model stimulus delay. As expected, the absolute value of µ⇤(k) decreases
for all k as time mismatch increases.

40 ms model delay 80 ms model delay 160 ms model delay

k µ⇤(k) log ⇤(k) # of Neurons µ⇤(k) log ⇤(k) # of Neurons µ⇤(k) log ⇤(k) # of Neurons
1 +0.86 �10.86 5 +0.80 �10.95 5 +0.65 �10.79 5
2 �0.88 �12.12 5 �0.84 �12.45 5 �0.76 �12.48 5
3 +0.02 �10.31 5 �0.62 �6.23 6 +0.01 �9.36 10
4 +0.94 �5.53 5 +0.05 �10.77 4 +0.57 �5.47 5
5 �0.87 �5.91 5 +0.87 �5.52 5

Next, we examine the case in which the model underpredicts the true stimulus onset – by 10 ms, 20 ms, and 40
ms. This set of results is less robust than the previous one. Heatmaps are given in Figure 9, while parameters
are given in Table 5.

Clustering Time Series with Nonlinear Dynamics

1 2 3 4 5 6 7 8 9 10 23 22 21 25 24 11 15 12 14 13 16 17 18 19 20

20
19
18
17
16
13
14
12
15
11
24
25
21
22
23
10
9
8
7
6
5
4
3
2
1

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 23 22 21 24 25 9 8 7 6 10 11 12 14 15 13 16 17 18 19 20

20
19
18
17
16
13
15
14
12
11
10
6
7
8
9

25
24
21
22
23
5
4
3
2
1

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 8 9 10 23 22 24 25 7 14 15 11 12 13 16 17 18 19 20 21

21
20
19
18
17
16
13
12
11
15
14
7

25
24
22
23
10
9
8
6
5
4
3
2
1

0.2

0.4

0.6

0.8

1.0

Figure 9: Results from running the DPnSSM inference algorithm in cases in which the model specifies the
stimulus as occurring (left) 10 ms, (center) 20 ms, and (right) 40 ms before the true onset. At 10 ms, the
ground-truth clustering can almost be fully recovered, but this ability significantly decays as the time di↵erence
increases. For a true stimulus delay of 40 ms, there even exists one cluster containing both excited and inhibited
neurons.

Table 5: Final cluster parameters for true stimulus delay.

10 ms stimulus delay 20 ms stimulus delay 40 ms stimulus delay

k µ⇤(k) log ⇤(k) # of Neurons µ⇤(k) log ⇤(k) # of Neurons µ⇤(k) log ⇤(k) # of Neurons
1 +0.93 �10.45 5 +0.91 �10.37 5 +0.79 �8.71 5
2 �0.90 �12.47 4 �0.63 �6.52 10 �0.89 �11.5 4
3 �0.66 �6.08 6 +0.03 �10.02 5 �0.34 �5.93 5
4 +0.07 �10.96 5 +0.67 �5.31 5 +0.02 �10.41 5
5 +0.82 �5.44 5 +0.34 �4.96 6

E ADDITIONAL RASTER PLOTS FOR CUE DATA OVER TIME

�500 0 500 1000 1500
Time (ms)

(a)

1

16

30

45

T
ri
al

s

�500 0 500 1000 1500
Time (ms)

(b)

1

16

30

45

T
ri
al

s

�500 0 500 1000 1500
Time (ms)

(c)

1

16

30

45

T
ri
al

s

Figure 10: Overlaid raster plots of additional neuronal clusters found in Section 4.3.2 for (a) cluster k = 2 with
eight neurons and slightly inhibited/sustained responses, (b) cluster k = 4 with four neurons and more strongly
inhibited/variable responses, and (c) cluster k = 2 with a single neuron and a delayed excited e↵ect. A black
dot at (⌧, r) indicates a spike from one of the neurons in the corresponding cluster at time ⌧ during trial r. The
vertical green line indicates cue onset.

A. Lin, Y. Zhang, J. Heng, S. A. Allsop, K. M. Tye, P. E. Jacob, D. Ba

F DETAILS OF CSMC VS. BPF EXPERIMENT

This section describes the experimental setup of Section 4.4 that is used to produce Figure 7. Computational cost
is fixed at approximately 35 milliseconds per likelihood evaluation for either method. For the bootstrap particle
filter (BPF), we use S = 1024 particles. For controlled sequential Monte Carlo (cSMC), we use S = 64 particles
and L = 3 iterations. All parameter log-likelihood evaluations are performed on a representative real neuron’s cue
data over time y, as described in Section 4.3.1. For each particle filtering method, let v(µ,) = Var[log p(y |✓)],
where ✓ = [µ, log]>. Figure 7 plots empirical estimates of v̂ of v over di↵erent values of (µ,) for the two
methods. For each empirical variance estimate, we use 500 estimates of log p(y | ✓). As log decreases, cSMC
performs substantially better than BPF, especially for extreme values of µ.

