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A Rademacher complexity

Definition 6 (Rademacher complexity). Given a fam-
ily of functions F and a training set Z = {Z1, . . . , Zm},
the Rademacher complexity of F conditioned on Y′ is
given by

R̂Z(F) = EZ,σ

[
max
f∈F

1

m

∑m

i=1
σif(Zi)

∣∣∣Y′
]

where σ1, . . . , σm are i.i.d. random variables uniform
on {−1,+1}. The Rademacher complexity of F for
sample size m is given by

Rm(F) = EY′

[
R̂Z(F)

]
.

The Rademacher complexity has been studied for a
variety of function classes. For instance, for the linear
hypothesis space H = {x → w⊤x, ∥w∥2≤ Λ}, R̂Z can

be upper bounded by R̂Z(H) ≤ Λ√
m
maxi∥Zi∥2. As

another example, the hypothesis class of ReLu feed-
forward neural networks with d layers and weight ma-
trices Wk such that

∏d
k=1∥W∥F≤ γ verifies R̂Z(H) ≤

2d−1/2γ√
m

maxi∥Zi∥2 (Neyshabur et al., 2015).

B Discrepancy analysis

Proposition 1. Let H be a hypothesis space and let L
be a bounded loss function which respects the triangle
inequality. Let h′ ∈ H. Then,

∆ ≤ ∆s + L(h | Y) + L(h | Y′)

Proof. Let h, h′ ∈ H. For ease of notation, we write

∆s(h, h
′,Y′) =

1

m

∑
i

L(h(Y T1 (i)), h′(Y T1 (i)))

− 1

m

∑
i

L(h(Y T−1
1 (i)), h′(Y T−1

1 (i))).

Applying the triangle inequality to L,

L(h | Y) =
1

m

∑
i

E[L(h(Y T1 (i)), YT+1(i)) | Y]

≤ 1

m

∑
i

L(h(Y T1 (i)), h′(Y T1 (i)))

+
1

m

∑
i

E[L(h′(Y T1 (i)), YT+1(i)) | Y]

=
1

m

∑
i

L(h(Y T1 (i)), h′(Y T1 (i))) + L(h′ | Y).

Then, by definition of ∆s(h, h
′,Y′), we have

L(h | Y) ≤ 1

m

∑
i

L(h(Y T1 (i)), h′(Y T1 (i)))

− 1

m

∑
i

L(h(Y T−1
1 (i)), h′(Y T−1

1 (i)))

+
1

m

∑
i

L(h(Y T−1
1 (i)), h′(Y T−1

1 (i)))

+ L(h′ | Y)

≤∆s(h, h
′,Y′) + L(h′ | Y)

+
1

m

∑
i

L(h(Y T−1
1 (i)), h′(Y T−1

1 (i))).

By an application of the triangle inequality to L,

L(h,D) ≤∆s(h, h
′,Y′) + L(h′ | Y)

+
1

m

∑
i

E[L(h(Y T−1
1 (i)), YT (i)) | Y′]

+
1

m

∑
i

E[L(h′(Y T−1
1 (i)), YT (i)) | Y′]

=∆s(h, h
′,Y′) + L(h′ | Y) + L(h | Y′)

+ L(h′ | Y′).

Finally, we obtain

L(h | Y)− L(h | Y′) ≤∆s(h, h
′,Y′) + L(h′ | Y)

+ L(h′ | Y′)

and the result announced in the theorem follows by
taking the supremum over H on both sides.

Proposition 2. Let I1, · · · , Ik be a partition of
{1, . . . ,m}, and C1, . . . , Ck be the corresponding par-
tition of Y. Write c = minj |Cj |. Then we have with
probability 1− δ,

∆s ≤∆e +max
(
max
j

R|Cj |(C̃
′
j),max

j
R|Cj |(Ĩj)

)
+

√
1

2c
log

2k

δ −
∑
j(|Ij |−1)[β̄(Ij) + β̄′(Ij)]

.
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Proof. By definition of ∆s,

∆s = sup
h,h′∈H

1

m

m∑
i=1

[
L(h(Y T1 (i)), h′(Y T1 (i)))

− L(h(Y T−1
1 (i)), h′(Y T−1

1 (i)))
]

≤ sup
h,h′∈H

[ 1
m

m∑
i=1

L(h(Y T1 (i)), h′(Y T1 (i)))

− EY [L(h(Y T1 ), h′(Y T1 ))]
]

+ sup
h,h′∈H

[
EY [L(h(Y T1 ), h′(Y T1 ))]

− EY [L(h(Y T−1
1 ), h′(Y T−1

1 ))]
]

+ sup
h,h′∈H

[
EY [L(h(Y T−1

1 ), h′(Y T−1
1 ))]

− 1

m

m∑
i=1

L(h(Y T−1
1 (i)), h′(Y T−1

1 (i)))
]

by sub-additivity of the supremum. Now, define

ϕ(Y) ≜ sup
h,h′∈H

[ 1
m

m∑
i=1

L(h(Y T1 (i)), h′(Y T1 (i)))

− EY [L(h(Y T1 ), h′(Y T1 ))]
]

ψ(Y′) ≜ sup
h,h′∈H

[
EY [L(h(Y T−1

1 ), h′(Y T−1
1 ))

− 1

m

m∑
i=1

L(h(Y T−1
1 (i)), h′(Y T−1

1 (i)))]
]
.

By definition of ∆e, we have from the previous inequal-
ity

∆s ≤ ∆e + ϕ(YT
1 ) + ψ(YT−1

1 ).

We now proceed to give a high-probability bound for
ϕ; the same reasoning will yield a bound for ψ. By
sub-additivity of the max,

ϕ(Y) ≤
∑
j

|Cj |
m

sup
h∈H

[
EY [f(h, Y T1 )]

− 1

|Cj |
∑
Y ∈Cj

f(h, Y T1 )
]

≤
∑
j

|Cj |
m

ϕ(Cj)

and so by union bound, for ϵ > 0

Pr(ϕ(Y) > ϵ) ≤
∑
j

Pr(ϕ(Cj) > ϵ).

Let ϵ > maxj E[ϕ(C̃j)] and set ϵj = ϵ− E[ϕ(C̃j)].

Define for time series Y (i), Y (j) the mixing coefficient

β̄(i, j) = ∥Pr(Y T1 (i), Y T1 (j))−Pr(Y T1 (i)) Pr(Y T1 (j))∥TV

where we also extend the usual notation to β̄(Cj).

Pr (ϕ(Cj) > ϵ) =Pr
(
ϕ(Cj)− E[ϕ(C̃j)] > ϵj

)
(a)

≤ Pr
(
ϕ(C̃j)

− E[ϕ(C̃j)] > ϵj

)
+ (|Ij |−1)β̄(Ij)

(b)

≤e−2cϵ2j + (|Ij |−1)β̄(Ij),

where (a) follows by applying Prop. 6 to the indicator

function of the event Pr(ϕ(Cj) − E[ϕ(C̃j)] ≥ ϵ), and
(b) is a direct application of McDiarmid’s inequality to

ϕ(C̃j)− E[ϕ(C̃j)].

Hence, by summing over j we obtain

Pr (ϕ(Y) > ϵ) ≤ke−2minj |Cj |(ϵ−maxj E[ϕ(C̃j)])
2

+
∑
j

(|Ij |−1)β̄(Ij)

and similarly

Pr (ψ(Y′) > ϵ) ≤ke−2minj |C′
j |(ϵ−maxj E[ψ(C̃′

j)])
2

+
∑
j

(|Ij |−1)β̄′(Ij),

which finally yields

Pr(∆s −∆e > ϵ) ≤ Pr(ϕ(Y) > ϵ) + Pr(ψ(Y′) > ϵ)

≤ 2k exp(−2c(ϵ−max(max
j

E[ϕ(C̃j)],max
j

E[ψ(C̃ ′
j)]))

2)

+
∑
j

(|Ij |−1)[β̄(Ij) + β̄′(I ′j)],

where we recall that we write c = minj |Cj |. We invert
the previous equation by setting

ϵ =max(max
j

E[ϕ(C̃j)],max
j

E[ψ(C̃ ′
j)])

+

√
1

2c
log

2k

δ −
∑
j(|Ij |−1)[β(Ij) + β(I ′j)]

,

yielding with probability 1− δ,

∆s ≤∆e +max(max
j

E[ϕ(C̃j)],max
j

E[ψ(C̃ ′
j)])

+

√
1

2c
log

2k

δ −
∑
j(|Ij |−1)[β̄(Ij) + β̄′(Ij)]

.
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We now bound E[ϕ(C̃j)] by R|Cj |(C̃j). A similar argu-
ment yields the bound for ψ. By definition, we have

E[ϕ(C̃j)] = E
[
sup
h∈H

1

|Cj |
∑
Z∈C̃j

f(h, Y T1 (i))− EY [f(h, Y T1 )]
]

=
1

|Cj |
E
[
sup
h∈H

∑
Z∈C̃j

f(h, Y T1 (i))−EY [f(h, Y T1 )︸ ︷︷ ︸
g(h,Y T

1 (i))

]
]

=
1

|Cj |
E
[
sup
h∈H

∑
Z∈C̃j

g(h, Y T1 (i))
]

Standard symmetrization arguments as those used for
the proof of the famous result by Koltchinskii and
Panchenko (2002), which hold also when data is drawn
independently but not identically at random, yield

E[ϕ(C̃j)] ≤ R|Cj |(C̃j).

The same argument yields for ψ

E[ψ(C̃ ′
j)] ≤ R|Cj |(C̃

′
j).

To conclude our proof, it only remains to prove the
bound

β̄(i, j) ≤βs2s(i, j)

+ EY′

[
Cov

(
Pr(YT (i) | Y′),Pr(YT (j) | Y′)

)]
Let Y (i), Y (j) be two time series, and write Xi =
E[Pr(Y T1 (i)) | Y′]. Then the following bound holds

β̄(i, j) =∥Pr(Y T1 (i), Y T1 (j))− Pr(Y T1 (i)) Pr(Y T1 (j))∥TV
=∥E[Pr(Y T1 (i), Y T1 (j)) | Y′]− E[Xi]E[Xj ]∥TV
=∥E[Pr(Y T1 (i), Y T1 (j)) | YT−1

1 ]− E[Xi, Xj ]

− E[Cov(Xi, Xj)]∥TV
≤βs2s(i, j) + EY′ [Cov(Xi, Xj)],

which is the desired inequality.

We now show two useful lemmas for various specific
cases of time series and hypothesis spaces.

Proposition 3. If Y (i) is stationary for all 1 ≤ i ≤
m, and H is a hypothesis space such that h ∈ H :
YT−1 → Y (i.e. the hypotheses only consider the last
T − 1 values of Y ), then ∆e = 0.

Proof. Let h, h′ ∈ H. For stationary Y (i), we have
Pr(Y T1 (i)) = Pr(Y T2 (i)), and so

E[L(h(Y T2 ), h′(Y T2 ))]− E[L(h(Y T−1
1 ), h′(Y T−1

1 ))] = 0

and so taking the supremum over h, h′ yields the de-
sired result.

Proposition 4. If Y (i) is covariance stationary for
all 1 ≤ i ≤ m, L is the squared loss, and H is a linear
hypothesis space {x → w · x | ∥w∥∈ Rp ≤ Λ}, then
∆e = 0.

Proof. Recall that a time series Y is covariance sta-
tionary if EY [Yt] does not depend on t and EY [YtYs] =
f(t− s) for some function f .

Let now (h, h′) ∈ H ≡ (w,w′) ∈ Rp. We write Σ =
ΣT2 (Y ) = ΣT1 (Y ) the covariance matrix of Y where the
equality follows from covariance stationarity. Without
loss of generality, we consider p = T − 1. Then,

E[L(h(Y T2 ), h′(Y T2 ))]− E[L(h(Y T−1
1 ), h′(Y T−1

1 ))]

= E[((w − w′)⊤ΣT2 (Y )(w − w′)]

− E[((w − w′)⊤ΣT−1
1 (Y )(w − w′)]

= 0.

Taking the supremum over h, h′ yields the desired re-
sult.

Proposition 5. If the Y (i) are periodic of period p
and the observed starting time of each Y (i) is dis-
tributed uniformly at random in [p], then ∆e = 0.

Proof. This proof is similar to the stationary case: in-
deed, we can write Pr(Y T−1

1 (i)) = 1
p Pr(Y (i)) due to

the uniform distribution on starting times. Then, by
the same reasoning, we have also

Pr(Y T2 (i)) =
1

p
Pr(Y (i)) = Pr(Y T−1

1 (i)),

from which the result follows.

C Generalization bounds

Proposition 6. Yu (1994, Corollary 2.7). Let f be
a real-valued Borel measurable function such that 0 ≤
f ≤ 1. Then, we have the following guarantee:∣∣∣E[f(C̃)]− E[f(C)]

∣∣∣ ≤ (|C|−1)β,

where β is the total variation distance between joint
distributions of C and C̃.

Theorem 4.1. Let H be a hypothesis space, and
h ∈ H. Let C1, . . . , Ck form a partition of the train-
ing input YT

1 , and consider that the loss function L is
bounded by 1. Then, we have for δ > 0, with probability
1− δ,

Φs2s(h) ≤∆+max
j

[
R|Cj |(C̃j | Y)

]
+

1√
2minj |Ij |

√√√√log

(
k

δ −
∑
j(|Ij |−1)βs2s(Ij)

)
.
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For ease of notation, we write

ϕ(Y) = sup
h∈H

L(h | Y′)− L̂(h,Y)

= sup
h∈H

1

m

m∑
i=1

E[f(h, Y T1 (i)) | Y′]

− 1

m

m∑
i=1

f(h, Y T1 (i)).

We begin by proving the following lemma.

Lemma 3. Let Ȳ be equal to Y on all time series
except for the last, where we have Ȳ (m) = Y (m) at all
times except for time t = T . Then∣∣ϕ(Y)− ϕ(Ȳ)

∣∣ ≤ 1

m

Proof. Fix h∗ ∈ H. Then,

L(h∗ | Y′)− L̂(h∗,Y)− sup
h∈H

[
L(h | Ȳ′)− L̂(h, Ȳ)

]
≤ L(h∗ | Y′)− L̂(h∗,Y)

−
[
L(h∗, | Ȳ′)− L̂(h∗, Ȳ)

]
(a)

≤ L̂(h∗, Ȳ)− L̂(h∗,Y)

≤ 1

m

[
f(h∗, Ȳ T1 (m))− f(h∗, Y T1 (m))

]
≤ 1

m
.

where (a) follows from the fact that Y′ = Ȳ′ and the
last inequality follows from the fact that f is bounded
by 1.

By taking the supremum over h∗, the previous calcu-
lations show that ϕ(Y) − ϕ(Ȳ) ≤ 1/m; by symme-
try, we obtain ϕ(Ȳ) − ϕ(Y) ≤ 1/m which proves the
lemma.

We now prove the main theorem.

Proof. Observe that the following bounds holds

Φs2s(Y) =L(h | Y)− L̂(h,Y)

≤ sup
h∈H

[
L(h | Y)− L(h | Y′)

]
+ sup
h∈H

[
L(h | Y′)− L̂(h,Y)

]
.

and so

Φs2s(Y) − ∆ ≤ sup
h∈H

L(h, | Y′)− L̂(h,Y)︸ ︷︷ ︸
ϕ(Y)

.

Define M = maxj E[ϕ(C̃j) | Ỹ′]. Then,

Pr
(
Φs2s(Y) − ∆−M > ϵ | Y′

)
(C.1)

≤ Pr(ϕ(Y)−M > ϵ | Y′).

By sub-additivity of the supremum, we have

ϕ(Y)−M ≤
∑
j

|Cj |
m

sup
h∈H

[
L(h | Y)− L̂(h,Cj)−M

]
and so by union bound,

Pr(ϕ(Y)−M ≥ ϵ | Y′) ≤
∑
j

Pr(ϕ(Cj)−M ≥ ϵ | Y′).

By definition of M ,

Pr
(
ϕ(Cj)−M ≥ ϵ | Y′

)
≤ Pr(ϕ(Cj)− E[ϕ(C̃j) | Ỹ′] ≥ ϵ | Y′)

(a)

≤ Pr(ϕ(C̃j)

− E[ϕ(C̃j) | Ỹ′] ≥ ϵ | Y′) + (|Ij |−1)βs2s(Ij | Y′)

(b)

≤ e−2|Cj |ϵ2 + (|Ij |−1)βs2s(Ij | Y′).

where (a) follows by applying Prop. 6 to the indicator

function of the event Pr(ϕ(Cj) − E[ϕ(C̃j) | Ỹ′] ≥ ϵ),
and (b) is a direct application of McDiarmid’s inequal-
ity, following Lemma 3. The notation βs2s(Ij | Y′) in-
dicates the total variation distance between the joint
distributions of Cj and C̃j conditioned on Y′. In par-
ticular, we have EY′βs2s(Cj | Y′) = βs2s(Cj).

Finally, taking the expectation of the previous term
over all possible Y′ values and summing over j, we
obtain

Pr(L(h | Y)− L̂(h,Y)− EC̃j′
[ϕ(C̃j′) | Ỹ] ≥ ϵ)

≤
∑
j

e−2|Cj |ϵ2 +
∑
j

(|Ij |−1)βs2s(Ij).

Combining this bound with (C.1), we obtain

Pr
(
Φs2s(Y) − ∆−M > ϵ

)
≤
∑
j

e−2|Cj |ϵ2 +
∑
j

(|Ij |−1)βs2s(Ij)

≤ ke−2minj |Cj |ϵ2 +
∑
j

(|Ij |−1)βs2s(Ij)

We invert the previous equation by choosing δ >∑
j(|Ij |−1)βs2s(Ij) and setting

ϵ =

√√√√ log k
δ−

∑
j(|Ij |−1)βs2s(Ij)

2minj |Ij |
,

which yields that with probability 1− δ, we have

Φs2s(Z) ≤M +∆+

√√√√ log
(

k
δ−

∑
j(|Ij |−1)β(Ij)

)
2minj |Ij |

.
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To conclude our proof, it remains to show that

M ≤ R|Cj |(C̃j | Ỹ′).

E[ϕ(C̃j) | Ỹ′] =E
[
sup
h∈H

L(h | Ỹ′)

− 1

|Cj |

m∑
i=1

f(h, Ỹ T1 (i)) | Ỹ′
]

=
1

|Cj |
E
[
sup
h∈H

∑
Ỹ T
1 ∈C̃j

E[f(h, Ỹ T1 ) | Ỹ′]

− f(h, Ỹ T1 (i)) | Ỹ′
]

≤ 1

|Cj |
E
[
sup
h∈H

∑
Ỹ T
1 ∈C̃j

g(h, Ỹ T1 (i)) | Ỹ′
]

where we’ve defined

g(h, Ỹ T1 (i)) ≜ E[f(h, Ỹ T1 (i)) | Ỹ′]− f(h, Ỹ T1 (i)).

Similar arguments to those used at the end of Ap-
pendix B yield the desired result, which concludes the
proof of Theorem 4.1.

D Generalization bounds for local
models

Theorem 5.1. Let h = (h1, . . . , hm) where each hi is
a hypothesis learned via a local method to predict the
univariate time series Zi. For δ > 0 and any α > 0,
we have w.p. with 1− δ

Φloc(Z) ≤
1

m

∑
i

∆(Y (i)) + 2α

+

√
2

T
log

mmaxi(Ev∼T (Y (i))[N1(α,F , v)])
δ

Proof. Write

Φ(Y T1 (i)) = sup
h∈H

E[f(h, Y T+1
1 ) | Y T1 ]

− 1

T

T∑
t=1

f(h, Y t+Tt (i)).

By (Kuznetsov and Mohri, 2015, Theorem 1), we have
that for ϵ > 0, and 1 ≤ i ≤ m,

Pr(Φ(Y T1 (i)−∆(Y (i)) > ϵ) ≤Ev∼T (p)[N1(α,F , v)]

× exp
(
− T (ϵ− 2α)2

2

)
.

By union bound,

Pr(
1

m

∑
i

Φ(Y T1 (i))−∆(Y (i)) > ϵ)

≤ mmax
i

(Ev∼T (Y (i))[N1(α,F , v)])

× exp
(
− T (ϵ− 2α)2

2

)
We invert the previous equation by letting

ϵ = 2α+

√
2

T
log

mmaxi(Ev∼T (Y (i))[N1(α,F , v)])
δ

.

which yields the desired result.

E Analysis of expected mixing
coefficients

Lemma 2. Two AR processes Y (i), Y (j) generated
by (4.1) such that σ = Cov(Y (i), Y (j)) ≤ σ0 < 1 verify

βs2s(i, j) = max
(

3
2(1−σ2

0)
, 1
1−2σ0

)
σ.

Proof. For simplicity, we write U = Y (i) and V =
Y (j).

Write

β =∥P (UT |Y′)P (VT |Y′)− P (UT , VT |Y′)∥TV
=sup
u,v

|P (UT =u)P (VT =v)− P (UT = u, VT = v)|

=sup
u,v

∣∣∣P (UT = u | UT−1
0 )P (VT = v | vT−1

0 )

− P (UT = u, VT = v | vT−1
0 , uT−1

0 )
∣∣∣

=sup
u,v

∣∣∣[P (u, v | UT−1
0 , V T−1

0 ) + f(σ, δ, ϵ)
]

− P (u, v | UT−1
0 , V T−1

0 )
∣∣∣

where we’ve written δ = u−Θi(U
T−1
0 ) (and ϵ similarly

for v), and we’ve defined

f(σ, δ, ϵ) = P (u|UT−1
0 )P (v|V T−1

0 )− P (u, v|UT−1
0 , V T−1

0 )

= e−
1
2 (δ

2+ϵ2) − 1

1− σ2
e
− 1

2
1

1−σ2 (δ2+ϵ2−2σϵδ)
.

Assuming we can bound f(σ, δ, ϵ) by a function g(σ)
independent of δ, ϵ, we can then derive a bound on β.

Let x =
√
δ2 + ϵ2 be a measure of how far the AR

process noises lie from their mean µ = 0. Using the
inequality

|δϵ|≤ δ2 + ϵ2,

we proceed to bound |f(σ, δ, ϵ)| by bounding f and −f .
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f(σ, δ, ϵ) ≤ e−
1
2 (δ

2+ϵ2) − e
− 1

2
1

1−σ2 (δ2+ϵ2+2σ|δϵ|)

≤ e−
1
2x

2

− e
− 1

2
1

1−σ2 (1+2σ)x2

≤ e−
1
2x

2
(
1− e

− 1
2

2σ+σ2

1−σ2 x
2
)

Using the inequality 1− x ≤ e−x, it then follows that

f(σ, δ, ϵ) ≤ e−
1
2x

2

(1− (1− 1
2
2σ+σ2

1−σ2 x
2))

≤ 1
2

3
1−σ2σx

2e−
1
2x

2

(a)

≤ 3
e(1−σ2)σ (E.1)

where inequality (a) follows from the fact that y →
ye−y is bounded by 1/e.

Similarly, we now bound −f :

−f(σ, δ, ϵ) ≤ 1

1− σ2
e
− 1

2
1

1−σ2 (δ2+ϵ2−2σ|ϵδ|) − e−
1
2 (δ

2+ϵ2)

≤ 1

1− σ2
e
− 1

2
1−2σ

1−σ2 x
2

− e−
1
2x

2

≤ 1

1− σ2
e−

1
2 (1−2σ)x2

− e−
1
2x

2

.

One shows easily that this last function reaches its

maximum for x20 = 1
σ log( 1−σ

2

1−2σ ), at which point it ver-
ifies

− f(σ, x0) =
2σ

1− 2σ
e−

1
2σ log( 1−σ2

1−2σ ) ≤ 2σ

1− 2σ
(E.2)

Putting (E.1) and (E.2) together, we obtain

|f(σ, δ, ϵ)| ≤ σmax

(
3

e(1− σ2)
,

1

1− 2σ

)
≤ max

(
3

2(1− σ2
0)
,

1

1− 2σ0

)
σ

Taking the expectation over all possible realizations of
Y′ yields the desired result.

Proof. Recall that Y contains m′ = mT examples,
which we denote Y tt−p(i) for 1 ≤ i ≤ m and 1 ≤ t ≤ T
(when t− p < 0, we truncate the time series appropri-
etly). We define

Lhyb(h | Y) =
1

m

m∑
i=1

E[L(h(Y TT−p+1(i)), YT+1(i)) | Y]

Lhyb(h | Y′) =
1

m

m∑
i=1

1

T

T∑
t=1

E[L(h(Y t−1
t−p (i)), Yt(i)) | Y′]

L̂hyb(h) =
1

m

m∑
i=1

1

T

T∑
t=1

L(h(Y t−1
t−p (i)), Yt(i))

where we note that here Y′ indicates each of the mT
training samples excluding their last time point.

Observe that the following chain of inequalities holds:

Φhyb(Y) = sup
h∈H

Lhyb(h | Y)− L̂hyb(h)

≤sup
h∈H

[
Lhyb(h | Y)− Lhyb(h | Y′)

]
+ sup
h∈H

[
Lhyb(h | Y′)− L̂hyb(h,Y)

]
≤ 1

T

T∑
t=1

sup
h∈H

[
Lhyb(h | Y)

− 1

m

m∑
i=1

ED′ [L(h(Y t−1
t−p (i)), Yt(i)) | Y′]

]
+ sup
h∈H

[
Lhyb(h | Y′)− L̂hyb(h,Y)

]
.

and so

Φhyb(Y) − 1

T

∑
t

∆t ≤ sup
h∈H

Lhyb(h, | Y′)− L̂hyb(h,Y)︸ ︷︷ ︸
ϕ(Y)

.

Then, following the exact same reasoning as above for
Φs2s shows that for δ > 0, we have with probability
1− δ/2

Φhyb(Y)

≤ max
j

R̂C̃j
(F) +

1

T

∑
t

∆t +

√√√√ log
(

2k
δ−

∑
j(|Ij |−1)β(Ij)

)
2minj |Ij |︸ ︷︷ ︸

B1

However, upper bounding Φhyb can also be approached
using the same techniques as Kuznetsov and Mohri
(2015), which we now describe. Let α > 0. For a given
h, computing Lhyb(h,Y) is similar in expectation to
running h on each of the m time series, yielding for
each time series Y TT−p+1(i) the bound

E[L(h(Y TT−p+1(i)), YT+1(i)) | Y]

≤ 1

T

T∑
t=1

L(h(Y t−1
t−p (i)), Yt(i)) + ∆(Yi)

+ 2α+

√
2

T
log

maxi Ev∼T (Yi)[Ni(α,F , v)]
δ

and so by union bound, as above, we obtain with prob-
ability 1− δ/2

Φhyb(Y) ≤ 1

m

∑
∆(Yi) + 2α

+

√
2

T
log

2mmaxi Ev∼T (Yi)[Ni(α,F , v)]
δ

≤B2
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We conclude by a final union bound on the event
{Φhyb(Y) ≥ B1 ∪ Φhyb(Y) ≥ B2}, we obtain with
probability 1− δ,

Φhyb(Y) ≤ min(B1, B2)


