
Supplementary Material

Estimation of Non-Normalized Mixture Models

Proof of Lemma 1 (Section 3.3)

Here, we consider the non-normalized mixture model

p(x | θ, π) =
K∑

k=1

πk · p(x | θk), (34)

where the K components belong to the same parametric family:

p(x | θk) =
1

Z(θk)
p̃(x | θk). (35)

We also use the parametrization with (θ, c) defined by

p(x | θ, c) =
K∑

k=1

p(x | θk, ck), (36)

where
log p(x | θk, ck) = log p̃(x | θk) + ck. (37)

Two parametrizations are connected by the transformation ck = log πk − logZ(θk).
From Theorem 1 of Gutmann and Hyvärinen (2012) with assumption (d),

(θ, c) ∈ argmax
θ,c

JNCE(θ, c) (38)

if and only if
p(x | θ, c) = p(x | θ∗, c∗), (39)

which is rewritten as
K∑

k=1

πkp(x | θk) =
K∑

k=1

π∗
kp(x | θ∗k). (40)

Then, from assumptions (a)-(c), it leads to

{π1p(x | θ1), · · · , πKp(x | θK)}
={π∗

1p(x | θ∗1), · · · , π∗
Kp(x | θ∗K)}. (41)

Therefore, there exists σ ∈ Sn such that

πkp(x | θk) = π∗
σ(k)p(x | θ∗σ(k)) (42)

for k = 1, · · · ,K, which is equivalent to
πk = π∗

σ(k), θk = θ∗σ(k) (43)

for k = 1, · · · ,K by using assumption (a). Thus, we obtain (16).
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Proof of Theorem 2 (Section 4.2)

Since n(yt) does not depend on θ and c, we can rewrite (3) and (4) as

(θ̂NCE, ĉNCE) = argmax
θ,c

J̃NCE(θ, c), (44)

where

J̃NCE(θ, c) =
N∑
t=1

log
Np(xt | θ, c)

Np(xt | θ, c) +Mn(xt)

+
M∑
t=1

log
1

Np(yt | θ, c) +Mn(yt)
(45)

Similarly, since nl(y
(l)
t ) does not depend on θ and c, we can rewrite (12) and (13) as

(θ̂MNCE, ĉMNCE) = argmax
θ,c

J̃MNCE(θ, c), (46)

where

J̃MNCE(θ, c)

=
N∑
t=1

log
Np(xt | θ, c)

Np(xt | θ, c) +M1n1(xt) + · · ·+MLnL(xt)

+
L∑

l=1

Ml∑
t=1

log
1

Np(y
(l)
t | θ, c) +M1n1(y

(l)
t ) + · · ·+MLnL(y

(l)
t )

. (47)

Now, from (14), we obtain J̃NCE(θ, c) = J̃MNCE(θ, c). Therefore,

(θ̂MNCE, ĉMNCE) = (θ̂NCE, ĉNCE). (48)

Additional figure for Section 6

Figure 1 shows the histogram of the logit score of the posterior probability in the first cluster log p(z = 1 |
x; θ̂, ĉ) − log(1 − p(z = 1 | x; θ̂, ĉ)). Compared to the proposed method, the Gaussian mixture models assign
extremely large or small logit scores.
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Figure 1: Histogram of the logit score of posterior probability. Please note different horizontal ranges in the three
plots. (a) The proposed method. (b) Gaussian mixture model with diagonal covariance matrices. (c) Gaussian
mixture model with isotropic covariance matrices.
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