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A Asymptotic Lower Bound of

Shtarkov Complexity for Standard

Normal Location Models

We show an asymptotic lower bound of the Shtarkov
complexity of standard normal location models.
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where �(�) denotes the standard normal distribution
function. Now, by Komatu (1955), �(�) is bounded
below with �(�) > 1 � 2�(�)/(

p
2 + x2 + x) for �(�)

being the standard normal density, which yields the
lower bound of interest after a few lines of elementary
calculation.

B Lower Bound on Minimax Regret

of Smooth Models

We describe how we adopt the minimax risk lower
bound as to show the minimax-regret lower bound.

The story of the proof is based on Donoho and John-
stone (1994). First, the so-called three-point prior is
constructed to approximate the least favorable prior.
Then, since the approximate prior violates the `1-
constraint, the degree of the violation is shown to be
appropriately bounded to derive a valid lower bound.

The goal of our proof is to establish a lower bound on
the minimax regret with respect to logarithmic losses,

whereas their proof is about the minimax risk with
respect to `q-loss. Therefore, below we present the
proof highlighting (i) an approximate least favorable
prior for logarithmic losses over `1-balls and (ii) the
way to bound regrets on the basis of risk bounds.

Let H = {✓ 2 Rd
| k✓k1  B} be a `1-ball. Let

X ⇠ Nd[✓, Id/L] be a d-dimensional normal random
variable with mean ✓ 2 H and precision L > 0. We
denote the distribution just by X ⇠ ✓ where any con-
fusion is unlikely. Let h 2 Ĥ be a predictor associ-
ated with any sub-probability distribution P (·|h) 2

M+(Rd). For notational simplicity, we may write

fX(✓) = L
2 kX � ✓k2

2 + d
2 ln 2⇡

L and fX(h) = ln dP (X|h)
d⌫

where ⌫ is the Lebesgue measure over Rd.

Consider the risk function

Rd(h, ✓)
def
= EX⇠✓ [fX(h) � fX(✓)] ,

and the Bayes risk function

Rd(h, ⇡)
def
= E✓⇠⇡ [Rd(h, ✓)] ,

where ⇡ 2 P(H) denotes prior distributions on H.
Then, the minimax Bayes risk bounds below the min-
imax regret,
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The minimax theorem states that there exists a saddle
point (h⇤, ⇡⇤) such that
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and ⇡⇤ is referred to as the least favorable prior. We
want to approximate ⇡⇤ to give an analytic approxi-
mation of Rd(⇡⇤), which is a lower bound of REG?(H).

Let F✏,µ 2 P(R) be the three-point prior defined by

F✏,µ = (1 � ✏)�0 +
✏

2
(��µ + �µ)

for ✏, µ > 0. We show that the corresponding achiev-
able Bayes risk R1(F✏,µ) tends to be the entropy of the
prior F✏,µ in some limit of small ✏.

Lemma 9 Take µ = µ(✏) =
p

2L�1 ln ✏�1. Let H✏ =
H(F✏,µ) = (1� ✏) ln(1� ✏)�1 + ✏ ln 2✏�1 be the entropy
of the prior. Then we have
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as ✏ ! 0. Here, x ⇠ y denotes the asymptotic equality
such that x/y ! 1.

Proof First, we show the famous inequality on the
entropy given by R1(F✏,µ)  H✏. Let P (·|h) =
E✓⇠F✏,µP (·|✓) = (1�✏)P (·|0)+ ✏

2 (P (·|�µ)+P (·|µ)) be
the Bayes marginal distribution with respect to F✏,µ.
Then we have
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Now, we show that, with the specific value of µ = µ(✏),
the gap is negligible compared to the entropy itself.
Applying Jensen’s inequality, we have
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Thus we get H✏ ⇠ R1(F✏,µ).

Now we show that the d-th Kronecker product of F✏,µ,
F d
✏,µ, can be used to bound the Bayes minimax risk

Rd(⇡⇤) with an appropriate choice of ✏ and µ. To
this end, let ⇡+ = F d

✏,µ | H be the conditional prior
restricted over the `1-ball H.

Lemma 10 Take ✏µ = (1 � c)B/d and µ =
p

2L�1 ln ✏�1 for 0 < c < 1. Then, if ✏ ! 0 and
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Proof First of all, the inequality is trivial from the
definition of Rd(⇡). Moreover, the second asymptotic
equality immediately follows from Lemma 9.

Now we consider the first asymptotic equality. Let h
be the Bayesian predictor with respect to the prior
F✏,µ and h+ be the one with respect to the conditional
prior ⇡+. Then we have
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Let N be the number of nonzero elements in ✓ ⇠

F d
✏,µ. Then N is subjects to the Binomial distribu-

tion Bin(d, ✏). On the other hand, the event ✓ 2 H

is equal to {k✓k1  B} = {N  B/µ = EN/(1 � c)}.
Therefore, applying the Chebyshev’s inequality, we get
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Thus, combining all above, we get
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which implies the desired asymptotic equality
Rd(F✏,µ) ⇠ Rd(⇡+).

Summing these up, we have an asymptotic lower
bound on the minimax regret which is the same as
the upper bound given by the ST prior within a factor
of two (see Theorem 7). This implies that both the
regret of the ST prior and the Bayes risk of the prior
⇡+ are tight with respect to the minimax-regret rate
except with a factor of two.

Theorem 11 (Minimax lower bound) Suppose
that !(1) = ln(d/

p
L) = o(L). Then we have
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⇠ y such that
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Proof The assumptions of Lemma 10 are satisfied for
all 0 < c < 1 since
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Thus, we have
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for all 0 < c < 1. Slowly moving c toward zero
completes the theorem.

C Existence of Gap between LREG?

and LREGBayes
under `1-Penalty

Below we show that, under standard normal lo-
cation models, the Bayesian luckiness minimax re-
gret is strictly larger than the non-Bayesian lucki-
ness minimax regret if � is nontrivial and has a non-
di↵erentiable point. Here we refer to � as trivial when
there exists ✓0 such that �(✓) = 1 for all ✓ 6= ✓0.

Lemma 12 Let fX(✓) = 1
2 (X � ✓)2+ 1

2 ln 2⇡ for X 2

R and ✓ 2 R. Then, for all nontrivial, convex and
non-di↵erentiable penalties � : R ! R,

LREG?(�) < LREGBayes(�).

Proof Let F = {fX | X 2 R} and recall that
LREGBayes(�) = infw2E(F�) ln w [e�� ] by Theorem 1.
Let k·k� be the metric of pre-priors w 2 M+(R)

given by kwk� = w [e�� ]. Owing to the continuity

of w 7! ln w [e�� ] and the completeness of E(F�) ⇢
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prior w 2 E(F�) such that ln w [e�� ] = S(�). Let
us prove this by contradiction. Now, assume that
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ery X since w 2 E(F�). Note that fX(✓) is continuous
with respect to X, and then we have w
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=
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where ✓⇤

X = arg m(fX + �). Here we exploited Dan-
skin’s theorem at the last equality. One more di↵eren-
tiation gives us
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Note that we have d✓⇤
X

dX |X=t = 0 for any non-
di↵erentiable points t of �. Then it implies that
w = c�✓⇤

t
where �s denotes the Kronecker delta mea-

sure. Then, according to (13), we have

0 = w✓

h
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.

= c (✓⇤
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X) e�fX(✓⇤
t )��(✓⇤
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which means that ✓⇤

X = ✓⇤

t is a constant independent
of X. However, this contradicts to the assumption
that � is nontrivial.

As a remark, we note that this lemma is easily ex-
tended to multidimensional exponential family of dis-
tributions.


