A Asymptotic Lower Bound of Shtarkov Complexity for Standard Normal Location Models

We show an asymptotic lower bound of the Shtarkov complexity of standard normal location models.

Lemma 8 Consider the d-dimensional standard normal location model, given by $f_{X}(\theta)=\frac{1}{2}\|X-\theta\|_{2}^{2}+$ $\frac{d}{2} \ln 2 \pi$, where $X \in \mathcal{X}=\mathbb{R}^{d}$. Let $\gamma=\lambda\|\theta\|_{1}$ for $\lambda \geq 0$. Then we have

$$
S(\gamma) \geq d \ln \left(1+\frac{e^{-\lambda^{2} / 2}}{\sqrt{2 \pi} \lambda^{3}}(1+o(1))\right)
$$

Proof By definition of $S(\gamma)$, we have

$$
\begin{aligned}
S(\gamma) & =\ln \int e^{-m\left(f_{X}+\gamma\right)} \nu(\mathrm{d} X) \\
& =d \ln \int_{-\infty}^{\infty} \frac{\sup _{t \in \mathbb{R}} \exp \left[-\frac{1}{2}(x-t)^{2}-\lambda|t|\right]}{\sqrt{2 \pi}} \mathrm{~d} x \\
& =d \ln \frac{1}{\sqrt{2 \pi}}\left[\int_{-\infty}^{-\lambda} e^{-\lambda(-\lambda-x)-\frac{\lambda^{2}}{2}} \mathrm{~d} x+\right. \\
& =d \ln \left[2 \Phi(\lambda)-1+\frac{2 e^{-\lambda^{2} / 2}}{\sqrt{2 \pi}} \int_{0}^{\infty} e^{-\frac{x^{2}}{2}} \mathrm{~d} x+\int_{-\lambda}^{\infty} e^{-\lambda(x-\lambda)-\frac{\lambda^{2}}{2}} \mathrm{~d} x\right] \\
& =d \ln \left[2 \Phi(\lambda)-1+\sqrt{\frac{2}{\pi}} \frac{e^{-\lambda^{2} / 2}}{\lambda}\right],
\end{aligned}
$$

where $\Phi(\lambda)$ denotes the standard normal distribution function. Now, by Komatu (1955), $\Phi(\lambda)$ is bounded below with $\Phi(\lambda)>1-2 \phi(\lambda) /\left(\sqrt{2+x^{2}}+x\right)$ for $\phi(\lambda)$ being the standard normal density, which yields the lower bound of interest after a few lines of elementary calculation.

B Lower Bound on Minimax Regret of Smooth Models

We describe how we adopt the minimax risk lower bound as to show the minimax-regret lower bound.

The story of the proof is based on Donoho and Johnstone (1994). First, the so-called three-point prior is constructed to approximate the least favorable prior. Then, since the approximate prior violates the ℓ_{1} constraint, the degree of the violation is shown to be appropriately bounded to derive a valid lower bound.

The goal of our proof is to establish a lower bound on the minimax regret with respect to logarithmic losses,
whereas their proof is about the minimax risk with respect to ℓ_{q}-loss. Therefore, below we present the proof highlighting (i) an approximate least favorable prior for logarithmic losses over ℓ_{1}-balls and (ii) the way to bound regrets on the basis of risk bounds.

Let $\mathcal{H}=\left\{\theta \in \mathbb{R}^{d} \mid\|\theta\|_{1} \leq B\right\}$ be a ℓ_{1}-ball. Let $X \sim \mathcal{N}_{d}\left[\theta, I_{d} / L\right]$ be a d-dimensional normal random variable with mean $\theta \in H$ and precision $L>0$. We denote the distribution just by $X \sim \theta$ where any confusion is unlikely. Let $h \in \hat{\mathcal{H}}$ be a predictor associated with any sub-probability distribution $P(\cdot \mid h) \in$ $\mathcal{M}_{+}\left(\mathbb{R}^{d}\right)$. For notational simplicity, we may write $f_{X}(\theta)=\frac{L}{2}\|X-\theta\|_{2}^{2}+\frac{d}{2} \ln \frac{2 \pi}{L}$ and $f_{X}(h)=\ln \frac{\mathrm{d} P(X \mid h)}{\mathrm{d} \nu}$ where ν is the Lebesgue measure over \mathbb{R}^{d}.

Consider the risk function

$$
R_{d}(h, \theta) \stackrel{\text { def }}{=} \mathbb{E}_{X \sim \theta}\left[f_{X}(h)-f_{X}(\theta)\right],
$$

and the Bayes risk function

$$
R_{d}(h, \pi) \stackrel{\text { def }}{=} \mathbb{E}_{\theta \sim \pi}\left[R_{d}(h, \theta)\right]
$$

where $\pi \in \mathcal{P}(\mathcal{H})$ denotes prior distributions on \mathcal{H}. Then, the minimax Bayes risk bounds below the minimax regret,

$$
\begin{aligned}
\operatorname{REG}^{\star}(\mathcal{H}) & =\inf _{h \in \hat{\mathcal{H}}} \sup _{\theta \in \mathcal{H}} \sup _{X \in \mathbb{R}^{d}} f_{X}(h)-f_{X}(\theta) \\
& \geq \inf _{h \in \hat{\mathcal{H}}} \sup _{\pi \in \mathcal{P}(\mathcal{H})} \mathbb{E}_{\theta \sim \pi} \mathbb{E}_{X \sim \theta}\left[f_{X}(h)-f_{X}(\theta)\right] \\
& =\inf _{h \in \hat{\mathcal{H}}} \sup _{\pi \in \mathcal{P}(\mathcal{H})} R_{d}(h, \pi) .
\end{aligned}
$$

The minimax theorem states that there exists a saddle point $\left(h^{*}, \pi_{*}\right)$ such that

$$
\begin{aligned}
R_{d}\left(h^{*}, \pi_{*}\right) & =\inf _{h \in \hat{\mathcal{H}}} \sup _{\pi \in \mathcal{P}(\mathcal{H})} R_{d}(h, \pi) \\
& =\sup _{\pi \in \mathcal{P}(\mathcal{H})} \inf _{h \in \hat{\mathcal{H}}} R_{d}(h, \pi) \stackrel{\text { def }}{=} \sup _{\pi \in \mathcal{P}(\mathcal{H})} R_{d}(\pi),
\end{aligned}
$$

and π_{*} is referred to as the least favorable prior. We want to approximate π_{*} to give an analytic approximation of $R_{d}\left(\pi_{*}\right)$, which is a lower bound of $\operatorname{REG}^{\star}(\mathcal{H})$.

Let $F_{\epsilon, \mu} \in \mathcal{P}(\mathbb{R})$ be the three-point prior defined by

$$
F_{\epsilon, \mu}=(1-\epsilon) \delta_{0}+\frac{\epsilon}{2}\left(\delta_{-\mu}+\delta_{\mu}\right)
$$

for $\epsilon, \mu>0$. We show that the corresponding achievable Bayes risk $R_{1}\left(F_{\epsilon, \mu}\right)$ tends to be the entropy of the prior $F_{\epsilon, \mu}$ in some limit of small ϵ.

Lemma 9 Take $\mu=\mu(\epsilon)=\sqrt{2 L^{-1} \ln \epsilon^{-1}}$. Let $H_{\epsilon}=$ $H\left(F_{\epsilon, \mu}\right)=(1-\epsilon) \ln (1-\epsilon)^{-1}+\epsilon \ln 2 \epsilon^{-1}$ be the entropy of the prior. Then we have

$$
R_{1}\left(F_{\epsilon, \mu}\right) \sim H_{\epsilon} \sim \epsilon \ln \frac{1}{\epsilon}
$$

as $\epsilon \rightarrow 0$. Here, $x \sim y$ denotes the asymptotic equality such that $x / y \rightarrow 1$.

Proof First, we show the famous inequality on the entropy given by $R_{1}\left(F_{\epsilon, \mu}\right) \leq H_{\epsilon}$. Let $P(\cdot \mid h)=$ $\mathbb{E}_{\theta \sim F_{\epsilon, \mu}} P(\cdot \mid \theta)=(1-\epsilon) P(\cdot \mid 0)+\frac{\epsilon}{2}(P(\cdot \mid-\mu)+P(\cdot \mid \mu))$ be the Bayes marginal distribution with respect to $F_{\epsilon, \mu}$. Then we have

$$
\begin{aligned}
& H_{\epsilon}-R_{1}\left(F_{\epsilon, \mu}\right) \\
&= H_{\epsilon}-R_{1}\left(h, F_{\epsilon, \mu}\right) \\
&= H_{\epsilon}-\mathbb{E}_{\theta \sim F_{\epsilon, \mu}} \mathbb{E}_{X \sim \theta} \ln \frac{\mathrm{~d} P(X \mid \theta)}{\mathrm{d} P(X \mid h)} \\
&= H_{\epsilon}-(1-\epsilon) \mathbb{E}_{P(X \mid 0)} \ln \frac{\mathrm{d} P(X \mid 0)}{\mathrm{d} P(X \mid h)} \\
&-\epsilon \mathbb{E}_{P(X \mid \mu)} \ln \frac{\mathrm{d} P(X \mid \mu)}{\mathrm{d} P(X \mid h)} \\
&=(1-\epsilon) \mathbb{E}_{P(X \mid 0)} \ln \left(1+\frac{\epsilon}{1-\epsilon} \frac{\mathrm{d} P(X \mid \mu)+\mathrm{d} P(X \mid-\mu)}{2 \mathrm{~d} P(X \mid 0)}\right) \\
&+\epsilon \mathbb{E}_{P(X \mid \mu)} \ln \left(1+\frac{1-\epsilon}{\epsilon} \frac{2 \mathrm{~d} P(X \mid 0)+\mathrm{d} P(X \mid-\mu)}{\mathrm{d} P(X \mid \mu)}\right)
\end{aligned}
$$

$$
\geq 0
$$

Now, we show that, with the specific value of $\mu=\mu(\epsilon)$, the gap is negligible compared to the entropy itself. Applying Jensen's inequality, we have

$$
\begin{aligned}
& H_{\epsilon}-R_{1}\left(F_{\epsilon, \mu}\right) \\
& \leq \epsilon+\epsilon \mathbb{E}_{P(X \mid \mu)} \ln \left(1+(1-\epsilon)\left(2 e^{-L \mu X}+\epsilon^{3} e^{-2 L \mu X}\right)\right) \\
& \leq \epsilon\left(1+\ln 4+\mathbb{E}_{P(X \mid \mu)} \max \{0,-2 L \mu X\}\right) \\
&= \epsilon(1+\ln 4+\underset{Z \sim \mathcal{N}[0,1]}{\mathbb{E}} \max \{0,2 \sqrt{L} \mu(Z-\sqrt{L} \mu)\}) \\
&(\because-\sqrt{L}(X-\mu)=Z) \\
& \leq \epsilon(1+\ln 4+2 \sqrt{L} \mu \epsilon) \\
&= \epsilon\left(1+\ln 4+2 \epsilon \sqrt{2 \ln \frac{1}{\epsilon}}\right)=o\left(H_{\epsilon}\right) .
\end{aligned}
$$

Thus we get $H_{\epsilon} \sim R_{1}\left(F_{\epsilon, \mu}\right)$.

Now we show that the d-th Kronecker product of $F_{\epsilon, \mu}$, $F_{\epsilon, \mu}^{d}$, can be used to bound the Bayes minimax risk $R_{d}\left(\pi_{*}\right)$ with an appropriate choice of ϵ and μ. To this end, let $\pi_{+}=F_{\epsilon, \mu}^{d} \mid \mathcal{H}$ be the conditional prior restricted over the ℓ_{1}-ball \mathcal{H}.

Lemma 10 Take $\epsilon \mu=(1-c) B / d$ and $\mu=$ $\sqrt{2 L^{-1} \ln \epsilon^{-1}}$ for $0<c<1$. Then, if $\epsilon \rightarrow 0$ and $d \epsilon \rightarrow \infty$, we have

$$
R_{d}\left(\pi_{*}\right) \geq R_{d}\left(\pi_{+}\right) \sim R_{d}\left(F_{\epsilon, \mu}^{d}\right) \sim d \epsilon \ln \frac{1}{\epsilon}
$$

Proof First of all, the inequality is trivial from the definition of $R_{d}(\pi)$. Moreover, the second asymptotic equality immediately follows from Lemma 9.

Now we consider the first asymptotic equality. Let h be the Bayesian predictor with respect to the prior $F_{\epsilon, \mu}$ and h^{+}be the one with respect to the conditional prior π_{+}. Then we have

$$
\begin{aligned}
& R_{d}\left(F_{\epsilon, \mu}^{d}\right) \\
& =R_{d}\left(h, F_{\epsilon, \mu}^{d}\right) \\
& =\mathbb{E}_{\theta \sim F_{\epsilon, \mu}^{d}}\left[R_{d}(h, \theta)\right] \\
& =F_{\epsilon, \mu}^{d}(\mathcal{H}) R_{d}\left(h, \pi_{+}\right)+\mathbb{E}_{\theta \sim F_{\epsilon, \mu}^{d}}\left[R_{d}(h, \theta) \cdot \mathbb{1}\{\theta \notin \mathcal{H}\}\right] \\
& \geq F_{\epsilon, \mu}^{d}(\mathcal{H}) \cdot R_{d}\left(\pi_{+}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
R_{d}\left(F_{\epsilon, \mu}^{d}\right) \leq & R_{d}\left(h^{+}, F_{\epsilon, \mu}^{d}\right) \\
= & \mathbb{E}_{\theta \sim F_{\epsilon, \mu}^{d}}\left[R_{d}\left(h^{+}, \theta\right)\right] \\
= & F_{\epsilon, \mu}^{d}(\mathcal{H}) \cdot R_{d}\left(\pi_{+}\right)+ \\
& \mathbb{E}_{\theta \sim F_{\epsilon, \mu}^{d}}\left[R_{d}\left(h^{+}, \theta\right) \cdot \mathbb{1}\{\theta \notin \mathcal{H}\}\right] .
\end{aligned}
$$

Let N be the number of nonzero elements in $\theta \sim$ $F_{\epsilon, \mu}^{d}$. Then N is subjects to the Binomial distribution $\operatorname{Bin}(d, \epsilon)$. On the other hand, the event $\theta \in \mathcal{H}$ is equal to $\left\{\|\theta\|_{1} \leq B\right\}=\{N \leq B / \mu=\mathbb{E} N /(1-c)\}$. Therefore, applying the Chebyshev's inequality, we get

$$
\begin{aligned}
P_{d} \stackrel{\text { def }}{=} F_{\epsilon, \mu}^{d}\left(\mathcal{H}^{c}\right) & =\operatorname{Pr}\left\{\frac{N-\mathbb{E} N}{\mathbb{E} N}>\frac{c}{1-c}\right\} \\
& \leq \frac{(1-c)^{2}}{c^{2} d \epsilon} \rightarrow 0
\end{aligned}
$$

Similarly, we have $\mathbb{E}|N-\mathbb{E} N| / \mathbb{E} N \rightarrow 0$. Now observe that

$$
\begin{aligned}
& \mathbb{E}_{\theta \sim F_{\epsilon, \mu}^{d}}\left[R_{d}\left(h^{+}, \theta\right) \cdot \mathbb{1}\{\theta \notin \mathcal{H}\}\right] \\
& \leq \\
& \mathbb{E}_{\theta \sim F_{\epsilon, \mu}^{d}} \mathbb{E}_{\varphi \sim \pi_{+}}\left[R_{d}(\varphi, \theta) \cdot \mathbb{1}\{\theta \notin \mathcal{H}\}\right] \\
& \leq 2 L \mathbb{E}_{\theta \sim F_{\epsilon, \mu}^{d}} \mathbb{E}_{\varphi \sim \pi_{+}}\left[\left(\|\varphi\|_{2}^{2}+\|\theta\|_{2}^{2}\right) \cdot \mathbb{1}\{\theta \notin \mathcal{H}\}\right] \\
& \leq \\
& \leq L L \mu^{2} \mathbb{E}\left[P_{d} N+N \cdot \mathbb{1}\{N>B / \mu\}\right] \\
& \\
& \quad\left(\because\|\theta\|_{2}^{2}=\mu^{2} N\right) \\
& \leq \\
& =2 L \mu^{2} \mathbb{E} N\left(2 P_{d}+\frac{\mathbb{E}|N-\mathbb{E} N|}{\mathbb{E} N}\right) \\
& =4 d \epsilon \ln \frac{1}{\epsilon}\left(2 P_{d}+\frac{\mathbb{E}|N-\mathbb{E} N|}{\mathbb{E} N}\right) \\
& =o\left(R_{d}\left(F_{\epsilon, \mu}^{d}\right)\right) .
\end{aligned}
$$

Thus, combining all above, we get

$$
\begin{aligned}
& (1+o(1)) R_{d}\left(\pi_{+}\right) \\
& =\left(1-P_{d}\right) R_{d}\left(\pi_{+}\right) \\
& \leq R_{d}\left(F_{\epsilon, \mu}^{d}\right) \\
& \leq\left(1-P_{d}\right) \cdot R_{d}\left(\pi_{+}\right)+ \\
& \quad \mathbb{E}_{\theta \sim F_{\epsilon, \mu}^{d}}\left[R_{d}\left(h^{*}, \theta\right) \cdot \mathbb{1}\{\theta \notin \mathcal{H}\}\right] \\
& =(1-o(1)) R_{d}\left(\pi_{*}\right)+o\left(R_{d}\left(F_{\epsilon, \mu}^{d}\right)\right)
\end{aligned}
$$

which implies the desired asymptotic equality $R_{d}\left(F_{\epsilon, \mu}\right) \sim R_{d}\left(\pi_{+}\right)$.

Summing these up, we have an asymptotic lower bound on the minimax regret which is the same as the upper bound given by the ST prior within a factor of two (see Theorem 7). This implies that both the regret of the ST prior and the Bayes risk of the prior π_{+}are tight with respect to the minimax-regret rate except with a factor of two.

Theorem 11 (Minimax lower bound) Suppose that $\omega(1)=\ln (d / \sqrt{L})=o(L)$. Then we have

$$
\operatorname{REG}^{\star}(\mathcal{H}) \gtrsim \frac{B}{2} \sqrt{2 L \ln \frac{d}{\sqrt{L}}}
$$

where $x \gtrsim y$ means that there exists $y^{\prime} \sim y$ such that $x \geq y^{\prime}$.

Proof The assumptions of Lemma 10 are satisfied for all $0<c<1$ since

$$
\begin{aligned}
\epsilon & \lesssim \epsilon \sqrt{\ln \frac{1}{\epsilon}}=\frac{1-c}{d} \sqrt{\frac{L}{2}} \rightarrow 0, \\
d \epsilon & =(1-c) \sqrt{\frac{L}{2 \ln \frac{1}{\epsilon}}} \sim(1-c) \sqrt{\frac{L}{2 \ln \frac{d}{\sqrt{L}}}} \rightarrow \infty .
\end{aligned}
$$

Thus, we have
$\operatorname{REG}^{\star}(\mathcal{H}) \geq R_{d}\left(\pi_{*}\right) \gtrsim d \epsilon \ln \frac{1}{\epsilon} \sim(1-c) \frac{B}{2} \sqrt{2 L \ln \frac{d}{\sqrt{L}}}$
for all $0<c<1$. Slowly moving c toward zero completes the theorem.

C Existence of Gap between LREG* and LREG ${ }^{\text {Bayes }}$ under ℓ_{1}-Penalty

Below we show that, under standard normal location models, the Bayesian luckiness minimax regret is strictly larger than the non-Bayesian luckiness minimax regret if γ is nontrivial and has a nondifferentiable point. Here we refer to γ as trivial when there exists θ_{0} such that $\gamma(\theta)=\infty$ for all $\theta \neq \theta_{0}$.

Lemma 12 Let $f_{X}(\theta)=\frac{1}{2}(X-\theta)^{2}+\frac{1}{2} \ln 2 \pi$ for $X \in$ \mathbb{R} and $\theta \in \mathbb{R}$. Then, for all nontrivial, convex and non-differentiable penalties $\gamma: \mathbb{R} \rightarrow \overline{\mathbb{R}}$,

$$
\operatorname{LREG}^{\star}(\gamma)<\operatorname{LREG}^{\text {Bayes }}(\gamma)
$$

Proof Let $\mathcal{F}=\left\{f_{X} \mid X \in \mathbb{R}\right\}$ and recall that $\operatorname{LREG}^{\text {Bayes }}(\gamma)=\inf _{w \in \mathcal{E}\left(\mathcal{F}_{\gamma}\right)} \ln w\left[e^{-\gamma}\right]$ by Theorem 1. Let $\|\cdot\|_{\gamma}$ be the metric of pre-priors $w \in \mathcal{M}_{+}(\mathbb{R})$ given by $\|w\|_{\gamma}=w\left[e^{-\gamma}\right]$. Owing to the continuity of $w \mapsto \ln w\left[e^{-\gamma}\right]$ and the completeness of $\mathcal{E}\left(\mathcal{F}_{\gamma}\right) \subset$ $\mathcal{M}_{+}(\mathbb{R})$, it suffices to show that there exists no preprior $w \in \mathcal{E}\left(\mathcal{F}_{\gamma}\right)$ such that $\ln w\left[e^{-\gamma}\right]=S(\gamma)$. Let us prove this by contradiction. Now, assume that $\ln w\left[e^{-\gamma}\right]=S(\gamma)$. Observe that

$$
\begin{aligned}
0 & =w\left[e^{-\gamma}\right]-\exp S(\gamma) \\
& =w\left[\int e^{-f_{X}-\gamma} \nu(\mathrm{d} X)\right]-\int e^{-m\left(f_{X}+\gamma\right)} \nu(\mathrm{d} X) \\
& =\int\left\{w\left[e^{-f_{X}-\gamma}\right]-e^{-m\left(f_{X}+\gamma\right)}\right\} \nu(\mathrm{d} X)
\end{aligned}
$$

which means $w\left[e^{-f_{X}-\gamma}\right]=e^{-m\left(f_{X}+\gamma\right)}$ for almost every X since $w \in \mathcal{E}\left(\mathcal{F}_{\gamma}\right)$. Note that $f_{X}(\theta)$ is continuous with respect to X, and then we have $w\left[e^{-f_{X}-\gamma}\right]=$ $e^{-m\left(f_{X}+\gamma\right)}$ for all X. After some rearrangement and differentiation, we have

$$
\begin{align*}
0 & =\frac{\mathrm{d}}{\mathrm{~d} X} w\left[e^{-f_{X}-\gamma+m\left(f_{X}+\gamma\right)}\right] \\
& =w\left[\frac{\mathrm{~d} e^{-f_{X}-\gamma+m\left(f_{X}+\gamma\right)}}{\mathrm{d} X}\right] \\
& =w_{\theta}\left[\left(\theta-\theta_{X}^{*}\right) e^{-f_{X}-\gamma+m\left(f_{X}+\gamma\right)}\right] \tag{13}
\end{align*}
$$

where $\theta_{X}^{*}=\arg m\left(f_{X}+\gamma\right)$. Here we exploited Danskin's theorem at the last equality. One more differentiation gives us

$$
\begin{aligned}
0 & =\frac{\mathrm{d}}{\mathrm{~d} X} w_{\theta}\left[\left(\theta-\theta_{X}^{*}\right) e^{-f_{X}-\gamma+m\left(f_{X}+\gamma\right)}\right] \\
& =w_{\theta}\left[\left\{\left(\theta-\theta_{X}^{*}\right)^{2}-\frac{\mathrm{d} \theta_{X}^{*}}{\mathrm{~d} X}\right\} e^{-f_{X}-\gamma+m\left(f_{X}+\gamma\right)}\right]
\end{aligned}
$$

for all $X \in \mathbb{R}$.
Note that we have $\left.\frac{\mathrm{d} \theta_{X}^{*}}{\mathrm{~d} X}\right|_{X=t}=0$ for any nondifferentiable points t of γ. Then it implies that $w=c \delta_{\theta_{t}^{*}}$ where δ_{s} denotes the Kronecker delta measure. Then, according to (13), we have

$$
\begin{aligned}
0 & =w_{\theta}\left[\left(\theta-\theta_{X}^{*}\right) e^{-f_{X}-\gamma+m\left(f_{X}+\gamma\right)}\right] \\
& =c\left(\theta_{t}^{*}-\theta_{X}^{*}\right) e^{-f_{X}\left(\theta_{t}^{*}\right)-\gamma\left(\theta_{t}^{*}\right)+m\left(f_{X}+\gamma\right)}
\end{aligned}
$$

which means that $\theta_{X}^{*}=\theta_{t}^{*}$ is a constant independent of X. However, this contradicts to the assumption that γ is nontrivial.

As a remark, we note that this lemma is easily extended to multidimensional exponential family of distributions.

