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Abstract

In this paper, we are interested in finding a
local minimizer of an empirical risk minimiza-
tion (ERM) problem where the loss associ-
ated with each sample is possibly a nonconvex
function. Unlike traditional deterministic and
stochastic algorithms that attempt to solve
the ERM problem for the full training set,
we propose an adaptive sample size scheme
to reduce the overall computational complex-
ity of finding a local minimum. To be more
precise, we first find an approximate local
minimum of the ERM problem corresponding
to a small number of samples and use the
uniform convergence theory to show that if
the population risk is a Morse function, by
properly increasing the size of training set
the iterates generated by the proposed pro-
cedure always stay close to a local minimum
of the corresponding ERM problem. There-
fore, eventually the proposed procedure finds
a local minimum of the ERM corresponding
to the full training set which happens to also
be close to a local minimum of the expected
risk minimization problem with high proba-
bility. We formally state the conditions on
the size of the initial sample set and charac-
terize the required accuracy for obtaining an
approximate local minimum to ensure that
the iterates always stay in a neighborhood of
a local minimum and do not get attracted to
saddle points.

1 Introduction

A crucial problem in learning is the gap between the op-
timal solution of Statistical Risk Minimization (SRM),
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which is the problem that we aim to solve, and Empir-
ical Risk Minimization (ERM), which is the problem
that we can solve in practice. The goal of SRM is
to come up with a classifier or learner by solving a
stochastic program with respect to the distribution
of the data. As data generating distribution is often
unknown, one has to settle for N independent samples
from the distribution to create a dataset – also called
training set – and find a classifier or learner that per-
forms well on the data. Indeed, the gap between these
two solutions is a decreasing function of the number of
acquired samples for the ERM problem.

Depending on whether the risk function used for evalu-
ating the performance of a learner (classifier) is convex
or not, the ERM problem boils down to a convex or non-
covex finite sum minimization problem. For the convex
case, there exist various deterministic methods such
as gradient methods, quasi-Newton algorithms, and
Newton’s method that can be used to solve the prob-
lem [Bertsekas, 1999, Boyd and Vandenberghe, 2004,
Nesterov, 2013, Wright and Nocedal, 1999]. However,
each iteration of these methods requires a pass over the
training set which is computationally prohibitive when
N is large. Stochastic and incremental first-order and
second-order methods have been deeply studied for the
ERM problem when the risk is convex [Defazio et al.,
2014a,b, Gürbüzbalaban et al., 2015, 2017, Le Roux
et al., 2012, Mairal, 2015, Mokhtari et al., 2018b, Vanli
et al., 2018].

For nonconvex risk functions, deterministic [Agarwal
et al., 2017, Carmon et al., 2017a,b,c, 2018, Nesterov,
2013] and stochastic [Allen Zhu and Hazan, 2016, Lei
et al., 2017, Reddi et al., 2016a,b] methods can be used
to reach a first-order stationary point (a critical point)
of the ERM problem. Since a critical point could be
a saddle point, a better convergence criteria would
be to ensure convergence to a second-order stationary
point of ERM. This goal can be achieved by escaping
from saddle points via injecting a properly chosen noise
[Daneshmand et al., 2018, Ge et al., 2015, Jin et al.,
2017a,b], or using the eigenvector corresponding to
the smallest eigenvalue of the Hessian to obtain an
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escape direction [Agarwal et al., 2017, Allen-Zhu, 2017,
Carmon et al., 2018, Paternain et al., 2017, Reddi
et al., 2018, Royer and Wright, 2018, Xu and Yang,
2017]. Most of the methods that converge to a second-
order stationary point are able to converge to a local
minimum of the objective function when the saddle
points are non-degenerate as they can escape from
strict saddles.

However, most of the existing algorithms for solving
the ERM problem, both in convex and nonconvex set-
tings, do not exploit the connection between statistical
and empirical risk minimization and are designed for a
general finite sum minimization problem. While this is
not necessarily a drawback, but it is nonetheless true
that not exploiting the connection between SRM and
ERM may leave some performance gains on the tab.
A new line of research which is based on solving a se-
quence of ERM problems with geometrically increasing
samples attempted to collect these gains exhaustively
[Daneshmand et al., 2016, Eisen et al., 2018, Jahani
et al., 2018, Mokhtari and Ribeiro, 2017, Mokhtari
et al., 2016]. The main idea of adaptive sample size
methods is to first obtain a good solution for an ERM
problem corresponding to a small subset of the training
set, which is computationally cheaper to solve. This is
followed by increasing the size of the working samples
set by adding new samples to the current set and using
the most recent solution as a warm start for the new
ERM problem. The key idea is that since the samples
are drawn from the same distribution the solution for a
smaller set should be a good approximate for the solu-
tion of the enlarged set (containing the smaller set). In
the convex setting, the sequence of ERM problems are
convex and one can solve them arbitrary close to their
global minimum. In fact, recent works showed that
for the convex case, if we use first-order [Mokhtari and
Ribeiro, 2017] or second-order [Mokhtari et al., 2016]
methods to solve the subproblem, the overall complex-
ity significantly reduces compared to solving the ERM
problem for the full training set using deterministic or
stochastic methods.

For the nonconvex case, it is typically hard to reach a
global minimizer and a reasonable objective that can
be achieved in the case that stationary points are non-
degenerate is finding a local minimum. In this paper,
our goal is to exploit the connection between ERM
and SRM via adaptive sample size schemes to improve
the overall computational complexity for reaching an
approximate local minimum of ERM and consequently
SRM. In our proposed approach, we first find an ap-
proximate local minimum of the ERM problem corre-
sponding to a small number of samples. Then, based
on the uniform convergence theory, we show that if the
population risk is a Morse function, i.e., its saddles are

non-degenerate, by properly increasing the size of train-
ing set the approximate local minimum for the smaller
problem is within a neighborhood of the local minimum
of the ERM problem corresponding to the enlarged set.
We further show that by following simple gradient or
Newton steps the sequence of iterates approaches a lo-
cal minimum of the new ERM problem without getting
attracted to any saddle points or local maxima. We
formally characterize how accurate the subproblems
should be solved to ensure that the iterates always stay
in a local neighborhood of a local minimum and do
not get attracted to saddle points. By following this
scheme and doubling the size of the training set at the
end of each stage we finally reach a local minimum of
the ERM problem for the full training set, which is an
approximate local minimum of the SRM problem with
high probability.

To better highlight the advantage of the proposed adap-
tive sample size methods in the nonconvex setting, note
that the main challenge in converging to a second-order
stationary point or to a local minimum when saddles are
non-degenerate is escaping from saddle points. Most
algorithms developed for escaping from saddle points
require computation of the objective function gradient
and Hessian as well as a descent direction by finding the
eigenvector corresponding to the minimum eigenvalue
of the Hessian. This process can be computationally
expensive as the number of saddle points visited before
reaching to a neighborhood of a local minimum could
be very large. The adaptive sample size scheme allows
us to perform these costly operations only for the first
ERM problem which has a small number of samples,
and then stay within a neighborhood of a sequence of
local minima as we enlarge the size of the training set.
This procedure, indeed, leads to a significantly lower
complexity for reaching a local minimum of the ERM
problem, if the extra cost for staying close to local
minimum while we increase the size of the training
set is negligible. In particular, we show that, given
an approximate local minimum of the initial training
set, the proposed adaptive sample size approach with
an accelerated gradient descent update reaches a local
minimum of the full training set after at most O(N

p
)

gradient evaluations, where  can be interpreted as
the condition number of the population risk at its crit-
ical points. Moreover, if we have access to second
order information, the proposed scheme obtains a local
minimum of the ERM problem after at most 2N gradi-
ent and Hessian evaluations and logN Hessian inverse
computations.

Outline. We start the paper by reviewing the problem
formulations for statistical risk minimization and em-
pirical risk minimization (ERM) as well as recapping
the uniform convergence results for non-convex loss



Aryan Mokhtari, Asuman Ozdaglar, Ali Jadbabaie

functions (Section 2). Then, we describe the details of
the proposed adaptive sample size scheme for obtaining
an approximate local minimum of the ERM problem
(Section 3). Theoretical convergence guarantees for our
proposed framework is then presented (Section 4). In
particular, we characterize the overall computation cost
of running the algorithm until reaching a local mini-
mum of the ERM problem when we update the iterates
according to gradient descent, Nesterov’s accelerated
gradient, or Newton’s method. We also compare the
theoretical convergence guarantees for our proposed
adaptive sample size scheme with state-of-the-art al-
gorithms (Section 5). We finally close the paper with
concluding remarks (Section 6).

Notation. Vectors are written as lowercase x 2 Rp

and matrices as uppercase A 2 Rp⇥p. We use kxk to
denote the l

2

norm of the vector x. Given a matrix A 2
Rp⇥p, we denote by �

i

(A) its i-th largest eigenvalue,
and by kAk

op

its operator norm which is defined as
kAk

op

:= max{�
1

(A),��
p

(A)} where �

1

and �

p

are
the largest and smallest eigenvalues of A, respectively.
The inner product of two vectors x,y 2 Rp is denoted
by hx,yi :=Pp

i=1

x

i

y

i

. Given a function f its gradient
and Hessian at point x are denoted as rf(x) and
r2

f(x), respectively. We use B

p

(r) = {x 2 Rp |
kxk

2

 r} to denote the Euclidean ball with radius r

in p dimensions.

2 Preliminaries

Consider a decision vector w 2 Rp, a random variable
Z with realizations z 2 Rd and a loss function ` :

Rp ⇥ Rd ! R. We aim to solve

min

w
R(w) = min

w
EZ[`(w,Z)] = min

w

Z

Z
`(w,Z)P (dz),

(1)

where R(w) := EZ[`(w,Z)] is defined as the statistical
risk, and P is the probability distribution of the random
variable Z. In the rest of the paper, we also refer to
R as the expected risk or the population risk. Note
that the loss function ` is not necessarily convex with
respect to w and could be nonconvex. Even under
the assumption that the loss function ` is convex, the
optimization problem in (1) cannot be solved accurately
since the distribution P is unknown. However, in most
learning problems we have access to a training set
T = {z

1

, . . . , z

N

} containing N independent samples
z

1

, . . . , z

N

drawn from P . Therefore, we attempt to
minimize the empirical risk associated with the training
set T = {z

1

, . . . , z

N

}, which is equivalent to solving
the following optimization program

min

w
R

n

(w) = min

w

1

n

n

X

i=1

`(w, z

i

), (2)

for n = N . Note that in (2) we defined R

n

(w) :=

(1/n)

P

n

i=1

`(w, z

i

) as the empirical risk corresponding
to the realizations {z

1

, . . . , z

n

}.
For the case that the loss function ` is convex, there is
a rich literature on bounds for the difference between
the expected risk R and the empirical risk R

n

which
is also referred to as estimation error [Bartlett et al.,
2006, Bottou, 2010, Bottou and Bousquet, 2007, Frostig
et al., 2015, Vapnik, 2013]. In particular, it has been
shown that if the population risk R is convex, then
with high probability for a sufficiently large number
of samples n the gap between the expected risk and
empirical risk is bounded by

sup

w2Rp
|R(w)�R

n

(w)|  O �n�↵

�

, (3)

where ↵ can be a constant in the interval [0.5, 1] depend-
ing on the regularity conditions that the loss function
` satisfies [Bartlett et al., 2006, Vapnik, 2013].

In a recent paper, Mei et al. [2018] extended this result
to the nonconvex setting under the assumptions that
gradients and Hessians of the population risk R satisfy
some regularity conditions (we state them formally
below). To simplify the analysis, let us focus on the
problem in which the decision variable w belongs to a
bounded set and assume that the bounded set is large
enough to contain all the stationary points. To formally
state their result, we first present their assumptions.
Assumption 1. The loss function gradient r` is ⌧

2-
sub-Gaussian, i.e., for any y 2 Rp and w 2 B

p

(r)

E[exp
�hy,r`(w,Z)� E[r`(w,Z)]i�]exp



⌧

2kyk2
2

�

.

(4)
Assumption 2. The Hessian r2

` for the vectors in
the unit sphere is ⌧

2-sub-exponential, i.e., for any y 2
B

p

(1) and w 2 B

p

(r) we have

E


exp



1

⌧

2

�

�hy,r2

`(w,Z)yi�hy,E[r2

`(w,Z)]yi��
��

2.

(5)
Assumption 3. The gradients r` and Hessians r2

`

are Lipschitz continuous with constants M = ⌧

2

p

q, and
L = ⌧

3

p

q, respectively, for some constant q.

Note that the stochastic gradientr`(w,Z) and stochas-
tic Hessian r2

`(w,Z) are unbiased estimators of the
risk gradient E[r`(w,Z)] and Hessian E[r2

`(w,Z)],
and, therefore, conditions in Assumptions 1 and 2 can
be considered as bounds on the variations of these
estimators. Note that the constants for Lipschitz con-
tinuity of gradients and Hessians are defined properly
as a function of ⌧ and p in a way that r⌧ and q are
dimensionless [Mei et al., 2018].
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The uniform convergence result for the nonconvex ERM
problem is stated in the following theorem.
Theorem 1 (Mei et al. [2018]). Under Assumptions 1-
3, there exists a universal constant C

0

, such that letting
C = C

0

(max{q, log(r⌧/�), 1}), for n � Cp log p with
probability at least 1� � the following inequalities hold:

sup

w2B

p
r

krR
n

(w)�rR(w)k
2

 ⌧

r

Cp log n

n

,

sup

w2B

p
r

�

�r2

R

n

(w)�r2

R(w)

�

�

op

 ⌧

2

r

Cp log n

n

. (6)

Theorem 1 shows that the difference between gradients
and Hessians of the population and empirical risks are
within O(

p

p log n/n) of each other with high proba-
bility. Hence, the landscape of stationary points for
the empirical risk rR

n

is similar to the one for the
expected risk rR(w) if the number of samples n is
sufficiently large. Moreover, it immediately follows
from this result that there is no gain in finding a local
minimum for the risk R

n

that has a gradient smaller
than O(

p

p log n/n). Additionally, to ensure that the
eigenvalues of the population risk Hessian r2

R(w

†
)

are strictly positive definite at a point w

†, we need
to ensure that all the eigenvalues of the empirical risk
Hessian r2

R

n

(w

†
) are larger than the statistical gap

O(

p

p log n/n). Based on these observations, given a
training set of size N , our goal is to find an approxi-
mate local minimum w

N

of the risk R

N

satisfying the
following conditions

krR
N

(w

N

)k  ⇣

N

, r2

R

N

(w

N

) ⌫ �

N

I, (7)

where ⇣

N

= O(⌧

p

Cp logN/N) and �

N

=

O(⌧

2

p

Cp logN/N). Indeed, if we find a point w

N

satisfying the conditions in (7), based on the result in
Theorem 1, w

N

is an approximate local minimum of
the population risk R with high probability.

To derive our theoretical results, besides the conditions
in Assumptions 1-3, we need to assume that the popu-
lation risk R is strongly Morse as we formally define in
the following assumption.
Assumption 4. The population risk R is (↵,�)-
strongly Morse if for any point w† that satisfies the con-
dition krR(w

†
)k  ↵, it holds that |�

i

(r2

R(w

†
))| � �

for all i 2 {1, . . . , p}.

The definition of (↵,�)-strongly Morse functions is
borrowed from [Mei et al., 2018]. Note that in this def-
inition ↵ and � are positive constants. This condition
ensures that all the critical points of the population risk
R are non-degenerate and in a neighborhood of each
of them the absolute value of the eigenvalues of the
Hessian r2

R are strictly larger than 0. Note that the

(↵,�)-strongly Morse condition can be relaxed to the
assumption that all the critical point are nondegenerate,
i.e., if w† is a critical point then |�

i

(r2

R(w

†
))| � �

0.
Indeed, this condition in conjunction with Lipschitz
continuity of gradients and Hessians implies that there
exist ↵ and � such that the condition in Assumption 4
holds.

3 An Adaptive Sample Size Scheme

for Nonconvex Problems

In this section, we aim to design an adaptive sample size
mechanism which builds on the uniform convergence
theory for ERM problems to find a local minimum of
the empirical risk R

N

upto its statistical accuracy faster
than traditional (stochastic and deterministic) meth-
ods. The main steps of the proposed scheme can be
explained as follows. We first find a local minimizer of
the ERM problem corresponding to m

0

samples which
is significantly smaller than N . Then, we increase the
size of the training set such that the current iterate,
which is an approximate local min for ERM with m

0

samples, stays in a neighborhood of a local minimum of
the ERM problem corresponding to the enlarged train-
ing set. Our theory suggests that by doubling the size
of training set this condition is satisfied. After adding
more samples to the active training set, we update
the iterate according to a first-order or second-order
method until the norm of gradient becomes sufficiently
small and the iterate becomes very close to a local min-
imum of the enlarged ERM problem. This procedure
continues until the training set becomes identical to
the full training set T which contains N samples. At
the end of procedure, the output is a point w

N

which
is close to a local minimum of R

N

.

To be more specific, consider the training set S
m

with m

samples as a subset of the full training set T , i.e., S
m

⇢
T . Assume that we found a point w

m

which is close
to one of the local minimizers of the risk R

m

, i.e., w
m

satisfies krR
m

(w

m

)k  ✏

m

and r2

R

m

(w

m

) � 0 for
some positive constant ✏

m

. The fundamental question
at hand is under what conditions on ✏

m

and the initial
size of the training set m

0

we can ensure that the iterate
w

m

is within a neighborhood of a local minimum of the
ERM problem corresponding to a larger set S

n

which
has n = 2m samples and contains the previous set, i.e.,
S
m

⇢ S
n

⇢ T . We formally answer this question in the
following section. We further derive an upper bound
on the overall computational complexity for reaching a
local minimum of the ERM problem corresponding to
the full training set T for different choices of iterative
methods used to solve the subproblems.

The steps of the proposed adaptive sample size scheme
are summarized in Algorithm 1. We assume that for
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Algorithm 1 Adaptive Sample Size Mechanism
1: Input: Initial sample size n = m

0

and argument
w

n

= w

m0

2: while n  N do {main loop}
3: Set w

m

 w

n

and m n.
4: Increase sample size: n min{2m,N}.
5: Set the initial variable: ˜

w w

m

.
6: while krR

n

(

˜

w)k > ✏

n

do
7: ˜

w FO-update( ˜w,rR
n

(

˜

w))
or ˜

w SO-update( ˜w,rR
n

(

˜

w),r2

R

n

(

˜

w))
8: end while
9: Set w

n

 ˜

w.
10: end while

the initial training set with m

0

samples, we have access
to a point w

m0 which is close (we formalize the measure
of closeness later) to one of the local minima of the risk
R

m0 . Note that in steps 5-8 we use the iterate w

m

,
which is an approximate local minimum for R

m

, as the
initial point and update it by following a first-order
update (FO-update), e.g., gradient descent, or a second-
order update (SO-update), e.g., Newton’s method, until
we reach a point that satisfies the stop condition in
step 6. Then, the output w

n

is an approximate local
minimum for the ERM problem with n = 2m samples.
This process continuous until we reach the full training
set n = N . The parameter ✏

n

used in step 6 depends
on the choice of descent algorithm that we use for
updating the iterates in step 7. In the following section,
we formally state how ✏

n

should be chosen.

4 Main Result

In this section, we study the overall computational
complexity of the adaptive sample size scheme outlined
in Algorithm 1 to reach a local minimum of the ERM
problem in (2). We study different cases where we use
the gradient descent algorithm, accelerated gradient
descent method, or Newton’s method to solve the sub-
problems at each stage. Although in this section we
focus on the complexity analysis of these three methods
only, other deterministic algorithms, e.g., quasi-Newton
methods [Mokhtari et al., 2018a], and stochastic meth-
ods [Defazio et al., 2014a, Le Roux et al., 2012] can also
be used to update the iterates in Step 7 of Algorithm 1.

We first use the result of uniform convergence theorem
(Theorem 1) as well as a crucial property of the pro-
posed adaptive sample size scheme that the enlarged
training set S

n

at each stage is a superset of the previ-
ous set S

m

, i.e., S
n

� S
m

(n > m), to show that the
gap between gradients and Hessians of the risks R

m

and R

n

is proportional to n�m

n

.

Proposition 1. Consider the sets S
m

and S
n

as sub-
sets of the training set T such that S

m

⇢ S
n

⇢ T ,
where the number of samples in the sets S

m

and S
n

are m and n, respectively. Furthermore, recall the def-
inition of C in Theorem 1. If Assumptions 1-3 hold
and min{m,n �m} � Cp log p, then with probability
at least 1� 2� the gradient variation is bounded by

sup

w2B

p
r

krR
n

(w)�rR
m

(w)k
2

 n�m

n

⌧

p

Cp

 

r

log(n�m)

n�m

+

r

logm

m

!

, (8)

and the Hessian variation is bounded by

sup

w2B

p
r

�

�r2

R

n

(w)�r2

R

m

(w)

�

�

op

 n�m

n

⌧

2

p

Cp

 

r

log(n�m)

n�m

+

r

logm

m

!

. (9)

The result in Proposition 1 establishes an upper bound
on the difference between gradients and Hessians of the
risk functions R

m

and R

n

corresponding to the sample
sets S

m

and S
n

, respectively, when S
m

⇢ S
n

. As one
would expect, the gap is proportional to the difference
between the number of samples in the sample sets, i.e.,
n �m. We would like to highlight that these results
only hold if the larger set S

n

contains the smaller set
S
m

, and for general subsets of the full training set C
these results may not hold.

In the following proposition, we use the uniform con-
vergence theorem to show that, when the number of
samples n is sufficiently large, the corresponding em-
pirical risk R

n

is strongly Morse if the population risk
is strongly Morse.
Proposition 2. Suppose the conditions in Assump-
tions 1-3 are satisfied. Furthermore, recall the definition
of C in Theorem 1. If the number of samples n satisfies
the condition

n � log nmax

⇢

Cp⌧

2

↵

2

,

Cp⌧

4

�

2

�

, (10)

then the empirical risk R

n

corresponding to the set of
realizations S

n

is (↵

n

,�

n

)-strongly Morse with proba-
bility at least 1� �, where

↵

n

= ↵�⌧
r

Cp log n

n

, �

n

= ��⌧2
r

Cp log n

n

. (11)

The above result immediately follows from the uniform
convergence result in Theorem 1 and the assumption
that the population risk R is (↵,�)-strongly Morse.
Indeed, the result is meaningful when the constants ↵

n

and �

n

are strictly positive which requires the number
of samples n to be larger than the threshold stated in
Proposition 2. In the following subsections, we formally
state our theoretical results.
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4.1 Gradient descent algorithm

We first state the result for the case that gradient de-
scent method is used in the proposed adaptive sample
size scheme. To be more precise, consider w

m

as an
approximate local minimum of R

m

. We focus on the
case that in step 7 of Algorithm 1, we update the iter-
ates using the gradient descent (GD) algorithm. If we
initialize the sequence ˜

w as ˜

w

0

= w

m

, the approximate
local minimum w

n

for the risk R

n

is the outcome of
the update

˜

w

k+1

=

˜

w

k � ⌘

n

rR
n

(

˜

w

k

) (12)

after s
n

iterations, i.e., w
n

=

˜

w

sn , where ⌘ is a properly
chosen stepsize. The parameter ⌘

n

is indexed by n since
it depends on the number of samples.

In the following theorem, we explicitly express the re-
quired condition on the accuracy ✏

n

at each stage and
characterize an upper bound on the number of gradient
iterations s

n

at each stage. Using these results we
derive an upper bound on the overall computational
complexity of the algorithm when the iterates are up-
dated by GD.

Theorem 2. Consider the adaptive sample size method
outlined in Algorithm 1. Suppose Assumptions 1-3 hold,
and recall the definition of C in Theorem 1. Let S

m0

be the initial set with m

0

samples such that

m

0

� Cp log p,

m

0

logm

0

� max

⇢

9Cp⌧

2

↵

2

,

4Cp⌧

4

�

2

�

.

(13)
Assume that we have access to an approximate lo-
cal minimum w

m0 of the initial ERM problem with
cost R

m0 satisfying the conditions krR
m0(wm0)k 

✏

m0 and r2

R

m0(wm0) � 0, where ✏

n

for any pos-
itive integer n is defined as ✏

n

:= ⌧

q

Cp logn

n

. If
at each stage of the adaptive sample size scheme
we use the update of gradient descent with the step-
size ⌘

n

= min

n

�n

↵nL
,

2

�n+M

o

to reach a point satis-
fying krR

n

(w

n

)k  ✏

n

, then with high probability
the total number of gradient evaluations to reach a
local minimum of the full training set T satisfying
krR

N

(w

N

)k  ✏

N

and r2

R

N

(w

N

) � �

N

I is at most

2N log 4 max

⇢

8↵L

�

2

, 1 +

2M

�

�

. (14)

The result in Theorem 2 shows that after evaluating
O(N

M

�

+ N

↵L

�

2 ) gradients or equivalently after oper-
ating on O(N

M

�

+ N

↵L

�

2 ) sample points we reach a
local minimizer of the ERM corresponding to the full
training set if we start from a local minimizer of the
ERM associated with a small subset of data points.

Note that the condition on ✏

n

ensures that we solve
each subproblem up to its statistical accuracy.

The proof of Theorem 2 can be divided into three
main steps. First, we show that the variable w

m

is
within a local neighborhood of a local minimum of R

n

.
Second, we prove that if the iterate w

m

is in a local
neighborhood of a local minimum of R

n

by following
the gradient update the iterates always stay close to the
local minimum and do not get attracted to the saddle
points of R

n

. Third, we derive an upper bound on the
number of GD steps s

n

that should be run at each stage
which indeed depends on the required accuracy ✏

n

. By
combining these steps we can show that the output
of the algorithm is an approximate local minimum of
R

N

and the overall number of gradient evaluations or
processed samples is bounded above by the expression
in (14). These points are described in detail in the proof
of Theorem 2 which is available in the supplementary
material.

4.2 Accelerated gradient descent algorithm

In this section, we study the theoretical guarantees of
the proposed adaptive sample size mechanism when
the accelerated gradient descent (AGD) method is used
for updating the iterates. In particular, If we initialize
the sequences ˜

w as ˜

w

0

=

˜

y

0

= w

m

, where w

m

is an
approximate local minimizer of R

m

, the approximate
local minimum w

n

for the risk R

n

is the outcome of
the updates

˜

w

k+1

=

˜

y

k � ⌘

n

rR
n

(

˜

y

k

) (15)
˜

y

k+1

=

˜

w

k+1

+ ⇠

n

(

˜

w

k+1 � ˜

w

k

) (16)

after s

n

steps, i.e., w
n

=

˜

w

sn . The parameters ⌘

n

and
⇠

n

will be formally defined in the following theorem
where we state our results for the case that AGD is
used for updating the iterates.
Theorem 3. Consider the adaptive sample size method
outlined in Algorithm 1. Suppose Assumptions 1-3 hold,
and recall the definition of C in Theorem 1. Let S

m0

be the initial set with m

0

samples such that

m

0

�Cp log p,

m

0

logm

0

� max

⇢

⇢Cp⌧

2

↵

2

,

4Cp⌧

4

�

2

�

.

(17)
where ⇢ = (1+4

p

M/�)

2. Assume that we have access
to an approximate local minimum w

m0 of the initial
ERM problem with cost R

m0 satisfying the conditions
krR

m0(wm0)k  ✏

m0 and r2

R

m0(wm0) � 0, where ✏
n

for any positive integer n is defined as ✏
n

:= ⌧

q

Cp logn

n

.
If at each stage of the adaptive sample size scheme we
use the update of accelerated gradient descent with the
parameters ⌘

n

= 1/M and ⇠

n

= (

p
M �p�

n

)/(

p
M +p

�

n

) to reach a point satisfying krR
n

(w

n

)k  ✏

n

,
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then with high probability the total number of gradient
evaluations to reach a local minimum of the full training
set T satisfying the conditions krR

N

(w

N

)k  ✏

N

and
r2

R

N

(w

N

) � �

N

I is at most

2N

s

2M

�

log

✓

16M

�

◆

. (18)

The result in Theorem 3 shows that the total number of
gradient evaluations when we use AGD to update the
iterates is of O(N

p

M/�), which is better than the re-
sult for adaptive sample size GD in (14). Although the
overall computational complexity of adaptive sample
size AGD is lower than the one for GD, the condition
on the initial size of the training set m

0

for AGD is
stronger than that of GD. To be more precise, as the
ratio M/� is larger than 1, it can be verified that the
factor ⇢ in (17) is larger than 25, and, therefore, the
lower bound on the size of the initial training set in
(17) is larger the lower bound for GD in (13).

4.3 Newton’s method

We proceed by studying the case that Newton’s update
is used to solve each subproblem up to a point that
the norm of gradient is small enough and the Hessian
stays positive definite. In particular, we show that a
single iteration of Newton’s method with stepsize ⌘ = 1

is sufficient to move from w

m

to w

n

which are ap-
proximate local minimums of R

m

and R

n

, respectively.
In other words, given w

m

which is an approximate
local minimum of R

m

satisfying rR
m

(w

m

)  ✏

m

and
r2

R

m

(w

m

) � 0, we obtain the next approximate local
minimum using the update

w

n

= w

m

�r2

R

n

(w

m

)

�1rR
n

(w

m

). (19)

Hence, for the case that we use Newton’s step the
number of intermediate iterations is only s

n

= 1 at each
stage. In the following theorem, we formally state the
conditions on m

0

and ✏

n

when Newton’s update used
in the adaptive sample size scheme and characterize
the overall number of gradient and Hessian evaluations
for obtaining an approximate local minimum of R

N

.
Theorem 4. Consider the adaptive sample size mech-
anism outlined in Algorithm 1. Suppose the conditions
in Assumptions 1-3 are satisfied. Further, recall the
definition of C in Theorem 1. Let S

m0 be the initial
set with m

0

samples such that m
0

� Cp log p and

m

0

logm

0

� max

⇢

9Cp⌧

2

↵

2

,

4Cp⌧

4

�

2

,

4Cp(⌧

2

+ 2L⌧)

2

�

4

�

.

(20)
Assume that we have access to a point w

m0 sat-
isfying the conditions krR

m0(wm0)k  ✏

m0 and
r2

R

m0(wm0) � 0, where ✏

n

:= ⌧

q

Cp logn

n

. Then

by running a single iteration of Newton’s method with
stepsize 1 at each stage, we reach a local minimum of
the full training set T satisfying krR

N

(w

N

)k  ✏

N

and r2

R

N

(w

N

) � �

N

I after computing at most 2N

gradients and Hessians and log

2

(

N

m0
) matrix inversions.

The result in Theorem 4 shows that the total number
of gradient and Hessian evaluations for the adaptive
sample size scheme with Newton’s method is at most
2N which is independent of the problem parameters
including gradients Lipschitz continuity parameter M

and the Morse condition parameters ↵ and �. However,
this come at the cost of evaluating log

2

(N/m

0

) matrix
inversions.
Remark 1. Note that the result at each stage holds
with probability 1� 2�. Since the number of times that
we double the size of training set is log(N/m

0

), the
final result holds with a high probability of at least (1�
2�)

log(N/m0). This observation implies that the results
in Theorems 2-4 hold with probability at least 1� �

0 if
we set C = C

0

(max{q, log(r⌧/(2�0 log(N/m

0

))), 1}).
Remark 2. One may have the concern that the im-
plementation of the proposed scheme requires access to
the constant C. However, we would like to highlight
that our theoretical results hold if the constant C used
for the choice of m

0

is larger than the one defined in
Theorem 1. Therefore, the implementation of the al-
gorithm only requires access to an upper bound on the
parameter C defined in Theorem 1.

The results in Theorems 2-4 guarantee that the output
of the adaptive sample size procedure w

N

is such that
the gradient corresponding to the risk of the full train-
ing set is small, i.e., krR

N

(w

N

)k  ⌧

q

Cp logN

N

, and
the Hessian of the risk is strictly positive definite, i.e.,
r2

R

N

(w

N

) � �

N

I. By using the result in Theorem 1
it can be further shown that with high probability
the point w

N

is also close to a local minimum of the
expected risk R with high probability.

5 Complexity Comparison

In this section, our goal is to highlight the advantage of
our proposed adaptive sample size scheme over state-of-
the-art methods for obtaining a local minimum when
the objective function is Morse. In particular, we focus
on the Accelerated-Nonconvex-Method (ANM) pro-
posed in [Carmon et al., 2018] where the authors show
that if we assume saddle points of the empirical risk
R

N

are �-strict, then it is possible to find a point w sat-
isfying krR

N

(w)k  O(1/

p
N) and r2

R

N

(w) ⌫ �I

after at most

O
 

M

1/2

L

2

log(�

�2

)

�

7/2

+

M

1/2

�

1/2

log

 p
N

�

!!

(21)
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gradient evaluations or Hessian-vector product com-
putations. Note that strongly Morse functions are a
subclass of functions with strict saddles and therefore
their result also holds when the function R

N

is (�

2

,�)-
strongly Morse with � = min{p↵

N

,�

N

}. Since each
gradient or Hessian evaluation for R

N

requires access
to the full training set, the number of overall gradient
or Hessian evaluations for ANM is

O
 

NM

1/2

L

2

log(�

�2

)

�

7/2

+

NM

1/2

�

1/2

log

 p
N

�

!!

.

(22)

On the other hand, our proposed adaptive sample
size scheme requires access to an approximate local
minimum of the initial risk function R

m0 which cor-
responds to a set with m

0

samples where possibly
m

0

<< N . Since the function R

m0 is (↵

m0 ,�m0)

strongly Morse, by defining �

0

:= min{p↵
m0 ,�m0},

it can be shown that using ANM one can find a point
w

m0 satisfying the conditions krR
m0(wm0)k  ✏

m0

and r2

R

m0(wm0) ⌫ 0 after at most

O
 

m

0

M

1/2

L

2

log(�

�2

0

)

�

7/2

0

+

m

0

M

1/2

�

1/2

0

log

✓

1

�

0

✏

m0

◆

!

(23)

gradient and Hessian vector product evaluations. Note
that for the proposed adaptive sample size scheme
we have ✏

m0 = O(1/

p
m

0

). Further, based on the
conditions on m

0

it can be shown that ↵

m0 � 3

4

↵ and
�

m0 � 1

2

� (see (62)) and therefore �

0

� �/2. Hence,
if we use GD for our proposed adaptive sample size
scheme the overall number of gradient evaluations is

O
 

m

0

M

1/2

L

2

log(�

�2

)

�

7/2

+

m

0

M

1/2

log

⇣p
m0

�

⌘

�

1/2

+N max

⇢

8↵L

�

2

, 1 +

2M

�

�

!

. (24)

If we use the accelerate gradient method then the over-
all number of gradient evaluations is

O
 

m

0

M

1/2

L

2

log(�

�2

)

�

7/2

+

m

0

M

1/2

log

⇣p
m0

�

⌘

�

1/2

+N

s

2M

�

log

✓

2M

�

◆

!

. (25)

If we use a second-order based update for solving the
ERM subproblems, the overall number of gradient eval-
uations is

O
0

@

m

0

M

1/2

L

2

log(�

�2

)

�

7/2

+

m

0

M

1/2

log

⇣p
m0

�

⌘

�

1/2

+N

1

A

,

(26)

Complexity

ANM O(N�

�7/2

)

ANM + adaptive GD O(m

0

�

�7/2

+N�

�2

)

ANM + adaptive AGD O(m

0

�

�7/2

+N�

�1/2

)

ANM + adaptive Newton O(m

0

�

�7/2

+N)

Table 1: Overall number of processed samples for
achieving a local minimum of the ERM problem with
N samples is (�

2

,�)-strongly Morse. Here, m
0

is the
size of the initial training set for adaptive methods.

while the number of Hessian and Hessian inverse evalu-
ations are 2N and log(N), respectively.

Comparing the theoretical bound in (22) with the ones
in (24)-(26) demonstrates the advantage of our pro-
posed adaptive sample size scheme when N >> m

0

.
We state the simplified versions of the bounds, in Ta-
ble 1. Note that to simplify the bounds presented in
Table 1, we replace � by its lower bound �. The adap-
tive sample size framework reduces the overall number
of samples processed when the total number of sam-
ples N is significantly larger than the size of the initial
training set m

0

. This is indeed the case in many real
applications with N >> p as the lower bound on m

0

is
almost proportional to the dimension of the problem p.
In this section, we only studied the effect of applying
the adaptive sample size scheme on the ANM method,
but, indeed, similar conclusions will be achieved if it
is applied to other state-of-the-art methods for finding
second-order stationary points.

6 Conclusions

In this paper we proposed an adaptive sample size
scheme which exploits statistical properties of the em-
pirical risk minimization problem to obtain one of its
local minima efficiently, under the assumption that the
expected risk is strongly Morse. Our theoretical results
suggest that if the dimension of the problem p is sig-
nificantly smaller than the total number of samples N ,
the overall computational complexity of our proposed
scheme for finding an approximate local minimum of
the ERM problem is substantially lower than existing
fixed sample size methods.
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