Appendix
 Reducing training time by efficient localized kernel regression

A Preliminaries

We let $\mathcal{Z}=X \times \mathbb{R}$ denote the sample space, where the input space X is a standard Borel space endowed with a fixed unknown probability measure ν. The kernel space \mathcal{H} is assumed to be separable, equipped with a measurable positive semi-definite kernel K, bounded by κ, implying continuity of the inclusion map $I: \mathcal{H} \longrightarrow L^{2}(\nu)$. Moreover, we consider the covariance operator $T=\kappa^{-2} I^{*} I=\kappa^{-2} \mathbb{E}\left[K_{X} \otimes K_{X}\right]$, which can be shown to be positive self-adjoint trace class (and hence is compact). Given a sample $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$, we define the sampling operator $S_{\mathbf{x}}: \mathcal{H} \longrightarrow \mathbb{R}^{n}$ by $\left(S_{\mathbf{x}} f\right)_{i}=\left\langle f, K_{x_{i}}\right\rangle_{\mathcal{H}}$. The empirical covariance operator is given by $T_{\mathbf{x}}=\kappa^{-2} S_{\mathbf{x}}^{*} S_{\mathbf{x}}: \mathcal{H} \longrightarrow \mathcal{H}$.

For a partition $\left\{X_{1}, \ldots, X_{m}\right\}$ of \mathcal{X}, we denote by $\hat{\mathcal{H}}_{j}$ the local RKHS with extended bounded kernel \hat{K}_{j}, supported on \mathcal{X}_{j}, with associated covariance operator $T_{j}=\kappa_{j}^{-2} \mathbb{E}_{\nu_{j}}\left[\hat{K}_{j}(X, \cdot) \otimes\right.$ $\left.\hat{K}_{j}(X, \cdot)\right]$. Given a sample $\mathbf{x}_{j}=\left(x_{j, 1}, \ldots, x_{j, n_{j}}\right) \in X_{j}^{n_{j}}$, we define the sampling operator $S_{\mathbf{x}_{j}}: \hat{\mathcal{H}}_{j} \longrightarrow \mathbb{R}^{n_{j}}$ similarly by $\left(S_{\mathbf{x}_{j}} f\right)_{i}=\left\langle f, \hat{K}_{j}\left(x_{i}, \cdot\right)\right\rangle_{\hat{\mathcal{H}}_{j}}$.

The global covariance operator acts as an operator on the direct sum $\mathcal{H}=\hat{\mathcal{H}}_{1} \oplus \ldots \oplus \hat{\mathcal{H}}_{m}$. According to (8), it decomposes as

$$
T=\sum_{j=1}^{m} p_{j}^{-1} T_{j}
$$

which can be used to prove that the global effective dimension can be expressed as the sum of the (rescaled) local ones.
Lemma 1 (Effective Dimension). For any $\lambda \in[0,1]$

$$
\sum_{j=1}^{m} \mathcal{N}\left(T_{j}, p_{j} \lambda\right)=\mathcal{N}(T, \lambda)
$$

Finally, our error decomposition relies on the the following standard decomposition
Lemma 2. Given $j \in[m]$ let $p_{j}=\nu\left(X_{j}\right)$ and $\nu_{j}(A)=\nu\left(A \mid X_{j}\right)$, for a measurable $A \subset X$. One has

$$
L^{2}(X, \nu)=\bigoplus_{j=1}^{m} p_{j} L^{2}\left(X_{j}, \nu_{j}\right)
$$

with

$$
\|f\|_{L^{2}(\nu)}^{2}=\sum_{j=1}^{m} p_{j}\left\|f_{j}\right\|_{L^{2}\left(\nu_{j}\right)}^{2}
$$

where $f=f_{1}+\ldots+f_{m}$.
For proving our results we additionally need an appropriate Bernstein condition on the noise.

Assumption 1 (Distributions). 1. The sampling is random i.i.d., where each observation point $\left(X_{i}, Y_{i}\right)$ follows the model $Y=f_{\rho}(X)+\epsilon$, and the noise satisfies the following Bernstein-type assumption: For any integer $k \geq 2$ and some $\sigma>0$ and $M>0$:

$$
\begin{equation*}
\mathbb{E}\left[\left|Y-f_{\rho}(X)\right|^{k} \mid X\right] \leq \frac{1}{2} k!\sigma^{2} M^{k-2} \quad \nu-\text { a.s. . } \tag{Bern}
\end{equation*}
$$

2. Given $\theta=(M, \sigma, R) \in \mathbb{R}_{+}^{3}$, the class $\mathcal{M}:=\mathcal{M}(\theta, r, b)$ consists of all distributions ρ with X-marginal ν and conditional distribution of Y given X satisfying $\operatorname{Bern}(M, \sigma)$ for the deviations and (10) for the mean.

We remark that point 1 implies for any $j \in[m]$

$$
\begin{equation*}
\mathbb{E}\left[\left|Y-f_{j}(X)\right|^{k} \mid X\right] \leq \frac{1}{2} k!\sigma^{2} M^{k-2} \quad \nu_{j}-\text { a.s. } \tag{1}
\end{equation*}
$$

where σ and M are uniform with respect to m and k. This is what we actually need in our proofs.

For ease of reading we make use of the following conventions:

- we are interested in a precise dependence of multiplicative constants on the parameter σ, M, R, m, n
- the dependence of multiplicative constants on various other parameters, including the kernel parameter κ, the parameters arising from the regularization method, $b>1, r>0$, etc. will (generally) be omitted
- the value of C might change from line to line
- the expression "for n sufficiently large" means that the statement holds for $n \geq n_{0}$, with n_{0} potentially depending on all model parameters (including σ, M and R).

B Proofs of Section 3

This section is devoted to proving the results of Section 3. Recall that by Assumption 2 the regression function belongs to \mathcal{H}, i.e. admits an unique representation $f=f_{1}+\ldots+f_{m}$, with $f_{j} \in \hat{\mathcal{H}}_{j}$. For proving our error bounds we shall use a classical bias-variance decomposition

$$
f_{\rho}-\hat{f}_{\mathcal{D}}^{\lambda}=\sum_{j=1}^{m} f_{j}-\hat{f}_{\mathcal{D}_{j}}^{\lambda}=\sum_{j=1}^{m} r_{\lambda}\left(T_{\mathbf{x}_{j}}\right) f_{j}+\sum_{j=1}^{m} g_{\lambda}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{j}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right),
$$

where $\hat{f}_{\mathcal{D}}^{\lambda}$ is given in (9), with $r_{\lambda}(t)=1-g_{\lambda}(t) t$ and with $g_{\lambda}(t)=(t+\lambda)^{-1}$. The final error bound follows then from

$$
\begin{align*}
\mathbb{E}\left[\mathcal{E}\left(f_{\rho}\right)-\mathcal{E}\left(\hat{f}_{\mathcal{D}}^{\lambda}\right)\right] & =\mathbb{E}\left[\left\|f_{\rho}-\hat{f}_{\mathcal{D}}^{\lambda}\right\|_{L^{2}(\nu)}^{2}\right] \\
& \leq \mathbb{E}\left[\left\|\sum_{j=1}^{m} r_{\lambda}\left(T_{\mathbf{x}_{j}}\right) f_{j}\right\|_{L^{2}(\nu)}^{2}\right]+\mathbb{E}\left[\left\|\sum_{j=1}^{m} g_{\lambda}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{j}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right)\right\|_{L^{2}(\nu)}^{2}\right] \tag{2}
\end{align*}
$$

We proceed by bounding each term in the above decomposition separately.

Proposition 1 (Approximation Error). For any $\lambda \in(0,1]$, one has

$$
\mathbb{E}\left[\left\|\sum_{j=1}^{m} r_{\lambda}\left(T_{\mathbf{x}_{j}}\right) f_{j}\right\|_{L^{2}(\nu)}^{2}\right] \leq C R^{2} \sum_{j=1}^{m} p_{j} \mathcal{B}_{n_{j}}^{2}\left(T_{j}, \lambda\right) \lambda^{2\left(r_{j}+\frac{1}{2}\right)},
$$

where $\mathcal{B}_{n_{j}}^{2}\left(T_{j}, \lambda\right)$ is defined in Proposition 9 and where C does not depend on $(\sigma, M, R) \in \mathbb{R}_{+}^{3}$.
Proof of Proposition 1. Recall ${ }^{1}$ that $\left\|\sqrt{T_{j}} f\right\|_{\hat{\mathcal{H}}_{j}}=\|f\|_{L^{2}\left(\nu_{j}\right)}$ for any $f \in \hat{\mathcal{H}}_{j}$. According to Lemma 2, by Assumption 10 we have

$$
\begin{align*}
\mathbb{E}\left[\left\|\sum_{j=1}^{m} r_{\lambda}\left(T_{\mathbf{x}_{j}}\right) f_{j}\right\|_{L^{2}(\nu)}^{2}\right] & =\sum_{j=1}^{m} p_{j} \mathbb{E}\left[\left\|r_{\lambda}\left(T_{\mathbf{x}_{j}}\right) f_{j}\right\|_{L^{2}\left(\nu_{j}\right)}^{2}\right] \\
& =\sum_{j=1}^{m} p_{j} \mathbb{E}\left[\left\|\sqrt{T_{j}} r_{\lambda}\left(T_{\mathbf{x}_{j}}\right) f_{j}\right\|_{\hat{\mathcal{H}}_{j}}^{2}\right] \\
& \leq C R^{2} \sum_{j=1}^{m} p_{j} \mathbb{E}\left[\left\|\sqrt{T_{j}} r_{\lambda}\left(T_{\mathbf{x}_{j}}\right) T_{j}^{r_{j}}\right\|^{2}\right] . \tag{3}
\end{align*}
$$

We bound for any $j \in[m]$ the expectation by first deriving a probabilistic estimate. For any $\eta \in(0,1]$, with probability at least $1-\eta$

$$
\begin{aligned}
\left\|\sqrt{T_{j}} r_{\lambda}\left(T_{\mathbf{x}_{j}}\right) T_{j}^{r_{j}}\right\| & \leq C \log ^{2}\left(2 \eta^{-1}\right) \mathcal{B}_{n_{j}}\left(T_{j}, \lambda\right)\left\|T_{j}^{\frac{1}{2}}\left(T_{j}+\lambda\right)^{\frac{1}{2}}\right\|\left\|\left(T_{\mathbf{x}_{j}}+\lambda\right)^{\frac{1}{2}} r_{\lambda}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}}+\lambda\right)^{r_{j}}\right\|\left\|\left(T_{j}+\lambda\right)^{r_{j}} T_{j}^{r_{j}}\right\| \\
& \leq C \log ^{2}\left(2 \eta^{-1}\right) \mathcal{B}_{n_{j}}\left(T_{j}, \lambda\right) \lambda^{r_{j}+\frac{1}{2}}
\end{aligned}
$$

Here we have used that

$$
\left\|\left(T_{\mathbf{x}_{j}}+\lambda\right)^{\frac{1}{2}} r_{\lambda}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}}+\lambda\right)^{r}\right\| \leq C \lambda^{r_{j}+\frac{1}{2}}
$$

and that for $s \in\left[0, \frac{1}{2}\right]$

$$
\left\|\left(T_{j}+\lambda\right)^{s} T_{j}^{s}\right\| \leq\left\|\left(T_{j}+\lambda\right) T_{j}\right\|^{s} \leq 1
$$

by Proposition 10 and the spectral theorem. Also, from Proposition 10 and Proposition 9

$$
\left\|\left(T_{\mathbf{x}_{j}}+\lambda\right)^{-\frac{1}{2}}\left(T_{j}+\lambda\right)^{\frac{1}{2}}\right\| \leq\left\|\left(T_{\mathbf{x}_{j}}+\lambda\right)^{-1}\left(T_{j}+\lambda\right)\right\|^{\frac{1}{2}} \leq \sqrt{8} \log \left(2 \eta^{-1}\right) \mathcal{B}_{n_{j}}^{\frac{1}{2}}\left(T_{j}, \lambda\right)
$$

From Lemma 7, by integration

$$
\mathbb{E}\left[\left\|\sqrt{T_{j}} r_{\lambda}\left(T_{\mathbf{x}_{j}}\right) T_{j}^{r_{j}}\right\|^{2}\right] \leq C \mathcal{B}_{n_{j}}^{2}\left(T_{j}, \lambda\right) \lambda^{2\left(r_{j}+\frac{1}{2}\right)}
$$

Combining this with (3) finishes the proof.
Proposition 2 (Sample Error). For any $\lambda \in(0,1]$, one has

$$
\mathbb{E}\left[\left\|\sum_{j=1}^{m} g_{\lambda}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{j}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right)\right\|_{L^{2}(\nu)}^{2}\right] \leq C \sum_{j=1}^{m} p_{j} \mathcal{B}_{n_{j}}^{2}\left(T_{j}, \lambda\right) \lambda\left(\frac{M}{n_{j} \lambda}+\sigma \sqrt{\frac{\mathcal{N}\left(T_{j}, \lambda\right)}{n_{j} \lambda}}\right)^{2},
$$

where $\mathcal{B}_{n_{j}}^{2}\left(T_{j}, \lambda\right)$ is defined in Proposition 9 and C does not depend on $(\sigma, M, R) \in \mathbb{R}_{+}^{3}$.

[^0]Proof of Proposition 2. Using again $\left\|\sqrt{T_{j}} f\right\|_{\hat{\mathcal{H}}_{j}}=\|f\|_{L^{2}\left(\nu_{j}\right)}$ we find with Lemma 2

$$
\begin{align*}
\mathbb{E}\left[\left\|\sum_{j=1}^{m} g_{\lambda}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{j}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right)\right\|_{L^{2}(\nu)}^{2}\right] & =\sum_{j=1}^{m} p_{j} \mathbb{E}\left[\left\|g_{\lambda}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{j}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right)\right\|_{L^{2}\left(\nu_{j}\right)}^{2}\right] \\
& =\sum_{j=1}^{m} p_{j} \mathbb{E}\left[\left\|\sqrt{T_{j}} g_{\lambda}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{j}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right)\right\|_{\hat{\mathcal{H}}_{j}}^{2}\right] . \tag{4}
\end{align*}
$$

We bound the expectation for each separate subsample of size n_{j} by first deriving a probabilistic estimate and then by integration. For this reason, we use (16) and Proposition 10 and write for any $f_{j} \in \hat{\mathcal{H}}_{j}, j \in[m]$

$$
\begin{align*}
\left\|\sqrt{T_{j}} f_{j}\right\|_{\hat{\mathcal{H}}_{j}} & \leq\left\|\sqrt{T_{j}}\left(T_{j}+\lambda\right)^{-1 / 2}\right\|\left\|\left(T_{j}+\lambda\right)^{1 / 2}\left(T_{\mathbf{x}_{j}}+\lambda\right)^{-1 / 2}\right\|\left\|\left(T_{\mathbf{x}_{j}}+\lambda\right)^{1 / 2} f_{j}\right\|_{\hat{\mathcal{H}}_{j}} \\
& \leq\left\|T_{j}\left(T_{j}+\lambda\right)^{-1}\right\|^{1 / 2}\left\|\left(T_{j}+\lambda\right)\left(T_{\mathbf{x}_{j}}+\lambda\right)^{-1}\right\|^{1 / 2}\left\|\left(T_{\mathbf{x}_{j}}+\lambda\right)^{1 / 2} f_{j}\right\|_{\hat{\mathcal{H}}_{j}} \\
& \leq C \log \left(4 \eta^{-1}\right) \mathcal{B}_{n_{j}}^{1 / 2}\left(T_{j}, \lambda\right)\left\|\left(T_{\mathbf{x}_{j}}+\lambda\right)^{1 / 2} f_{j}\right\|_{\hat{\mathcal{H}}_{j}} \tag{5}
\end{align*}
$$

holding with probability at least $1-\frac{\eta}{2}$.
We proceed by splitting

$$
\begin{equation*}
\left(T_{\mathbf{x}_{j}}+\lambda\right)^{s} g_{\lambda}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{\rho}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right)=H_{\mathbf{x}_{j}}^{(1)} \cdot H_{\mathbf{x}_{j}}^{(2)} \cdot h_{\mathbf{z}_{j}}^{\lambda}, \tag{6}
\end{equation*}
$$

with

$$
\begin{aligned}
H_{\mathbf{x}_{j}}^{(1)} & :=\left(T_{\mathbf{x}_{j}}+\lambda\right)^{\frac{1}{2}} g_{\lambda}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}}+\lambda\right)^{\frac{1}{2}}, \\
H_{\mathbf{x}_{j}}^{(2)} & :=\left(T_{\mathbf{x}_{j}}+\lambda\right)^{-\frac{1}{2}}(T+\lambda)^{\frac{1}{2}}, \\
h_{\mathbf{z}_{j}}^{\lambda} & :=(T+\lambda)^{-\frac{1}{2}}\left(T_{\mathbf{x}_{j}} f_{\rho}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right) .
\end{aligned}
$$

The first term is bounded. The second term is now estimated using (16) once more. One has with probability at least $1-\frac{\eta}{4}$

$$
H_{\mathbf{x}_{j}}^{(2)} \leq \sqrt{8} \log \left(8 \eta^{-1}\right) \mathcal{B}_{\frac{n}{m}}\left(T_{j}, \lambda\right)^{\frac{1}{2}}
$$

Finally, $h_{\mathbf{z}_{j}}^{\lambda}$ is estimated using Proposition 8

$$
h_{\mathbf{z}_{j}}^{\lambda} \leq 2 \log \left(8 \eta^{-1}\right)\left(\frac{M}{n_{j} \sqrt{\lambda}}+\sigma \sqrt{\frac{\mathcal{N}\left(T_{j}, \lambda\right)}{n_{j}}}\right)
$$

holding with probability at least $1-\frac{\eta}{4}$. Thus, combining the estimates following (6) with (5) gives for any $j \in[m]$

$$
\left\|\sqrt{T_{j}} g_{\lambda}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{\rho}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right)\right\|_{\hat{\mathcal{H}}_{j}} \leq C \log ^{3}\left(8 \eta^{-1}\right) \mathcal{B}_{n_{j}}\left(T_{j}, \lambda\right) \sqrt{\lambda}\left(\frac{M}{n_{j} \lambda}+\sigma \sqrt{\frac{\mathcal{N}\left(T_{j}, \lambda\right)}{n_{j} \lambda}}\right)
$$

with probability at least $1-\eta$. By integration using Lemma 7 one obtains

$$
\mathbb{E}\left[\left\|\sqrt{T_{j}} g_{\lambda}\left(B_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{\rho}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right)\right\|_{\hat{\mathcal{H}}_{j}}^{2}\right]^{\frac{1}{2}} \leq C \mathcal{B}_{n_{j}}\left(T_{j}, \lambda\right) \sqrt{\lambda}\left(\frac{M}{n_{j} \lambda}+\sigma \sqrt{\frac{\mathcal{N}\left(T_{j}, \lambda\right)}{n_{j} \lambda}}\right)
$$

Combining this with (4) implies

$$
\mathbb{E}\left[\left\|\sum_{j=1}^{m} g_{\lambda}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{j}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right)\right\|_{L^{2}(\nu)}^{2}\right] \leq C \sum_{j=1}^{m} p_{j} \mathcal{B}_{n_{j}}^{2}\left(T_{j}, \lambda\right) \lambda\left(\frac{M}{n_{j} \lambda}+\sigma \sqrt{\frac{\mathcal{N}\left(T_{j}, \lambda\right)}{n_{j} \lambda}}\right)^{2}
$$

where C does not depend on $(\sigma, M, R) \in \mathbb{R}_{+}^{3}$.

We are now ready to prove Theorem 1.
Proof of Theorem 1. Let the regularization parameter λ_{n} be chosen as

$$
\begin{equation*}
\lambda_{n}=\min \left(1,\left(\frac{\sigma^{2}}{R^{2} n}\right)^{\frac{1}{2 r+1+\gamma}}\right) \tag{7}
\end{equation*}
$$

with $r=\min \left(r_{1}, \ldots, r_{m}\right)$ and assume that $n_{j}=\left\lfloor\frac{n}{m}\right\rfloor$. Note that by Lemma 5 we have $\mathcal{B}_{\frac{n}{m}}\left(T_{j}, \lambda_{n}\right) \leq 2$ for any $j \in[m]$, provided $n>n_{0}$, with n_{0} given by (17). Since $\lambda_{n}^{r_{j}} \leq \lambda_{n}^{r}$ for any $j \in[m]$, the approximation error bound becomes by Proposition 1 1

$$
\begin{align*}
\mathbb{E}\left[\left\|\sum_{j=1}^{m} r_{\lambda_{n}}\left(T_{\mathbf{x}_{j}}\right) f_{j}\right\|_{L^{2}(\nu)}^{2}\right] & \leq C R^{2} \sum_{j=1}^{m} p_{j} \lambda_{n}^{2\left(r_{j}+\frac{1}{2}\right)} \\
& \leq C R^{2} \lambda_{n}^{2\left(r+\frac{1}{2}\right)} \tag{8}
\end{align*}
$$

where we also used that $\sum_{j} p_{j}=1$.
For estimating the sample error firstly observe that

$$
\frac{M m}{n \lambda_{n}} \leq R \lambda_{n}^{r}
$$

if

$$
n>\left(m \frac{M}{R}\right)^{\frac{2 r+1+\gamma}{r+\gamma}}\left(\frac{R}{\sigma}\right)^{\frac{2(r+1)}{r+\gamma}}=: n_{1} .
$$

Thus, from Proposition 2 we obtain (recalling again that $\mathcal{B}_{\frac{n}{m}}\left(T_{j}, \lambda_{n}\right) \leq 2$)

$$
\begin{equation*}
\mathbb{E}\left[\left\|\sum_{j=1}^{m} g_{\lambda_{n}}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{j}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right)\right\|_{L^{2}(\nu)}^{2}\right] \leq C \lambda_{n} \sum_{j=1}^{m} p_{j}\left(R \lambda_{n}^{r}+\sigma \sqrt{\frac{m \mathcal{N}\left(T_{j}, \lambda_{n}\right)}{n \lambda_{n}}}\right)^{2} . \tag{9}
\end{equation*}
$$

We proceed by applying $(a+b)^{2} \leq 2\left(a^{2}+b^{2}\right)$. Observe that by our Assumption 3, 2 .

$$
\begin{align*}
\sum_{j=1}^{m} p_{j} \sigma^{2} \frac{m \mathcal{N}\left(T_{j}, \lambda_{n}\right)}{n \lambda_{n}} & =\sigma^{2} \frac{m}{n \lambda_{n}} \sum_{j=1}^{m} p_{j} \mathcal{N}\left(T_{j}, \lambda_{n}\right) \\
& \leq C \frac{\sigma^{2}}{n \lambda_{n}} \mathcal{N}\left(T, m \lambda_{n}\right) \\
& \leq C m^{-\gamma} \frac{\sigma^{2}}{n \lambda_{n}} \lambda_{n}^{-\gamma} \\
& \leq C R \lambda_{n}^{r} \tag{10}
\end{align*}
$$

by definition of λ_{n}. Finally, combining (2) with (10), (9) and (8) proves the theorem, provided

$$
\begin{equation*}
n>\max \left(n_{0}, n_{1}\right) \geq C_{M, \sigma, R, \gamma, r} m^{1+\frac{\gamma+1}{2 r}} \tag{11}
\end{equation*}
$$

for some (explicitly given) $C_{M, \sigma, R, \gamma, r}<\infty$.

Proof of Theorem 2 Assume that $n_{j}=\left\lfloor\frac{n}{m}\right\rfloor$. Let the regularization parameter λ_{n} be given by (15). As above, Lemma 5 yields $\mathcal{B}_{\frac{n}{m}}\left(T_{j}, \lambda_{n}\right) \leq 2$ provided $n>n_{0}$, with n_{0} satisfying (17) (with r replaced by r_{h}). From Proposition 1 we immediately obtain for the approximation error

$$
\begin{aligned}
\mathbb{E}\left[\left\|\sum_{j=1}^{m} r_{\lambda_{n}}\left(T_{\mathbf{x}_{j}}\right) f_{j}\right\|_{L^{2}(\nu)}^{2}\right] & \leq C\left(R_{l}^{2}\left(\sum_{j \in E} p_{j}\right) \lambda_{n}^{2\left(r_{l}+\frac{1}{2}\right)}+R_{h}^{2}\left(\sum_{j \in E^{c}} p_{j}\right) \lambda_{n}^{2\left(r_{h}+\frac{1}{2}\right)}\right) \\
& \leq C R_{h}^{2} \lambda_{n}^{2\left(r_{h}+\frac{1}{2}\right)} .
\end{aligned}
$$

Here we have used that by Assumption 4

$$
\left(\sum_{j \in E} p_{j}\right) \leq\left(\frac{R_{h}}{R_{l}}\right)^{2} \lambda_{n}^{2\left(r_{h}-r_{l}\right)} \quad \text { and } \quad\left(\sum_{j \in E^{c}} p_{j}\right) \leq 1
$$

The bound for the sample error follows exactly as in the proof of Theorem 1. Finally, the error bound (17) is obtained by using again (2).

C Proofs of Section 4

For proving Theorem 3 we use the non-asymptotic error decomposition given in Theorem 2 of [4], somewhat reformulated and streamlined using our estimate (16). We adopt the notation and idea of [4] and write $\hat{f}_{n, l}^{\lambda}=g_{\lambda, l}\left(T_{\mathbf{x}}\right) S_{\mathbf{x}}^{*} \mathbf{y}$, with $g_{\lambda, l}\left(T_{\mathbf{x}}\right)=V\left(V^{*} T_{\mathbf{x}} V+\lambda\right)^{-1} V^{*}$ and $V V^{*}=P_{l}$, the projection operator onto $\mathcal{H}_{l}, l \leq n$. Consider

$$
\left\|\sqrt{T}\left(\hat{f}_{n, l}^{\lambda}-f_{\rho}\right)\right\|_{\mathcal{H}} \leq T_{1}+T_{2}
$$

with

$$
T_{1}=\left\|g_{\lambda, l}\left(T_{\mathbf{x}}\right)\left(S_{\mathbf{x}}^{*} \mathbf{y}-T_{\mathbf{x}} f_{\rho}\right)\right\|_{L^{2}(\nu)}=\left\|\sqrt{T} g_{\lambda, l}\left(T_{\mathbf{x}}\right)\left(S_{\mathbf{x}}^{*} \mathbf{y}-T_{\mathbf{x}} f_{\rho}\right)\right\|_{\mathcal{H}}
$$

and

$$
T_{2}=\left\|\sqrt{T} g_{\lambda, l}\left(T_{\mathbf{x}}\right)\left(T_{\mathbf{x}} f_{\rho}-f_{\rho}\right)\right\|_{\mathcal{H}},
$$

which we bound in Proposition 3 and Proposition 4.
Proposition 3 (Expectation Sample Error KRLS-Nyström).

$$
\mathbb{E}\left[\left\|g_{\lambda, l}\left(T_{\mathbf{x}}\right)\left(S_{\mathbf{x}}^{*} \mathbf{y}-T_{\mathbf{x}} f_{\rho}\right)\right\|_{L^{2}(\nu)}^{2}\right]^{\frac{1}{2}} \leq C \sqrt{\lambda} \mathcal{B}_{n}(T, \lambda)\left(\frac{M}{n \lambda}+\sigma \sqrt{\frac{\mathcal{N}(T, \lambda)}{n \lambda}}\right)
$$

where C does not depend on $(\sigma, M, R) \in \mathbb{R}_{+}^{3}$.
Proof of Proposition [3. For estimating T_{1} we use Proposition 9 and obtain for any $\lambda \in(0,1]$ with probability at least $1-\eta$

$$
\begin{aligned}
& T_{1} \leq C \log \left(2 \eta^{-1}\right) \mathcal{B}_{n}(T, \lambda)\left\|\left(T_{\mathbf{x}}+\lambda\right)^{1 / 2} g_{\lambda, l}\left(T_{\mathbf{x}}\right)\left(S_{\mathbf{x}}^{*} \mathbf{y}-T_{\mathbf{x}} f_{\rho}\right)\right\|_{\mathcal{H}} \\
& \leq C \log ^{2}\left(4 \eta^{-1}\right) \mathcal{B}_{n}^{2}(T, \lambda)\left\|\left(T_{\mathbf{x}}+\lambda\right)^{1 / 2} g_{\lambda, l}\left(T_{\mathbf{x}}\right)\left(T_{\mathbf{x}}+\lambda\right)^{1 / 2}\right\| \\
& \quad\left\|(T+\lambda)^{-1 / 2}\left(S_{\mathbf{x}}^{*} \mathbf{y}-T_{\mathbf{x}} f_{\rho}\right)\right\|_{\mathcal{H}} .
\end{aligned}
$$

From Proposition 6 in [4] and from the spectral Theorem we obtain

$$
\left\|\left(T_{\mathbf{x}}+\lambda\right)^{1 / 2} g_{\lambda, l}\left(T_{\mathbf{x}}\right)\left(T_{\mathbf{x}}+\lambda\right)^{1 / 2}\right\| \leq 1 .
$$

Thus, applying Proposition 7 one has with probability at least $1-\eta$

$$
T_{1} \leq C \log ^{3}\left(8 \eta^{-1}\right) \sqrt{\lambda} \mathcal{B}_{n}^{2}(T, \lambda)\left(\frac{M}{n \lambda}+\sigma \sqrt{\frac{\mathcal{N}(T, \lambda)}{n \lambda}}\right)
$$

where C does not depend on $(\sigma, M, R) \in \mathbb{R}_{+}^{3}$. Integration using Lemma 7 gives the result.

Before we proceed we introduce the computational error: For $u \in\left[0, \frac{1}{2}\right], \lambda \in(0,1]$ define

$$
\mathfrak{C}_{u}(l, \lambda):=\left\|\left(I d-V V^{*}\right)(T+\lambda)^{u}\right\| .
$$

The proof of the following Lemma can be found in [4], Proof of Theorem 2.
Lemma 3. For any $u \in\left[0, \frac{1}{2}\right]$

$$
\mathcal{C}_{u}(l, \lambda) \leq \mathcal{C}_{\frac{1}{2}}(l, \lambda)^{2 u}
$$

Lemma 4. If λ_{n} is defined by (12) and if

$$
l_{n} \geq n^{\beta} \quad \beta>\frac{\gamma+1}{2 r+1+\gamma}
$$

one has with probability at least $1-\eta$

$$
\mathfrak{C}_{\frac{1}{2}}\left(l_{n}, \lambda_{n}\right) \leq C \log \left(2 \eta^{-1}\right) \sqrt{\lambda_{n}},
$$

provided n is sufficiently large.
Proof of Lemma 4. Using Proposition 3 in [4] one has with probability at least $1-\eta$

$$
\begin{aligned}
\mathcal{C}_{\frac{1}{2}}\left(l, \lambda_{n}\right) & \leq \sqrt{\lambda_{n}}\left\|\left(T_{\mathbf{x}_{l}}+\lambda_{n}\right)^{-1}\left(T+\lambda_{n}\right)\right\|^{\frac{1}{2}} \\
& \leq C \log \left(2 \eta^{-1}\right) \sqrt{\lambda_{n}} \mathcal{B}_{l}^{\frac{1}{2}}\left(T, \lambda_{n}\right) .
\end{aligned}
$$

Recall that $\mathcal{N}(T, \lambda) \leq C_{b} \lambda^{-\frac{1}{b}}$, implying

$$
\mathcal{B}_{l}\left(T, \lambda_{n}\right) \leq C\left(1+\left(\frac{2}{l \lambda_{n}}+\sqrt{\frac{\lambda_{n}^{-\gamma}}{l \lambda_{n}}}\right)^{2}\right) .
$$

Straightforward calculation shows that

$$
\frac{2}{l_{n} \lambda_{n}}=o(1), \quad \text { if } l_{n} \geq n^{\beta}, \beta>\frac{1}{2 r+1+\gamma}
$$

and

$$
\sqrt{\frac{\lambda_{n}^{-\gamma}}{l_{n} \lambda_{n}}}=o(1), \quad \text { if } l_{n} \geq n^{\beta}, \beta>\frac{\gamma+1}{2 r+1+\gamma} .
$$

Thus, $\mathfrak{C}_{\frac{1}{2}}\left(l_{n}, \lambda_{n}\right) \leq C \log \left(2 \eta^{-1}\right) \sqrt{\lambda_{n}}$, with probability at least $1-\eta$.
Proposition 4 (Expectation Approximation- and Computational Error KRLS-Nyström). Assume that

$$
l_{n} \geq n^{\beta}, \quad \beta>\frac{\gamma+1}{2 r+1+\gamma}
$$

and $\left(\lambda_{n}\right)_{n}$ is chosen according to (12). If n is sufficiently large

$$
\mathbb{E}\left[\left\|\sqrt{T} g_{\lambda_{n}, l_{n}}\left(T_{\mathbf{x}}\right)\left(T_{\mathbf{x}} f_{\rho}-f_{\rho}\right)\right\|_{L^{2}(\nu)}^{2}\right]^{\frac{1}{2}} \leq C a_{n}
$$

where C does not depend on $(\sigma, M, R) \in \mathbb{R}_{+}^{3}$.

Proof of Proposition 4. Using that $\left\|T^{-r} f_{\rho}\right\|_{\mathcal{H}} \leq R$ one has for any $\lambda \in(0,1]$

$$
\begin{equation*}
T_{2} \leq C R((a)+(b)+(c)), \tag{12}
\end{equation*}
$$

with

$$
(a)=\left\|\sqrt{T}\left(I d-V V^{*}\right) T^{r}\right\|, \quad(b)=\lambda\left\|\sqrt{T} g_{\lambda, l}\left(T_{\mathbf{x}}\right) T^{r}\right\|
$$

and

$$
(c)=\left\|\sqrt{T} g_{\lambda, l}\left(T_{\mathbf{x}}\right)\left(T_{\mathbf{x}}+\lambda\right)\left(I d-V V^{*}\right) T^{r}\right\| .
$$

Since $\left(I d-V V^{*}\right)^{2}=\left(I d-V V^{*}\right)$ we obtain by Lemma 3

$$
(a) \leq \mathfrak{C}_{\frac{1}{2}}(l, \lambda) \mathfrak{C}_{r}(l, \lambda) \leq \mathfrak{C}_{\frac{1}{2}}(l, \lambda)^{2 r+1}
$$

Furthermore, using (16), with probability at least $1-\frac{\eta}{2}$

$$
\begin{aligned}
(b) & \leq C \log ^{2}\left(8 \eta^{-1}\right) \lambda \mathcal{B}_{n}^{\frac{1}{2}+r}(T, \lambda)\left\|\left(T_{\mathbf{x}}+\lambda\right)^{1 / 2} g_{\lambda, l}\left(T_{\mathbf{x}}\right)\left(T_{\mathbf{x}}+\lambda\right)^{r}\right\| \\
& \leq C \log ^{2}\left(8 \eta^{-1}\right) \lambda^{\frac{1}{2}+r} \mathcal{B}_{n}^{\frac{1}{2}+r}(T, \lambda),
\end{aligned}
$$

by again using Proposition 6 in [4].
The last term gives with probability at least $1-\frac{\eta}{2}$

$$
\begin{aligned}
(c) & \leq C \log \left(8 \eta^{-1}\right)\left\|\left(T_{\mathbf{x}}+\lambda\right)^{1 / 2} g_{\lambda, l}\left(T_{\mathbf{x}}\right)\left(T_{\mathbf{x}}+\lambda\right)\right\| \mathcal{C}_{r}(l, \lambda) \\
& \leq C \log \left(8 \eta^{-1}\right) \sqrt{\lambda} \mathfrak{C}_{\frac{1}{2}}(l, \lambda)^{2 r} .
\end{aligned}
$$

Combining the estimates for $(a),(b)$ and (c) gives

$$
T_{2} \leq C R \log ^{2}\left(8 \eta^{-1}\right)\left(\mathfrak{C}_{\frac{1}{2}}(l, \lambda)^{2 r+1}+\lambda^{\frac{1}{2}+r} \mathcal{B}_{n}^{\frac{1}{2}+r}(T, \lambda)+\sqrt{\lambda} \mathcal{C}_{\frac{1}{2}}(l, \lambda)^{2 r}\right)
$$

We now choose λ_{n} according to (12) . Notice that by Lemma 6 one has $\mathcal{B}_{n}\left(T, \lambda_{n}\right) \leq C$ for any n sufficiently large. Applying Lemma 4 we obtain, with probability at least $1-\eta$

$$
T_{2} \leq C \log ^{2}\left(8 \eta^{-1}\right) R \lambda_{n}^{r+\frac{1}{2}}
$$

provided n is sufficiently large and

$$
l_{n} \geq n^{\beta}, \quad \beta>\frac{\gamma+1}{2 r+1+\gamma} .
$$

The result follows from integration by applying Lemma 7 and recalling that $a_{n}=R \lambda_{n}^{r+\frac{1}{2}}$.
With these preparations we can now prove the main result of Section 4.
Proof of Theorem 3. The proof easily follows by combining Proposition 3 and Proposition 4 . In particular, the estimate for the sample error by choosing $\lambda=\lambda_{n}$ follows by recalling that $\mathcal{N}\left(T, \lambda_{n}\right) \leq C_{\gamma} \lambda_{n}^{-\gamma}$, by definition of $\left(a_{n}\right)_{n}$ in Theorem 3], by Lemma 6 and by

$$
\frac{M}{n \lambda_{n}}=o\left(\sigma \sqrt{\frac{\lambda_{n}^{-\gamma}}{n \lambda_{n}}}\right) .
$$

D Proofs of Section 5

Following the lines in the previous sections we divide the error analysis in bounding the Sample error, Approximation error and Computational error.
Proposition 5 (Sample Error). Let λ_{n} be defined as in 12. We have

$$
\mathbb{E}\left[\left\|\sum_{j=1}^{m} g_{\lambda_{n}, l}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} \hat{f}_{j}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right)\right\|_{L^{2}(\nu)}^{2}\right] \leq C R^{2}\left(\frac{\sigma^{2}}{R^{2} n}\right)^{\frac{2\left(r+\frac{1}{2}\right)}{2 r+1+\gamma}},
$$

where n has to be chosen sufficiently large, i.e.

$$
n>C_{\sigma, R, \gamma, r} m^{1+\frac{\gamma+1}{2 r+1+\gamma}},
$$

for some $C_{\sigma, R, \gamma, r}<\infty$. Moreover, C does not depend on the model parameter $\sigma, M, R \in \mathbb{R}_{+}^{3}$. Proof of Proposition 5. Applying Proposition 3] we obtain

$$
\begin{aligned}
\mathbb{E}\left[\left\|\sum_{j=1}^{m} g_{\lambda, l}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} \hat{f}_{j}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right)\right\|_{L^{2}(\nu)}^{2}\right] & =\sum_{j=1}^{m} p_{j} \mathbb{E}\left[\left\|g_{\lambda, l}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} \hat{f}_{j}-S_{\mathbf{x}_{j}}^{*} \mathbf{y}_{j}\right)\right\|_{L^{2}\left(\nu_{j}\right)}^{2}\right] \\
& \leq C \sum_{j=1}^{m} p_{j} \mathcal{B}_{\frac{n}{m}}^{2}\left(T_{j}, \lambda\right) \lambda\left(\frac{M m}{n \lambda}+\sigma \sqrt{\frac{m \mathcal{N}\left(T_{j}, \lambda\right)}{n \lambda}}\right)^{2} .
\end{aligned}
$$

Arguing as in the proof of Theorem 1, using Lemma 5, implies the result.
Proposition 6 (Approximation and Computational Error). Let λ_{n} be defined by (12). Assume the number of subsampled points satisfies $l_{n} \geq n^{\beta}$ with

$$
\beta>\frac{\gamma+1}{2 r+\gamma+1} .
$$

Then

$$
\mathbb{E}\left[\left\|\sum_{j=1}^{m} g_{\lambda_{n}, l_{n}}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{j}-f_{j}\right)\right\|_{L^{2}(\nu)}^{2}\right] \leq C R^{2}\left(\frac{\sigma^{2}}{R^{2} n}\right)^{\frac{2\left(r+\frac{1}{2}\right)}{2 r+\gamma+1}},
$$

where C does not depend on the model parameter σ, M, R.
Proof of Proposition [6. For proving this Proposition we combine techniques from both the partitioning and subsampling approach. More precisely:

$$
\begin{aligned}
\mathbb{E}\left[\left\|\sum_{j=1}^{m} g_{\lambda_{n}, l_{n}}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{j}-f_{j}\right)\right\|_{L^{2}(\nu)}^{2}\right] & =\sum_{j=1}^{m} p_{j} \mathbb{E}\left[\left\|g_{\lambda_{n}, l_{l}}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{j}-f_{j}\right)\right\|_{L^{2}\left(\nu_{j}\right)}^{2}\right] \\
& =\sum_{j=1}^{m} p_{j} \mathbb{E}\left[\left\|\sqrt{T_{j}} g_{\lambda_{n}, l_{n}}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{j}-f_{j}\right)\right\|_{\hat{\mathcal{H}}_{j}}^{2}\right] .
\end{aligned}
$$

We shall decompose as in 12 , with T replaced by T_{j} and $T_{\mathbf{x}}$ replaced by $T_{\mathbf{x}_{j}}$,

$$
\left\|\sqrt{\bar{T}_{j}} g_{\lambda_{n}, l_{n}}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} \hat{f}_{j}-f_{j}\right)\right\|_{\hat{\mathcal{H}}_{j}} \leq C R((a)+(b)+(c))=(*) .
$$

Following the lines of the proof of Proposition 4 leads to an upper bound (with probability at least $1-\eta$) for the rhs of the last inequality, which is

$$
\begin{aligned}
(*) & \leq C R \log ^{2}\left(8 \eta^{-1}\right)\left(\mathcal{C}_{\frac{1}{2}}\left(l, \lambda_{n}\right)^{2 r+1}+\lambda_{n}^{\frac{1}{2}+r} \mathcal{B}_{\frac{n}{m}}^{\frac{1}{2}+r}\left(T_{j}, \lambda_{n}\right)+\sqrt{\lambda_{n}} \mathcal{C}_{\frac{1}{2}}\left(l, \lambda_{n}\right)^{2 r}\right) \\
& \leq C R \log ^{2}\left(8 \eta^{-1}\right) \lambda_{n}^{r+\frac{1}{2}}\left(\mathcal{B}_{l}^{2 r+1}\left(T_{j}, \lambda_{n}\right)+\mathcal{B}_{\frac{n}{m}}^{r+\frac{1}{2}}\left(T_{j}, \lambda_{n}\right)+\mathcal{B}_{l}^{2 r}\left(T_{j}, \lambda_{n}\right)\right) .
\end{aligned}
$$

Thus, by integration and since $r \leq \frac{1}{2}$

$$
\mathbb{E}\left[\left\|\sum_{j=1}^{m} g_{\lambda_{n}, l_{n}}\left(T_{\mathbf{x}_{j}}\right)\left(T_{\mathbf{x}_{j}} f_{j}-f_{j}\right)\right\|_{L^{2}(\nu)}^{2}\right] \leq C R^{2} \lambda_{n}^{2\left(r+\frac{1}{2}\right)} \sum_{j=1}^{m} p_{j}\left(\mathcal{B}_{l}^{4}\left(T_{j}, \lambda_{n}\right)+\mathcal{B}_{\frac{n}{m}}^{2}\left(T_{j}, \lambda_{n}\right)+\mathcal{B}_{l}^{2}\left(T_{j}, \lambda_{n}\right)\right) .
$$

Note that by Lemma 5, if

$$
\begin{equation*}
n \geq C_{\sigma, R, \gamma, r} m^{1+\frac{\gamma+1}{2 r}} \tag{13}
\end{equation*}
$$

we have

$$
\begin{aligned}
\mathcal{B}_{\frac{n}{m}}\left(T_{j}, \lambda_{n}\right) & =\left[1+\left(\frac{2 m}{n \lambda_{n}}+\sqrt{\frac{m_{n} \mathcal{N}\left(T_{j}, \lambda_{n}\right)}{n \lambda}}\right)^{2}\right] \\
& \leq C\left[1+\left(\frac{2 m}{n \lambda_{n}}\right)+\left(\frac{m \mathcal{N}\left(T_{j}, \lambda_{n}\right)}{n \lambda}\right)\right] \\
& \leq C .
\end{aligned}
$$

Moreover, since $\mathcal{N}\left(T_{j}, \lambda_{n}\right) \leq \mathcal{N}\left(T, \lambda_{n} / p_{j}\right)$, by Assumption 3. 2. and since $p_{j} \leq 1$

$$
\mathcal{B}_{l_{n}}\left(T_{j}, \lambda_{n}\right) \leq 1+\left(\frac{2}{l_{n} \lambda_{n}}+\sigma \sqrt{\frac{\lambda_{n}^{-\gamma}}{l_{n} \lambda_{n}}}\right)^{2} .
$$

Straightforward calculation shows that

$$
\frac{2}{l_{n} \lambda_{n}}=o(1), \quad \text { if } l_{n} \geq n^{\beta^{\prime}}, \beta^{\prime}>\frac{1}{2 r+\gamma+1}
$$

and

$$
\begin{equation*}
\sqrt{\frac{\lambda_{n}^{-\gamma}}{l_{n} \lambda_{n}}}=\mathcal{O}(1), \quad \text { if } l_{n} \geq n^{\beta^{\prime}}, \beta^{\prime} \geq \frac{\gamma+1}{2 r+\gamma+1} \tag{14}
\end{equation*}
$$

Thus, (14) ensures $\mathcal{B}_{l_{n}}\left(T_{j}, \lambda_{n}\right)=\mathcal{O}(1)$. Finally, on each local set we have the requirement $l_{n} \lesssim \frac{n}{m_{n}}$, which is implied by

$$
l_{n} \lesssim n^{1-\alpha} \sim n^{\frac{\gamma+1}{2 r+\gamma+1}} .
$$

Together with (14) we get a sharp bound

$$
l_{n} \sim n^{\frac{\gamma+1}{2 r+\gamma+1}} .
$$

E Probabilistic Inequalities

In this section we recall some well-known probabilistic inequalities.
Proposition 7 (2]). For $n \in \mathbb{N}, \lambda \in(0,1]$ and $\eta \in(0,1]$, one has with probability at least $1-\eta$:

$$
\left\|(T+\lambda)^{-\frac{1}{2}}\left(T_{\mathbf{x}} f_{\rho}-S_{\mathbf{x}}^{*} \mathbf{y}\right)\right\|_{\mathcal{H}} \leq 2 \log \left(2 \eta^{-1}\right)\left(\frac{M}{n \sqrt{\lambda}}+\sigma \sqrt{\frac{\mathcal{N}(T, \lambda)}{n}}\right)
$$

Proposition 8 ([2], Proposition 5.3). For any $\lambda \in(0,1]$ and $\eta \in(0,1)$ one has with probability at least $1-\eta$:

$$
\left\|(T+\lambda)^{-1}\left(T-T_{\mathbf{x}}\right)\right\|_{H S} \leq 2 \log \left(2 \eta^{-1}\right)\left(\frac{2}{n \lambda}+\sqrt{\frac{\mathcal{N}(T, \lambda)}{n \lambda}}\right)
$$

Proposition 9 ([3]). Define

$$
\begin{equation*}
\mathcal{B}_{n}(T, \lambda):=\left[1+\left(\frac{2}{n \lambda}+\sqrt{\frac{\mathcal{N}(T, \lambda)}{n \lambda}}\right)^{2}\right] \tag{15}
\end{equation*}
$$

For any $\lambda>0, \eta \in(0,1]$, with probability at least $1-\eta$ one has

$$
\begin{equation*}
\left\|\left(T_{\mathbf{x}}+\lambda\right)^{-1}(T+\lambda)\right\| \leq 8 \log ^{2}\left(2 \eta^{-1}\right) \mathcal{B}_{n}(T, \lambda) . \tag{16}
\end{equation*}
$$

Lemma 5. Let $m \in \mathbb{N}$ and λ_{n} be defined by (12). Then for any $j \in[m]$ and $n>n_{0}$

$$
\mathcal{B}_{\frac{n}{m}}\left(T_{j}, \lambda_{n}\right) \leq 2 .
$$

Here, n_{0} depends on the number m of subsets and the model parameter R, σ, γ, r and is explicitly given in (17).

Proof of Lemma 5. Recall that we assume $\mathcal{N}(T, \lambda) \leq C_{\gamma} \lambda^{-\gamma}$, for some $b \geq 1, C_{\gamma}<\infty$. Thus, by Lemma 1 we have for any $j \in[m]$

$$
\mathcal{N}\left(T_{j}, \lambda\right) \leq \mathcal{N}\left(T, \lambda / p_{j}\right) \leq C_{\gamma} p_{j}^{\gamma} \lambda^{-\gamma}
$$

and thus

$$
\frac{m \mathcal{N}\left(T_{j}, \lambda_{n}\right)}{n \lambda_{n}} \leq C_{\gamma} p_{j} \frac{m}{n} \lambda_{n}^{-(1+\gamma)}<\frac{1}{2}
$$

provided

$$
n>\left(2 C_{\gamma} p_{j} m\right)^{\frac{2 r+\gamma+1}{2 r}}\left(\frac{R}{\sigma}\right)^{\frac{2(\gamma+1)}{2 r}} .
$$

Moreover,

$$
\frac{2 m}{n \lambda_{n}}<\frac{1}{2}
$$

provided

$$
n>(4 m)^{\frac{2 r+\gamma+1}{2 r+1}}\left(\frac{R}{\sigma}\right)^{\frac{2}{2 r+\gamma}}
$$

Finally, setting $p_{\max }=\max \left(p_{1}, \ldots, p_{m}\right)$, if

$$
\begin{equation*}
n>n_{0}:=(4 m)^{\frac{2 r+\gamma+1}{2 r}} \max \left((R / \sigma)^{\frac{2}{2 r+\gamma}},\left(p_{\max } C_{\gamma}\right)^{\frac{2 r+\gamma+1}{2 r}}(R / \sigma)^{\frac{2(\gamma+1)}{2 r}}\right) \tag{17}
\end{equation*}
$$

we have

$$
\mathcal{B}_{\frac{n}{m}}\left(T_{j}, \lambda_{n}\right) \leq 1+\left(\frac{1}{2}+\frac{1}{2}\right)^{2}=2
$$

uniformly for any $j \in[m]$.
Lemma 6. If λ_{n} is defined by (12)

$$
\mathcal{B}_{n}\left(T, \lambda_{n}\right) \leq 2,
$$

provided n is sufficiently large.
Proof of Lemma 6. The proof is a straightforward calculation using Definition (12) and recalling that $\mathcal{N}(T, \lambda) \leq C_{\gamma} \lambda^{-\gamma}$.

F Miscellanea

Proposition 10 (Cordes Inequality, [1, Theorem IX.2.1-2). Let A, B be two bounded, selfadjoint and positive operators on a Hilbert space. Then for any $s \in[0,1]$:

$$
\begin{equation*}
\left\|A^{s} B^{s}\right\| \leq\|A B\|^{s} . \tag{18}
\end{equation*}
$$

Lemma 7. Let X be a non-negative random variable with $\mathbb{P}\left[X>C \log ^{u}\left(k \eta^{-1}\right)\right]<\eta$ for any $\eta \in(0,1]$. Then $\mathbb{E}[X] \leq \frac{C}{k} u \Gamma(u)$.

Proof. Apply $\mathbb{E}[X]=\int_{0}^{\infty} \mathbb{P}[X>t] d t$.

References

[1] R. Bhatia. Matrix Analysis. Springer, 1997.
[2] G. Blanchard and N. Mücke. Optimal rates for regularization of statistical inverse learning problems. Foundations of Computational Mathematics, 2017. doi:10.1007/s10208-017-93597.
[3] Z.-C. Guo, S.-B. Lin, and D.-X. Zhou. Learning theory of distributed spectral algorithms. Inverse Problems, 33(7):074009, 2017.
[4] A. Rudi, R. Camoriano, and L. Rosasco. Less is more: Nyström computational regularization. Advances in Neural Information Processing Systems 28, 2015.

[^0]: ${ }^{1}$ If $I_{j}: \hat{\mathcal{H}}_{j} \hookrightarrow L^{2}\left(\nu_{j}\right)$, then $T_{j}=I_{j}^{*} I_{j}$ and $\left\|\sqrt{T_{j}} f\right\|_{\tilde{\mathcal{H}}_{j}}^{2}=\left\langle T_{j} f, f\right\rangle_{\hat{\mathcal{H}}_{j}}=\left\langle I_{j} f, I_{j} f\right\rangle_{L^{2}\left(\nu_{j}\right)}=\|f\|_{L^{2}\left(\nu_{j}\right)}^{2}$. Here, we identify $I_{j} f=f$.

