A Auxiliary Results

Proposition A. 1 (Theorem 2.3. Bellec [2018] Restated). Let \mathcal{C} be a closed convex subset of \mathbb{R}^{n}. Suppose one has the model $\boldsymbol{O}=\boldsymbol{\theta}+\mathbf{e}$, and the estimate based on $\operatorname{argmin}_{\mathbf{v} \in \mathcal{C}}\|\boldsymbol{O}-\mathbf{v}\|_{2}^{2}$ is denoted by $\widehat{\boldsymbol{\theta}}$. If for some $\mathbf{u} \in \mathcal{C}$ there exists $t_{*}(\mathbf{u})$ so that the error vector e satisfies

$$
\sup _{\mathbf{v} \in \mathcal{C},\|\mathbf{v}-\mathbf{u}\|_{2} \leq t_{*}(\mathbf{u})} \mathbf{e}^{\top}(\mathbf{v}-\mathbf{u}) \leq \frac{t_{*}^{2}(\mathbf{u})}{2}+C t_{*}(\mathbf{u}) \sqrt{2 x}
$$

with probability at least $1-\exp (-x)$ then

$$
\|\widehat{\boldsymbol{\theta}}-\boldsymbol{\theta}\|_{2}^{2} \leq\|\mathbf{u}-\boldsymbol{\theta}\|_{2}^{2}+2 t_{*}^{2}(\mathbf{u})+4 C^{2} x
$$

with probability at least $1-\exp (-x)$.
Lemma A. 2 (Fano's inequality). Let (Θ, d) be a metric space, and $\left\{\mathbb{P}_{\theta}: \theta \in \Theta\right\}$ be a collection of probability distributions. Then

$$
\begin{aligned}
& \inf \sup _{\theta \in \Theta} \mathbb{P}_{\theta}\left(d^{2}(\widehat{\theta}, \theta) \geq \varepsilon^{2} / 4\right) \geq \\
& \quad 1-\frac{\sup _{\theta, \theta^{\prime} \in T} D_{\mathrm{KL}}\left(\mathbb{P}_{\theta} \| \mathbb{P}_{\theta^{\prime}}\right)+\log 2}{\log \mathcal{N}(\varepsilon, T, d)}
\end{aligned}
$$

where $T \subset \Theta$ is a totally bounded set, and $\mathcal{N}(\varepsilon, T, d)$ is the packing number of T with respect to d.

B Proofs

Proof of Lemma 2.1. First note that the solution to (2.2) will always satisfy $\widehat{p}_{0} \geq 0$ and $\widehat{p}_{n} \leq 1$ since all $0 \leq O_{i} \leq 1$.
The proof proceeds to show that if for two probabilities $p_{i} \leq p_{i+1}$ we have $O_{i} \geq O_{i+1}$ it follows that their final estimates are equal, i.e., $\widehat{p}_{i}=\widehat{p}_{i+1}$. Therefore one clumps O_{i} and O_{i+1} and treats the two probabilities as the same one, and solves a similar problem with less parameters. Since this observation gives raise to the pool adjacent violators algorithm (PAVA) [Mair et al., 2009] for optimizing the loss function (2.1), which is the same algorithm for optimizing (2.2) the two solutions must coincide.

Suppose that indeed we have $O_{i} \geq O_{i+1}$ and $\widehat{p}_{i}<\widehat{p}_{i+1}$. We will arrive at a contradiction by showing that one can add and subtract a small c and increase the loss function. Consider the function

$$
\begin{aligned}
c \mapsto & O_{i} \log \left(\widehat{p}_{i}+c\right)+\left(1-O_{i}\right) \log \left(1-\widehat{p}_{i}-c\right) \\
& +O_{i+1} \log \left(\widehat{p}_{i+1}-c\right)+\left(1-O_{i+1}\right) \log \left(1-\widehat{p}_{i+1}+c\right)
\end{aligned}
$$

Taking the derivative with respect to c yields

$$
\frac{O_{i}}{\widehat{p}_{i}+c}-\frac{1-O_{i}}{1-\widehat{p}_{i}-c}-\frac{O_{i+1}}{\widehat{p}_{i+1}-c}+\frac{1-O_{i+1}}{1-\widehat{p}_{i+1}+c} \geq 0
$$

if c is small enough so that $\widehat{p}_{i}+c \leq \widehat{p}_{i+1}-c$. Hence the function is increasing in c which is a contradiction. This proves that $\widehat{p}_{i}=\widehat{p}_{i+1}$. We note that the proof extends to any $0 \leq O_{i} \leq 1$, and even if one has weights, i.e., if one optimizes:

$$
\operatorname{argmax} \sum_{i \in[n]} w_{i} O_{i} \log p_{i}+w_{i}\left(1-O_{i}\right) \log \left(1-p_{i}\right)
$$

(in this case instead of c one needs to consider c / w_{i} and c / w_{i+1} respectively, and the regression will also have weights).
The fact that (2.3) holds ${ }^{2}$ is well known [see Chapter 1 of Robertson et al.].

Proof of Theorem 2.3. We will use Proposition A.1. We need to control the tails of the process:

$$
Z=\sup _{\mathbf{v} \in \mathcal{S}_{n}^{\uparrow},\|\mathbf{v}-\mathbf{u}\|_{2} \leq t} \sum_{i \in[n]}\left(O_{i}-p_{i}\right)\left(v_{i}-u_{i}\right)
$$

We will first argue that Z is close to its expected value, using Theorem 6.7 [Boucheron et al., 2013], and in the second step we will control the expected value of Z. To this end define

$$
\begin{aligned}
Z_{j} & =\inf _{o_{j} \in\{0,1\}} \sup _{\mathbf{v} \in \mathcal{S}_{n}^{\uparrow},\|\mathbf{v}-\mathbf{u}\|_{2} \leq t} \sum_{i \neq j}\left(O_{i}-p_{i}\right)\left(v_{i}-u_{i}\right) \\
& +\left(o_{j}-p_{j}\right)\left(v_{j}-u_{j}\right),
\end{aligned}
$$

and note that

$$
\left(Z-Z_{i}\right)^{2} \leq\left(v_{i}^{*}-u_{i}\right)^{2}
$$

where \mathbf{v}^{*} denotes the value where the $\sup _{\mathbf{v} \in \mathcal{S}_{n}^{\uparrow},\|\mathbf{v}-\mathbf{u}\|_{2} \leq t} \sum_{i \in[n]}\left(O_{i}-p_{i}\right)\left(v_{i}-u_{i}\right)$ is attained (the sup is attained since the set $\mathcal{S}_{n}^{\uparrow} \cap\left\{\mathbf{v}:\|\mathbf{v}-\mathbf{u}\|_{2} \leq t\right\}$ is compact). It therefore follows that

$$
\sum_{i \in[n]}\left(Z-Z_{i}\right)^{2} \leq \sum_{i \in[n]}\left(v_{i}^{*}-u_{i}\right)^{2} \leq t^{2}
$$

By Theorem 6.7 [Boucheron et al., 2013] we have

$$
\mathbb{P}(Z \geq \mathbb{E} Z+y) \leq e^{-y^{2} / 2 t^{2}}
$$

and hence setting $y=\sqrt{2 x} t$ we obtain that with probability at least $1-e^{-x}$ we have

$$
Z \leq \mathbb{E} Z+\sqrt{2 x} t
$$

Next, using symmetrization as in the proof of Theorem 2.2 we obtain

$$
\begin{align*}
\mathbb{E} Z & \leq 2 \mathbb{E}_{\boldsymbol{\varepsilon}} \sup _{\mathbf{v} \in \mathcal{S}_{n}^{\uparrow},\|\mathbf{v}-\mathbf{u}\|_{2} \leq t} \sum_{i \in[n]} \varepsilon_{i}\left(v_{i}-u_{i}\right) \\
& \leq \sqrt{2 \pi} \mathbb{E}_{\boldsymbol{\xi}} \sup _{\mathbf{v} \in \mathcal{S}_{n}^{\uparrow},\|\mathbf{v}-\mathbf{u}\|_{2} \leq t} \sum_{i \in[n]} \xi_{i}\left(v_{i}-u_{i}\right), \tag{B.1}
\end{align*}
$$

[^0]where $\boldsymbol{\xi}$ is a standard Gaussian random vector. In Chatterjee et al. [2014] it is proved that the above quantity is $\leq t^{2} / 16$ for values of $t \geq c(1+V(\mathbf{u}))^{1 / 3} n^{1 / 6}$. This completes the proof by Proposition A.1.

Proof of Theorem 2.4. Our proof will follow the proof of Theorem 2.2 of Guntuboyina and Sen [2017] where modifications are needed since the errors are not i.i.d. Gaussian as required in the original statement. First note that the second inequality follows from the first by a simple application of Jensen's inequality, hence we focus on showing the first inequality. We note that by Lemma 2.1, and any integer k

$$
\begin{aligned}
\widehat{p}_{j} & =\min _{v \geq j} \max _{u \leq j} \bar{O}_{u v} \leq \max _{u \leq j}\left(\bar{p}_{u, j+k}+\bar{O}_{u, j+k}-\bar{p}_{u, j+k}\right) \\
& \leq \bar{p}_{j, j+k}+\max _{u \leq j}\left(\bar{O}_{u, j+k}-\bar{p}_{u, j+k}\right),
\end{aligned}
$$

where the last inequality follows by the monotonicity of \mathbf{p}. Hence

$$
\widehat{p}_{j}-p_{j} \leq\left(\bar{p}_{j, j+k}-p_{j}\right)+\max _{u \leq j}\left(\bar{O}_{u, j+k}-\bar{p}_{u, j+k}\right),
$$

which implies

$$
\begin{aligned}
\mathbb{E}\left(\widehat{p}_{j}-p_{j}\right)_{+}^{p} & \leq \mathbb{E}\left(\left(\bar{p}_{j, j+k}-p_{j}\right)\right. \\
& \left.+\max _{u \leq j}\left(\bar{O}_{u, j+k}-\bar{p}_{u, j+k}\right)\right)_{+}^{p},
\end{aligned}
$$

Now let $N_{1}, N_{2}, \ldots, N_{m}$ denote the indices of the m different equal probabilities. Take $j \in N_{k}$, and let there be l_{k} numbers to the left of j and r_{k} numbers to the right of j in N_{k} (i.e. $\max _{i \in N_{k}} i=j+r_{k}, \min _{i \in N_{k}} i=$ $\left.j-l_{k}\right)$. Note that since all probabilities on N_{k} are the same we have $\bar{p}_{j, j+r_{k}}=p_{j}$ and therefore

$$
\mathbb{E}\left(\widehat{p}_{j}-p_{j}\right)_{+}^{p} \leq \mathbb{E}\left(\max _{u \leq j}\left(\bar{O}_{u, j+r_{k}}-\bar{p}_{u, j+r_{k}}\right)\right)_{+}^{p}
$$

Here it is necessary for the proof to depart substantially from the original argument as the sequence ($\bar{O}_{u, j+r_{k}}-$ $\bar{p}_{u, j+r_{k}}$) does not have the required i.i.d. structure. We start by symmetrizing the function similarly to the proof of Theorem 2.2. Let \widetilde{O}_{i} be i.i.d. copies of O_{i}. Note that since $(\cdot)_{+}^{p}$ is convex we have

$$
\begin{aligned}
& \mathbb{E}\left(\max _{u \leq j}\left(\bar{O}_{u, j+r_{k}}-\bar{p}_{u, j+r_{k}}\right)\right)_{+}^{p} \\
& \quad=\mathbb{E}_{\mathbf{O}}\left(\max _{u \leq j} \frac{\sum_{i=u}^{j+r_{k}}\left(O_{i}-\mathbb{E} \widetilde{O}_{i}\right)}{j+r_{k}-u+1}\right)_{+}^{p} \\
& \quad \leq \mathbb{E}_{\mathbf{O}, \tilde{\mathbf{O}}}\left(\max _{u \leq j} \frac{\sum_{i=u}^{j+r_{k}}\left(O_{i}-\widetilde{O}_{i}\right)}{j+r_{k}-u+1}\right)_{+}^{p},
\end{aligned}
$$

where the last expectation is taken with respect to both O_{i} and \widetilde{O}_{i}. We can introduce random $\operatorname{sign} \varepsilon_{i}$ since the
distributions $O_{i}-\widetilde{O}_{i}$ are symmetric.

$$
\begin{align*}
& \mathbb{E}\left(\max _{u \leq j}\left(\bar{O}_{u, j+r_{k}}-\bar{p}_{u, j+r_{k}}\right)\right)_{+}^{p} \\
& \quad \leq \mathbb{E}_{\mathbf{O}, \widetilde{\mathbf{O}}}\left(\max _{u \leq j} \frac{\sum_{i=u}^{j+r_{k}} \varepsilon_{i}\left(O_{i}-\widetilde{O}_{i}\right)}{j+r_{k}-u+1}\right)_{+}^{p} \\
& \quad=\mathbb{E}_{\mathbf{O}, \widetilde{\mathbf{O}}, \boldsymbol{\varepsilon}}\left(\max _{u \leq j} \frac{\sum_{i=u}^{j+r_{k}} \varepsilon_{i}\left(O_{i}-\widetilde{O}_{i}\right)}{j+r_{k}-u+1}\right)_{+}^{p} \tag{B.2}
\end{align*}
$$

where in the last equality the expectation is taken with respect to the ε_{i} as well. Using the convexity of $(\cdot)_{+}^{p}$, the properties of max and sign symmetry we obtain

$$
\begin{aligned}
& \mathbb{E}\left(\max _{u \leq j}\left(\bar{O}_{u, j+r_{k}}-\bar{p}_{u, j+r_{k}}\right)\right)_{+}^{p} \\
& \quad \leq \mathbb{E}_{\mathbf{O}, \varepsilon}\left(2 \max _{u \leq j} \frac{\sum_{i=u}^{j+r_{k}} \varepsilon_{i} O_{i}}{j+r_{k}-u+1}\right)_{+}^{p} \\
& \quad \leq \mathbb{E}_{\varepsilon}\left(2 \max _{u \leq j} \frac{\sum_{i=u}^{j+r_{k}} \varepsilon_{i}}{j+r_{k}-u+1}\right)_{+}^{p}
\end{aligned}
$$

where in the last inequality we used the contraction principle (Theorem 11.6 Boucheron et al. [2013]). Importantly, note that the sequence of random variables (indexed by u) $\frac{\sum_{i=u}^{j+r_{k}} \varepsilon_{i}}{j+r_{k}-u+1}$ forms a martingale.
Consider first the case $1<p<2$. By Doob's L^{p} maximal inequality for submartingales [Mörters and Peres, 2010] (which holds for $p>1$) and Khintchine's inequality we have

$$
\begin{aligned}
& \mathbb{E}_{\varepsilon}\left(2 \max _{u \leq j} \frac{\sum_{i=u}^{j+r_{k}} \varepsilon_{i}}{j+r_{k}-u+1}\right)_{+}^{p} \\
& \quad \leq 2^{p}\left(\frac{p}{p-1}\right)^{p} \mathbb{E}_{\varepsilon}\left(\frac{\sum_{i=j}^{j+r_{k}} \varepsilon_{i}}{r_{k}+1}\right)_{+}^{p} \\
& \quad \leq 2^{p}\left(\frac{p}{p-1}\right)^{p} B_{p}^{p}\left(\frac{1}{r_{k}+1}\right)^{p / 2}
\end{aligned}
$$

where B_{p} is the upper constant from Khintchine's inequality. Therefore we conclude that:

$$
\mathbb{E}\left(\widehat{p}_{j}-p_{j}\right)_{+}^{p} \leq 2^{p}\left(\frac{p}{p-1}\right)^{p} B_{p}^{p} \frac{1}{\left(r_{k}+1\right)^{p / 2}}
$$

Using similar arguments one can also argue that

$$
\mathbb{E}\left(\widehat{p}_{j}-p_{j}\right)_{-}^{p} \leq 2^{p}\left(\frac{p}{p-1}\right)^{p} B_{p}^{p} \frac{1}{\left(l_{k}+1\right)^{p / 2}}
$$

Combining the two inequalities above and summing over all j we have

$$
\begin{aligned}
\mathbb{E} \sum_{j \in[n]}\left(\widehat{p}_{j}-p_{j}\right)^{p} & \leq 2^{p+1}\left(\frac{p}{p-1}\right)^{p} B_{p}^{p} \sum_{k=1}^{m} \sum_{j \in\left[\left|N_{k}\right|\right]}\left(\frac{1}{j}\right)^{p / 2} \\
& \leq C_{p} \sum_{k=1}^{m} \frac{2}{2-p}\left|N_{k}\right|^{1-p / 2}
\end{aligned}
$$

which is what we wanted to show for the case $1<p<2$ (the last bound follows by simple integration).
When $p=1$, Doob's maximal L^{p} inequality does not hold, and we need to slightly change the argument. We have

$$
\begin{aligned}
& \mathbb{E}_{\varepsilon} 2\left(\max _{u \leq j} \frac{\sum_{i=u}^{j+r_{k}} \varepsilon_{i}}{j+r_{k}-u+1}\right)_{+} \\
& \quad \leq \tau+\int_{\tau}^{\infty} \mathbb{P}_{\varepsilon}\left(2 \max _{u \leq j}\left(\frac{\sum_{i=u}^{j+r_{k}} \varepsilon_{i}}{j+r_{k}-u+1}\right)_{+} \geq t\right) d t
\end{aligned}
$$

where we set $\tau=\sqrt{\frac{1}{r_{k}+1}}$. Since $\left(\frac{\sum_{i=u}^{j+r_{k}} \varepsilon_{i}}{j+r_{k}-u+1}\right)_{+}$is a submartingale (as a convex function of a martingale) Doob's weak maximal inequality [Mörters and Peres, 2010] gives

$$
\begin{aligned}
& \mathbb{P}_{\varepsilon}\left(2 \max _{u \leq j}\left(\frac{\sum_{i=j}^{j+r_{k}} \varepsilon_{i}}{j+r_{k}-u+1}\right)_{+} \geq t\right) \\
& \leq \frac{\mathbb{E}_{\varepsilon}\left(2\left(\frac{\sum_{i=j}^{j+r_{k}} \varepsilon_{i}}{r_{k}+1}\right)_{+} \mathbb{1}\left(2 \max _{u \leq j}\left(\frac{\sum_{i=u}^{j+r_{k}} \varepsilon_{i}}{j+r_{k}-u+1}\right)_{+} \geq t\right)\right)}{t} .
\end{aligned}
$$

We square the preceding display and apply CauchySchwartz, followed by an application of Khintchine's inequality to obtain

$$
\begin{aligned}
& \mathbb{P}_{\varepsilon}\left(2 \max _{u \leq j}\left(\frac{\sum_{i=j}^{j+r_{k}} \varepsilon_{i}}{j+r_{k}-u+1}\right)_{+} \geq t\right) \\
& \quad \leq \frac{4 \mathbb{E}_{\varepsilon}\left(\frac{\sum_{i=j}^{j+r_{k}} \varepsilon_{i}}{r_{k}+1}\right)^{2}}{t^{2}} \leq \frac{4 B_{2}^{2} \frac{1}{r_{k}+1}}{t^{2}}=\frac{4 B_{2}^{2} \tau^{2}}{t^{2}} .
\end{aligned}
$$

Changing variables yields:

$$
\begin{aligned}
& \mathbb{E}_{\varepsilon}\left(2 \max _{u \leq j} \frac{\sum_{i=u}^{j+r_{k}} \varepsilon_{i}}{j+r_{k}-u+1}\right)_{+} \\
& \quad \leq \tau+4 B_{2}^{2} \tau \int_{1}^{\infty} \frac{1}{t^{2}} d t=\left(1+4 B_{2}^{2}\right) \tau
\end{aligned}
$$

The rest of the proof goes through.
Lemma B.1. The KL divergence between $P=\operatorname{Ber}(p)$ and $Q=\operatorname{Ber}(p+c)($ for some $0<|c|<\min (p, 1-p))$ is bounded as
$\left|D_{\mathrm{KL}}(P \| Q)-\frac{c^{2}}{p(1-p)}\right| \leq \frac{|c|^{3}}{p(1-p)(1-p-|c|)(p-|c|)}$.

Proof of Lemma B.1. The proof is a simple calculation
which we include for completeness.

$$
\begin{aligned}
& D_{\mathrm{KL}}(P \| Q) \\
& =-p \log \left(1+\frac{c}{p}\right)-(1-p) \log \left(1-\frac{c}{1-p}\right) \\
& =p \sum_{i=1}^{\infty}(-1)^{i} i^{-1}\left(\frac{c}{p}\right)^{i}+(1-p) \sum_{i=1}^{\infty} i^{-1}\left(\frac{c}{1-p}\right)^{i} \\
& =\frac{c^{2}}{p(1-p)}+c \sum_{i \geq 3}\left[(-1)^{i} i^{-1}\left(\frac{c}{p}\right)^{i-1}+i^{-1}\left(\frac{c}{1-p}\right)^{i-1}\right]
\end{aligned}
$$

Using Fano's inequality (Lemma A.2) in conjunction with Markov's inequality we obtain the lower bound

$$
\inf _{\widehat{\mathbf{p}}} \sup _{\mathbf{p}} \mathbb{E} \frac{1}{n}\|\widehat{\mathbf{p}}-\mathbf{p}\|_{p}^{p} \geq \frac{c^{p}}{16}\left(1-\frac{16 n c^{2}}{\delta(1-2 \delta) m}\right)
$$

which is what we wanted to show after selecting $c=$ $\sqrt{\frac{\delta(1-2 \delta) m}{32 n}}$.

- Proof of Proposition 2.6. As in the proof of Theorem 2.2 we need to project onto the tangent cone $\mathcal{T}_{S_{n}^{\uparrow}}(\mathbf{u})$. The proof relies on symmetrization and the contraction principle. Decompose the $i^{\text {th }}$ of the n binomials to sums $k \bar{O}_{i}=\sum_{j \in[k]} O_{i j}$ where $O_{i j} \sim \operatorname{Ber}\left(p_{i}\right)$. We need to control the quantity

$$
\mathbb{E}_{\mathbf{O}}\left[\sup _{\mathbf{t} \in \mathcal{S}_{l}^{\uparrow},\|\mathbf{t}\|_{2} \leq 1} \sum_{i \in[l]} \frac{\sum_{j \in[k]}\left(O_{i j}-p_{i}\right)}{k} t_{i}\right]^{2},
$$

where using a slight abuse of notation we refer to $S_{\left|N_{l}\right|}^{\uparrow}$ with S_{l}^{\uparrow} for brevity. Just as in Theorem 2.2, using symmetrization we obtain the following bound:

$$
4 \mathbb{E}_{\mathbf{O}} \mathbb{E}_{\boldsymbol{\varepsilon}}\left[\sup _{\mathbf{t} \in \mathcal{S}_{l}^{\uparrow},\|\mathbf{t}\|_{2} \leq 1} \sum_{i \in[l]} \frac{\sum_{j \in[k]} \varepsilon_{i j} O_{i j}}{k} t_{i}\right]^{2}
$$

Using the contraction principle (Theorem 11.6 Boucheron et al. [2013]) we get

$$
\begin{aligned}
& \mathbb{E}_{\mathbf{O}} \mathbb{E}_{\boldsymbol{\varepsilon}}\left[\sup _{\mathbf{t} \in \mathcal{S}_{l}^{\uparrow},\|\mathbf{t}\|_{2} \leq 1} \sum_{i \in[l]} \frac{\sum_{j \in[k]} \varepsilon_{i j} O_{i j}}{k} t_{i}\right]^{2} \\
& \quad \leq 4 \mathbb{E}_{\boldsymbol{\varepsilon}}\left[\sup _{\mathbf{t} \in \mathcal{S}_{l}^{\uparrow},\|\mathbf{t}\|_{2} \leq 1} \sum_{i \in[l]} \frac{\sum_{j \in[k]} \varepsilon_{i j}}{\sqrt{k}} t_{i}\right]^{2} \frac{1}{k}
\end{aligned}
$$

Just as in the proof of Theorem 2.2 we can now substitute the Rademacher random variables with Gaussians:

$$
\begin{aligned}
& \mathbb{E}_{\boldsymbol{\varepsilon}}\left[\sup _{\mathbf{t} \in \mathcal{S}_{l}^{\uparrow},\|\mathbf{t}\|_{2} \leq 1} \sum_{i \in[l]} \frac{\sum_{j \in[k]} \varepsilon_{i j}}{\sqrt{k}} t_{i}\right]^{2} \\
& \quad \leq \frac{\pi}{2} \mathbb{E}_{\boldsymbol{\varepsilon}}\left[\sup _{\mathbf{t} \in \mathcal{S}_{l}^{\uparrow},\|\mathbf{t}\|_{2} \leq 1} \sum_{i \in[l]} \frac{\sum_{j \in[k]} \xi_{i j}}{\sqrt{k}} t_{i}\right]^{2}=\frac{\pi}{2} \sum_{i \in[l]} \frac{1}{i},
\end{aligned}
$$

where the last equality is well known [see Amelunxen et al., 2014, e.g.]. This completes the proof after applying Lemma 2.10.

Proof of Proposition 2.8. The proof follows closely that of Theorem 2.3 hence we only sketch it. We need to control the tails of the process:

$$
Z=\sup _{\mathbf{v} \in \mathcal{S}_{n}^{\uparrow},\|\mathbf{v}-\mathbf{u}\|_{2} \leq t} \sum_{i \in[n]} \frac{\sum_{j} O_{i j}-p_{i}}{k}\left(v_{i}-u_{i}\right)
$$

We will first argue that Z is close to its expected value, using Theorem 6.7 Boucheron et al. [2013], and in the second step we will control the expected value of Z. To this end define

$$
\begin{aligned}
Z_{r s}= & \\
& \inf _{o_{r s} \in\{0,1\}} \sup _{\substack{\mathbf{v} \in \mathcal{S}_{n}^{\uparrow},\|\mathbf{v}-\mathbf{u}\|_{2} \leq t}} \sum_{i, j:(i, j) \neq(r, s)} \frac{\sum_{j} O_{i j}-p_{i}}{k}\left(v_{i}-u_{i}\right) \\
& +\frac{\left(o_{r s}-p_{s}\right)\left(v_{s}-u_{s}\right)}{k}
\end{aligned}
$$

and note that

$$
\left(Z-Z_{r s}\right)^{2} \leq \frac{\left(v_{s}^{*}-u_{s}\right)^{2}}{k^{2}}
$$

where \mathbf{v}^{*} denotes the value where the $\sup _{\mathbf{v} \in \mathcal{S}_{n}^{\uparrow},\|\mathbf{v}-\mathbf{u}\|_{2} \leq t} \sum_{i \in[n]} \frac{\sum_{j} O_{i j}-p_{i}}{k}\left(v_{i}-u_{i}\right)$. is attained. It therefore follows that

$$
\sum_{r, s}\left(Z-Z_{r s}\right)^{2} \leq \sum_{r, s} \frac{\left(v_{i}^{*}-u_{i}\right)^{2}}{k^{2}} \leq \frac{t^{2}}{k}
$$

By Theorem 6.7 Boucheron et al. [2013] it follows that

$$
\mathbb{P}(Z \geq \mathbb{E} Z+y) \leq e^{-k y^{2} / 2 t^{2}}
$$

and hence setting $y=\sqrt{2 x} t$ we obtain that with probability at least $1-e^{-x}$ we have

$$
Z \leq \mathbb{E} Z+\sqrt{2 x / k} t
$$

Next, using symmetrization and changing to Gaussian variables

$$
\begin{equation*}
\mathbb{E} Z \leq \frac{\sqrt{2 \pi}}{\sqrt{k}} \mathbb{E}_{\boldsymbol{\xi}} \sup _{\mathbf{v} \in \mathcal{S}_{n}^{\uparrow},\|\mathbf{v}-\mathbf{u}\|_{2} \leq t} \sum_{i \in[n]} \xi_{i}\left(v_{i}-u_{i}\right) \tag{B.3}
\end{equation*}
$$

where $\boldsymbol{\xi}$ is a standard Gaussian random vector. In Chatterjee et al. [2014] it is proved that the above quantity is $\leq t^{2} / 16$ for values of $t \geq c \frac{1}{\sqrt{k}}(1+V(\mathbf{u}) \sqrt{k})^{1 / 3} n^{1 / 6}$. This completes the proof by Proposition A.1.

Proof of Lemma 3.1. We have the following identity

$$
\underset{\boldsymbol{\beta}}{\operatorname{argmin}} \mathbb{E}\left(Y-\boldsymbol{X}^{\top} \boldsymbol{\beta}\right)^{2}=\underset{\boldsymbol{\beta}}{\operatorname{argmax}} 2 \mathbb{E} Y \boldsymbol{X}^{\top} \boldsymbol{\beta}-\|\boldsymbol{\beta}\|_{2}^{2} .
$$

Recall that $\left\|\boldsymbol{\beta}^{*}\right\|_{2}=1$ and represent $\boldsymbol{\beta}=c \boldsymbol{\beta}^{*}+\boldsymbol{\beta}^{\perp}$ where $\boldsymbol{\beta}^{* \top} \boldsymbol{\beta}^{\perp}=0$. By the properties of the normal distribution we have

$$
\mathbb{E} Y \boldsymbol{X}^{\top} \boldsymbol{\beta}^{\perp}=\mathbb{E} Y \mathbb{E} \boldsymbol{X}^{\top} \boldsymbol{\beta}^{\perp}=0
$$

Therefore by the Pythagorean theorem

$$
\begin{gathered}
\underset{\boldsymbol{\beta}}{\operatorname{argmax}} 2 c \mathbb{E} Y \boldsymbol{X}^{\top} \boldsymbol{\beta}^{*}-\left(c^{2}+\left\|\boldsymbol{\beta}^{\perp}\right\|_{2}^{2}\right) \\
\quad \leq \underset{\boldsymbol{\beta}}{\operatorname{argmax}} 2 c \mathbb{E} Y \boldsymbol{X}^{\top} \boldsymbol{\beta}^{*}-c^{2}
\end{gathered}
$$

The above parabola is maximized at $c=c_{0}=$ $\mathbb{E} Y \boldsymbol{X}^{\top} \boldsymbol{\beta}^{*}$, and therefore the population minimizer of the least squares satisfies (3.3). Using Chebyshev's association inequality [Boucheron et al., 2013] it is not hard to see that when f is strictly monotone increasing and Y is given by (3.1) we have

$$
\begin{aligned}
c_{0} & =\mathbb{E} Y \boldsymbol{X}^{\top} \boldsymbol{\beta}^{*}=\mathbb{E} f\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}^{*}\right) \boldsymbol{X}^{\top} \boldsymbol{\beta}^{*} \\
& >\mathbb{E} f\left(\boldsymbol{X}^{\top} \boldsymbol{\beta}^{*}\right) \mathbb{E} \boldsymbol{X}^{\top} \boldsymbol{\beta}^{*}=0,
\end{aligned}
$$

and therefore $\operatorname{argmin}_{\boldsymbol{\beta}} \mathbb{E}\left(Y-\boldsymbol{X}^{\top} \boldsymbol{\beta}\right)^{2}=c_{0} \boldsymbol{\beta}^{*}$ is proportional to $\boldsymbol{\beta}^{*}$ with $c_{0}>0$.

Lemma B.2. Suppose that $n_{p, s}=o(1), n_{p, s} \gtrsim$ $\frac{\mathbb{E}\left(Y-c_{0} \boldsymbol{X}^{\top} \boldsymbol{\beta}^{*}\right)^{2}}{\lambda^{2} s}$ for a sufficiently large constant and $\mathbb{E} Y^{4}<\infty$. Then the solution $\widetilde{\boldsymbol{\beta}}$ coincides with the solution:

$$
\widetilde{\boldsymbol{\beta}}_{S}=\underset{\boldsymbol{\beta}_{S} \in \mathbb{R}^{s}}{\operatorname{argmin}} \frac{1}{2 n}\left\|\boldsymbol{Y}-\mathbf{X}_{S} \boldsymbol{\beta}_{S}\right\|_{2}^{2}+\lambda\left\|\boldsymbol{\beta}_{S}\right\|_{1}
$$

where $S=\operatorname{supp}\left(\boldsymbol{\beta}^{*}\right)$ (i.e., the set of non-zero coefficients of $\boldsymbol{\beta}^{*}$) with high probability (i.e. at least .99). Moreover we have

$$
\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{2} \lesssim \sqrt{s} \lambda+n_{p, s}^{-\frac{1}{2}}
$$

with overwhelming probability.
Proof of Lemma B.2. Theorem 2.3.4 i. of Neykov et al. [2016] shows that under $n_{p, s} \gtrsim \frac{\mathbb{E}\left(Y-c_{0} \boldsymbol{X}^{\top} \boldsymbol{\beta}^{*}\right)^{2}}{\lambda^{2} s}$ our first claim follows. We therefore focus on showing our second claim below. Define

$$
\mathbf{w}:=\boldsymbol{Y}-c_{0} \mathbf{X} \boldsymbol{\beta}^{*}=\boldsymbol{Y}-c_{0} \mathbf{X}_{S} \boldsymbol{\beta}_{S}^{*}
$$

Furthermore define the quantities:

$$
\begin{aligned}
\theta^{2} & :=\operatorname{Var}\left\{\left(Y-c_{0} \boldsymbol{X}^{\top} \boldsymbol{\beta}^{*}\right)^{2}\right\}, \quad \gamma^{2}:=\operatorname{Var}\left(Y \boldsymbol{X}^{\top} \boldsymbol{\beta}^{*}\right) \\
\xi^{2} & :=\mathbb{E}\left\{\left(Y-c_{0} \boldsymbol{X}^{\top} \boldsymbol{\beta}^{*}\right)^{2}\right\}
\end{aligned}
$$

Notice that the above quantities are well defined since $\mathbb{E} Y^{4}<\infty$ by assumption. We will now show that the vector $\widetilde{\boldsymbol{\beta}}_{S}$ is close to $\boldsymbol{\beta}_{S}^{*}$ in Euclidean distance. We start by using the inequality:

$$
\begin{aligned}
\frac{1}{2 n} \| \boldsymbol{Y} & -\mathbf{X}_{S} \widetilde{\boldsymbol{\beta}}_{S}\left\|_{2}^{2}+\lambda\right\| \widetilde{\boldsymbol{\beta}}_{S} \|_{1} \\
& \leq \frac{1}{2 n}\left\|\boldsymbol{Y}-c_{0} \mathbf{X}_{S} \boldsymbol{\beta}_{S}^{*}\right\|_{2}^{2}+\lambda\left\|c_{0} \boldsymbol{\beta}_{S}^{*}\right\|_{1}
\end{aligned}
$$

Expanding the norms leads to

$$
\begin{align*}
& \frac{1}{2 n}\left\|\mathbf{X}_{S}\left(c_{0} \boldsymbol{\beta}_{S}^{*}-\widetilde{\boldsymbol{\beta}}_{S}\right)\right\|_{2}^{2}+\lambda\left\|\widetilde{\boldsymbol{\beta}}_{S}\right\|_{1} \\
& \quad \leq \frac{1}{n} \mathbf{w}^{\top} \mathbf{X}_{S}\left(\widetilde{\boldsymbol{\beta}}_{S}-c_{0} \boldsymbol{\beta}_{S}^{*}\right)+\lambda\left\|c_{0} \boldsymbol{\beta}_{S}^{*}\right\|_{1} \\
& \quad \leq \frac{1}{n}\left\|\mathbf{w}^{\top} \mathbf{X}_{S}\right\|_{\infty}\left\|c_{0} \boldsymbol{\beta}_{S}^{*}-\widetilde{\boldsymbol{\beta}}_{S}\right\|_{1}+\lambda\left\|c_{0} \boldsymbol{\beta}_{S}^{*}\right\|_{1} \tag{B.4}
\end{align*}
$$

The vector $\mathbf{w}^{\top} \mathbf{X}_{S}$ is mean 0 . We will now control $n^{-1}\left\|\mathbf{w}^{\top} \mathbf{X}_{S}\right\|_{\infty}$. We have

$$
\begin{align*}
n^{-1}\left\|\mathbf{w}^{\top} \mathbf{X}_{S}\right\|_{\infty} & \leq n^{-1}\left\|\mathbf{P}_{\boldsymbol{\beta}_{S}^{*}} \mathbf{X}_{S}^{\top} \mathbf{w}\right\|_{\infty} \\
& +n^{-1}\left\|\boldsymbol{\beta}_{S}^{*} \boldsymbol{\beta}_{S}^{* \top} \mathbf{X}_{S}^{\top} \mathbf{w}\right\|_{\infty} \tag{B.5}
\end{align*}
$$

where $\mathbf{P}_{\boldsymbol{\beta}_{S}^{* \perp}}=\mathbf{I}_{s}-\boldsymbol{\beta}_{S}^{*} \boldsymbol{\beta}_{S}^{* \top}$. Note that $\mathbf{P}_{\boldsymbol{\beta}_{S}^{* \perp}} \mathbf{X}_{S}$ and \mathbf{w} are independent. It is simple to check that conditionally on \mathbf{w} the vector $n^{-1} \mathbf{P}_{\boldsymbol{\beta}_{S}^{* \perp}} \mathbf{X}_{S}^{\top} \mathbf{w} \sim \mathcal{N}\left(0, \mathbf{P}_{\boldsymbol{\beta}_{S}^{*} \perp} n^{-2}\|\mathbf{w}\|_{2}^{2}\right)$. We now argue that the term $n^{-1}\|\mathbf{w}\|_{2}^{2} \leq 2 \xi^{2}$ with probability at least $1-\frac{\theta^{2}}{n \xi^{2}}$. Since $\mathbf{w}=\boldsymbol{Y}-c_{0} \mathbf{X}_{S} \boldsymbol{\beta}_{S}^{*}$ is a vector with non-zero mean. However, by Chebyshev's inequality we have:

$$
\mathbb{P}\left(\left|\frac{\|\mathbf{w}\|_{2}^{2}}{n}-\xi^{2}\right| \geq t\right) \leq \frac{\theta^{2}}{n t^{2}}
$$

Then setting $t=\xi^{2}$ brings the above probability to 0 at a rate $\frac{\theta^{2}}{n \xi^{4}}$. Next, conditioning on this event it follows that the diagonal entries of the covariance matrix $n^{-2}\|\mathbf{w}\|_{2}^{2} \mathbf{P}_{\boldsymbol{\beta}_{S}^{* \perp}}$ are less than $n^{-2}\|\mathbf{w}\|_{2}^{2} \leq \frac{2 \xi^{2}}{n}$. Hence by a standard Gaussian tail bound, on the event $n^{-1}\|\mathbf{w}\|_{2}^{2} \leq 2 \xi^{2}$ we have that

$$
\mathbb{P}\left(n^{-1}\left\|\mathbf{P}_{\boldsymbol{\beta}_{S}^{*} \perp} \mathbf{X}_{S}^{\top} \mathbf{w}\right\|_{\infty} \geq t\right) \leq 2 s e^{-\bar{c} n t^{2} / \xi^{2}}
$$

for some universal constant \bar{c}. Therefore setting $t \geq$ $\sqrt{\frac{2 \xi^{2} \log p}{\bar{c} n}}$ bounds the above probability by $\frac{2 s}{p^{2}} \leq 2 p^{-1}$. We now move to the second term of (B.5). Since $\left\|\boldsymbol{\beta}_{S}^{*}\right\|_{\infty} \leq\left\|\boldsymbol{\beta}_{S}^{*}\right\|_{2} \leq 1$ we have

$$
n^{-1}\left\|\boldsymbol{\beta}_{S}^{*} \boldsymbol{\beta}_{S}^{* \top} \mathbf{X}_{S}^{\top} \mathbf{w}\right\|_{\infty} \leq n^{-1}\left\|\boldsymbol{\beta}_{S}^{* \top} \mathbf{X}_{S}^{\top} \mathbf{w}\right\|_{\infty}
$$

Next we have the elementary inequality

$$
\begin{aligned}
& \mathbb{P}\left(n^{-1}\left|\boldsymbol{\beta}_{S}^{* \top} \mathbf{X}_{S}^{\top} \boldsymbol{Y}-c_{0}\left\|\mathbf{X}_{S} \boldsymbol{\beta}_{S}^{*}\right\|_{2}^{2}\right| \geq t\right) \\
& \quad \leq \mathbb{P}\left(\left|n^{-1} \boldsymbol{\beta}_{S}^{* \top} \mathbf{X}_{S}^{\top} \boldsymbol{Y}-c_{0}\right| \geq t / 2\right) \\
& \quad+\mathbb{P}\left(\left|n^{-1}\left\|\mathbf{X}_{S} \boldsymbol{\beta}_{S}^{*}\right\|_{2}^{2}-1\right| \geq t /\left(2 c_{0}\right)\right)
\end{aligned}
$$

By Chebyshev's inequality

$$
\begin{equation*}
\mathbb{P}\left(\left|n^{-1} \boldsymbol{\beta}_{S}^{* \top} \mathbf{X}_{S}^{\top} \boldsymbol{Y}-c_{0}\right| \geq t / 2\right) \leq \frac{4 \gamma^{2}}{n t^{2}} \tag{B.6}
\end{equation*}
$$

Setting $t=2 \gamma \sqrt{\frac{\log p}{n}}$ bounds the above probability by $(\log p)^{-1}$. By Lemma 1 of Laurent and Massart [2000]

$$
\begin{gathered}
\mathbb{P}\left(\left|n^{-1}\left\|\mathbf{X}_{S} \boldsymbol{\beta}_{S}^{*}\right\|_{2}^{2}-1\right| \geq t /\left(2\left|c_{0}\right|\right)\right) \\
\quad \leq 2 \exp \left(-n \frac{t}{8\left|c_{0}\right|} \wedge \frac{t^{2}}{64 c_{0}^{2}}\right)
\end{gathered}
$$

Setting $t=8\left|c_{0}\right| \sqrt{\frac{\log p}{n}}$ bounds the above probability by $2 p^{-1}$. We conclude that with probability at least $1-2 p^{-1}-(\log p)^{-1}-\frac{\theta^{2}}{n \xi^{4}}$

$$
\begin{equation*}
n^{-1}\left\|\mathbf{w}^{\top} \mathbf{X}_{S}\right\|_{\infty} \leq \bar{C} \sqrt{\frac{\log p}{n}} \tag{B.7}
\end{equation*}
$$

where $\bar{C}\left(\bar{c}_{0}, c_{0}, \gamma, \xi\right)=8\left|c_{0}\right|+2 \gamma+\bar{c}_{0} \xi$ and $\bar{c}_{0}=\sqrt{2 / \bar{c}}$ is a universal constant.

Going back to (B.4) we have established that with high probability

$$
\begin{aligned}
& \frac{1}{2 n}\left\|\mathbf{X}_{S}\left(c_{0} \boldsymbol{\beta}_{S}^{*}-\widetilde{\boldsymbol{\beta}}_{S}\right)\right\|_{2}^{2} \\
& \quad \leq \bar{C} \sqrt{\frac{\log p}{n}}\left\|c_{0} \boldsymbol{\beta}_{S}^{*}-\widetilde{\boldsymbol{\beta}}_{S}\right\|_{1}+\lambda\left(\left\|c_{0} \boldsymbol{\beta}_{S}^{*}\right\|_{1}-\left\|\widetilde{\boldsymbol{\beta}}_{S}\right\|_{1}\right) \\
& \quad \leq\left(\bar{C} n_{p, s}^{-\frac{1}{2}}+\sqrt{s} \lambda\right)\left\|c_{0} \boldsymbol{\beta}_{S}^{*}-\widetilde{\boldsymbol{\beta}}_{S}\right\|_{2}
\end{aligned}
$$

where the inequality $\|\mathbf{v}\|_{1} \leq \sqrt{s}\|\mathbf{v}\|_{2}$ for $\mathbf{v} \in \mathbb{R}^{s}$. Corollary 5.35 of Vershynin [2012] guarantees that

$$
\frac{\lambda_{\min }\left(\mathbf{X}_{S}^{\top} \mathbf{X}_{S}\right)}{n} \geq \frac{(\sqrt{n}-2 \sqrt{s})^{2}}{n}
$$

with probability at least $1-2 e^{-s / 2}$. Hence, when the above two events happen (with probability at least $\left.1-2 p^{-1}-(\log p)^{-1}-2 e^{-s / 2}-\frac{\theta^{2}}{n \xi^{4}}\right)$ we have

$$
\begin{equation*}
\left\|c_{0} \boldsymbol{\beta}_{S}^{*}-\widetilde{\boldsymbol{\beta}}_{S}\right\|_{2} \leq\left(\bar{C} n_{p, s}^{-\frac{1}{2}}+\sqrt{s} \lambda\right) \frac{n}{(\sqrt{n}-2 \sqrt{s})^{2}} \tag{B.8}
\end{equation*}
$$

Denote the RHS of (B.8) with R for brevity. We have $c_{0}-R \leq\|\widetilde{\boldsymbol{\beta}}\|_{2} \leq c_{0}+R$.

$$
\begin{aligned}
\left\|\boldsymbol{\beta}_{S}^{*}-\frac{\widetilde{\boldsymbol{\beta}}_{S}}{\left\|\widetilde{\boldsymbol{\beta}}_{S}\right\|_{2}}\right\|_{2} & \leq\left\|\frac{c_{0} \boldsymbol{\beta}_{S}^{*}-\widetilde{\boldsymbol{\beta}}_{S}}{\left\|\widetilde{\boldsymbol{\beta}}_{S}\right\|_{2}}\right\|_{2}+\frac{\left|c_{0}-\left\|\widetilde{\boldsymbol{\beta}}_{S}\right\|_{2}\right|}{\left\|\widetilde{\boldsymbol{\beta}}_{S}\right\|_{2}} \\
& \leq 2 \frac{R}{c_{0}-R} .
\end{aligned}
$$

Proof of Theorem 3.2. Using Theorem 2.3 with a vector \mathbf{u} with components $u_{i}=f\left(\boldsymbol{X}_{\pi_{i}}^{\top} \widehat{\boldsymbol{\beta}}\right)$, we have with probability at least $1-\exp (-x)$:

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=n+1}^{2 n}\left(f\left(\boldsymbol{X}_{i}^{\top} \boldsymbol{\beta}^{*}\right)-\widehat{f}\left(\boldsymbol{X}_{i}^{\top} \widehat{\boldsymbol{\beta}}\right)\right)^{2} \\
& \quad \leq \frac{1}{n} \sum_{i=1}^{n}\left(f\left(\boldsymbol{X}_{\pi_{i}}^{\top} \boldsymbol{\beta}^{*}\right)-f\left(\boldsymbol{X}_{\pi_{i}}^{\top} \widehat{\boldsymbol{\beta}}\right)\right)^{2}+\frac{C 2^{2 / 3}}{n^{2 / 3}}+\frac{4 x}{n} \\
& \quad \leq L^{2}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)^{\top} \widehat{\boldsymbol{\Sigma}}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)+\frac{C 2^{2 / 3}}{n^{2 / 3}}+\frac{4 x}{n}
\end{aligned}
$$

where $\widehat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{i=n+1}^{2 n} \boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}$. By Lemma B. 2 we know that the vector $\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}$ is s-sparse, and therefore by Corollary 5.35 of Vershynin [2012] we have

$$
\begin{aligned}
\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right)^{\top} \widehat{\boldsymbol{\Sigma}}\left(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right) & \leq(1+\sqrt{s / n}+\sqrt{x / n})^{2}\left\|\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}^{*}\right\|_{2}^{2} \\
& \lesssim\left(\sqrt{s} \lambda+n_{p, s}^{-\frac{1}{2}}\right)^{2}
\end{aligned}
$$

with probability at least $1-\exp (-x)$, where in the last inequality we used Lemma B. 2 once again. This completes the proof.

[^0]: ${ }^{2}(2.3)$ holds for unweighted regression only

