Sharp Analysis of Learning with Discrete Losses

Alex Nowak-Vila Francis Bach Alessandro Rudi
INRIA - Département d’Informatique de l’École Normale Supérieure
PSL Research University
Paris, France

Abstract

The problem of devising learning strategies for discrete losses (e.g., multilabeling, ranking) is currently addressed with methods and theoretical analyses ad-hoc for each loss.

In this paper we study a least-squares framework to systematically design learning algorithms for discrete losses, with quantitative characterizations in terms of statistical and computational complexity. In particular we improve existing results by providing explicit dependence on the number of labels for a wide class of losses and faster learning rates in conditions of low-noise.

Theoretical results are complemented with experiments on real datasets, showing the effectiveness of the proposed general approach.

1 INTRODUCTION

Structured prediction with discrete labels of high cardinality is ubiquitous in machine learning, e.g., in multiclass problems, multilabel learning, ranking, ordinal regression, etc. [1, 2, 3, 4].

These supervised learning problems typically come with computational and theoretical challenges:

1) how to design efficient algorithms dealing with potentially large number of data and labels?
2) even if learning is computationally feasible, how to make sure that the resulting algorithm leads to improved accuracy on the test set?

Many special cases are often addressed in an ad-hoc fashion in terms of consistency, algorithms and convergence rates, depending on the specific loss used in each application to quantify the performance of predictors.

A few generic learning frameworks exist: (a) conditional random fields [5, 6] use conditional probabilistic modelling typically combined with maximum likelihood estimation, but may lead to intractable probabilistic inference and cannot easily incorporate structured losses which are needed in applications [7]; (b) Structured SVM [8, 9] extended the class of problems where a systematic max-margin framework can be applied, with the incorporation of arbitrary losses, but they are not consistent in general, that is, even with infinite amounts of data, they would not lead to optimal predictions [10]; (c) more recently, least-squares (or quadratic surrogate) frameworks [11, 12] have emerged. Such approaches can tackle arbitrary discrete losses producing consistent estimators and have the potential to provide a systematic way to design learning algorithms with both statistical and computational guarantees. However, no sharp analyses exist yet, quantifying the impact of crucial quantities like the number of labels or the level of noise on the statistical and computational properties of the resulting algorithms. The goal of this paper is to characterize explicitly such impact for a number of widely used loss functions in the context of multilabeling and ranking, showing the effectiveness of least-squares frameworks for structured prediction with discrete labels.

We make the following contributions:

- We provide quantitative characterizations of the statistical and computational complexity for the least-squares framework of [11] depending on the number of labels and the number of examples. The characterization is explicit for a wide family of common losses in ranking and multilabel learning (see Secs. 3.1, 3.2 and 4).
- We propose a margin condition for discrete losses (generalizing the Tsybakov condition for binary classification [13]) and obtain fast learning rates for the framework of [11], that are adaptive to the proposed condition (see Sec. 3.3).
Our analysis encompasses many previous results on special cases and provides improved learning rates over existing generic structured prediction frameworks (see Sec. 6).

- We conduct a series of experiments highlighting the benefits of the considered least-squares framework on ranking and multilabel problems (Sec. 5).

2 BACKGROUND

The problem of supervised learning consists in learning from examples the function relating inputs with observations/labels. More specifically, let \(Y \) be the space of observations, denoted observation space or label space and \(X \) be the input space. The quality of the predicted output is measured by a given loss function \(L \). In many scenarios the output of the function is in a different space than the observations (see Sec. 3.2 for some examples). We denote by \(Z \) the output space, so

\[
L : Z \times Y \rightarrow \mathbb{R},
\]

where \(L(z, y) \) measures the cost of predicting \(z \) when the observed value is \(y \). Finally the data are assumed to be distributed according to a probability measure \(P \) on \(X \times Y \). The supervised learning problem consists in learning \(f \) to be distributed according to a probability measure \(\mu = \frac{dP}{d\mu} \) when \(r \) is the observed value. Finally the data are assumed to be distributed according to a probability measure \(\mu = \frac{dP}{d\mu} \) when \(r \) is the observed value. Finally the data are assumed to be distributed according to a probability measure \(\mu = \frac{dP}{d\mu} \) when \(r \) is the observed value.

2.1 Quadratic Surrogate method

A systematic way to solve the problem in Eq. (2) is to consider that \(f^* \) is characterized as follows [14, 11]:

\[
f^* = \arg \min_{f : \mathcal{X} \rightarrow \mathcal{Z}} \mathbb{E}(f), \quad E(f) = \mathbb{E}L(f(X), Y),
\]

given only a number of examples \((x_i, y_i)_{i=1}^n\), with \(n \in \mathbb{N} \), sampled independently from \(P \). The quality of an estimator \(f \) for \(f^* \) is measured in terms of the excess risk \(\mathbb{E}(f) - \mathbb{E}(f^*) \).

The key property of a loss being SELF is that, by linearity of the inner product,

\[
\ell(z, x) = \mathbb{E}L(z, y)dP(y|x) - \mathbb{E}L(z, y)dP(y|x),
\]

with \(g^*(x) = \mathbb{E}L(z, y)dP(y|x) \) being the conditional expectation of \(\psi(y) \), given \(x \). This means that in order to estimate \(\ell \), we just need to find an estimator \(\hat{g} \) for the conditional expectation \(g^* \), and then define \(\ell(z, x) = \langle \psi(z), V\hat{g}(x) \rangle_{\mathcal{H}} \). To find a suitable estimator for \(g^* \), note that \(g^* \) can be written as the minimizer of the following quadratic surrogate (QS),

\[
g^* = \arg \min_{g : \mathcal{X} \rightarrow \mathcal{H}} \mathcal{R}_\psi(g),
\]

where \(\mathcal{R}_\psi(g) := \int \|g(x) - \psi(y)\|_{\mathcal{H}}^2 dP(x, y) \) is the expected surrogate risk of \(g \). The quality of the surrogate estimator \(g \) is measured in terms of the surrogate excess risk \(\mathcal{R}_\psi(g) - \mathcal{R}_\psi(g^*) \). In particular, denote by \(d : \mathcal{H} \rightarrow \mathbb{R} \) the decoding function \(d(u) = \arg \min_{v \in \mathcal{Z}} \|\psi(z), Vv\|_{\mathcal{H}} \). In [11] it is proven that by construction, the QS estimator is Fisher consistent, i.e., \(f^* = d \circ g^* \), with \(f^*, g^* \) as above. Moreover, for any \(g : \mathcal{X} \rightarrow \mathcal{H} \), the comparison inequality holds.
Multilabel and Ranking measures

<table>
<thead>
<tr>
<th>Measure</th>
<th>\mathcal{Z}</th>
<th>Definition</th>
<th>r</th>
<th>A</th>
<th>$\text{INF}_F(\mathcal{Z})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1 (\downarrow)</td>
<td>p_m</td>
<td>$1(z \neq y)$</td>
<td>2^m</td>
<td>$2^{m/2}$</td>
<td>$O(n \land 2^m)$</td>
</tr>
<tr>
<td>Block 0-1 (\downarrow)</td>
<td>p_m</td>
<td>$1(z \in B_i, y \notin B_j, j \in [b])$</td>
<td>b</td>
<td>\sqrt{b}</td>
<td>$O(b)$</td>
</tr>
<tr>
<td>Hamming (\downarrow)</td>
<td>p_m</td>
<td>$\frac{1}{m} \sum_{j=1}^{m} 1(</td>
<td>z_j</td>
<td>\neq</td>
<td>y_j</td>
</tr>
<tr>
<td>F-score (\uparrow)</td>
<td>p_m</td>
<td>$2 \frac{</td>
<td>z \cap y</td>
<td>}{</td>
<td>z</td>
</tr>
<tr>
<td>Prec@k (\uparrow)</td>
<td>$p_{m,k}$</td>
<td>$\frac{</td>
<td>z \cap y</td>
<td>}{</td>
<td>z</td>
</tr>
<tr>
<td>NDCG (\uparrow)</td>
<td>\mathcal{G}_m</td>
<td>$\frac{1}{</td>
<td>\mathcal{Y}</td>
<td>} \sum_{j=1}^{m} G(</td>
<td>r_j</td>
</tr>
<tr>
<td>PD (\downarrow)</td>
<td>\mathcal{G}_m</td>
<td>$\frac{1}{</td>
<td>\mathcal{Y}</td>
<td>} \sum_{i=1}^{m} \sum_{j=1}^{m}</td>
<td>y_i</td>
</tr>
<tr>
<td>MAP (\uparrow)</td>
<td>\mathcal{G}_m</td>
<td>$\frac{1}{</td>
<td>\mathcal{Y}</td>
<td>} \sum_{j=1}^{m} \frac{</td>
<td>y_j</td>
</tr>
</tbody>
</table>

Table 1: Upper bounds for A in Thms. 3.1 and 3.5 and Cor. 3.6 and computational complexity of evaluating the QS estimator in Eq. (9), for a number of widely-used losses for multilabel/ranking problems. See Sec. 3.2 for notation, Sec. 4 for computational considerations and Appendix B for the full derivation of the results.

Finally, by combining the comparison inequality with results on the convergence of \hat{g}_n to g^* (see e.g. [15]), the following theorem holds.

Theorem 2.1 (Thm. 5 of [11]). Let $n \in \mathbb{N}, \lambda_n = n^{-1/2}$ and $\tau > 0$. If L is SELF and $g^* \in \mathcal{G}$, then the following holds with probability at least $1 - 8 e^{-\tau}$,

$$E(\hat{f}_n) - E(f^*) \leq C_{\epsilon_1} \epsilon_2 \max \|L\| \|g^*\|_{\mathcal{G}}^2 n^{-1/4}$$

where $\kappa^2 = \sup_{x} k(x,x)$ and C a universal constant.

Positioning of our contribution. From a theoretical viewpoint the result above holds for any loss on discrete and finite \mathcal{Z}, and shows a learning rate that is $O(n^{-1/4})$. Moreover, from a practical viewpoint, to define and evaluate the QS estimator in Eq. (9) is enough to know only the loss L and a kernel k for \mathcal{X} (no knowledge of $\mathcal{X}, \psi, \varphi$ is required). These considerations show that the QS framework could be a good candidate to systematically solve learning problems with discrete outputs.

However, note that constants of the bound depend on the specific SELF decomposition for L. If we use the one in [11], $\mathcal{K} = \mathbb{R}^{\mathcal{Z}}, \varphi(z) = e_z, \psi(y) = e_y, V = L$, then the constant $c_{\epsilon_1} \epsilon_2 \max \|L\|$ equals the spectral norm of the loss matrix $\|L\|$, which is exponentially large even for highly structured loss functions such as Hamming. In that case $\|L\| = 2^{m-1}$, where m is the number of labels (and a similar behaviour could affect $\|g^*\|_2$). Then Eq. (10) can be totally uninformative if the constants of the rate are exponentially large [12].

In the next section, we prove that by using a suitable SELF-decomposition it is possible to find a version of Eq. (10), that depends only polynomially on the
number of labels n. In particular we find the explicit constants for a number of widely used loss functions for ranking and multilabel learning. Finally we provide a refined generalization bound adaptive to the noise-level of the learning problem.

3 MAIN RESULTS

In this section we study a specific SELF-decomposition for discrete losses, providing a generalization bound in the form of Eq. (10), with explicit constants depending on the specific loss chosen (Thm. 3.1). In Thm. 3.2 and Table 1 we quantify the constants for a number of widely used loss functions for multilabeling and ranking problems, showing that they are always polynomial with respect to the number of labels and in many cases optimal (Remark 3.3). Finally in Thm. 3.5 we generalize Eq. (10) (and so the learning rate in [11]), introducing a Tsybakov-like noise condition for the structured prediction problem.

3.1 Affine decomposition

Motivated by the limitations given by the possible exponential magnitude of the constants in the generalization bound in Eq. (10), we consider another SELF-decomposition of the loss, based on the following affine decomposition of the loss matrix,

$$L = FU^T + cI \tag{11}$$

where $F \in \mathbb{R}^{[2] \times r}, U \in \mathbb{R}^{[y] \times r}, c \in \mathbb{R}$ is a scalar and $I \in \mathbb{R}^{[2] \times [2]}$ is the matrix of ones, i.e. $I_{ij} = 1$ and $r \in \mathbb{N}$. The minimum r for which there exists a decomposition as Eq. (11) is called the affine dimension of the loss L and is denoted affdim(L).

Note that the “centered” loss $L - c$ is SELF with

$$\mathcal{H} = \mathbb{R}^r, \varphi(z) = Fz, \psi(y) = Uy, V = I_{r\times r} \tag{12}$$

where F is the z-th row of F and U_y the y-th row of U. Using the decomposition above, the following theorem gives a new version of the bound Eq. (10) specialized to discrete losses. Before giving the result, note that when we use the SELF-decomposition above for a loss, the conditional expectation g^* is characterized by $g^* : \mathcal{X} \to \mathbb{R}^r, g^*_y(x) = \langle g^*_y(x) \rangle_{j=1}^y$, for $g^*_y : \mathcal{X} \to \mathbb{R}$ defined as $g^*_y(x) = U^{-1}\Pi(x)$, with $U^{-1} \in \mathbb{R}^{[y]}$, the j-th column of U and $\Pi : \mathcal{X} \to \mathbb{R}^{[y]}$, $\Pi(x) = P(y|x)$ the conditional probability of y given x. In particular $g^*_y(x) \leq \max_k e_U(x_k), (U_k)_{j} \text{ is the } k, j\text{-th element of } U$. Finally, \mathcal{G} is isometric to \mathcal{H}^r, since $\mathcal{H} = \mathbb{R}^r$.

Theorem 3.1 (Statistical complexity). Let $n \in \mathbb{N}, \tau > 0$ and $\lambda_n = n^{-1/2}$. Assume that the loss L decomposes as Eq. (11). If $g^* \in \mathcal{G}$, we have that with probability $1 - 8e^{-\tau}$,

$$\mathbb{E}(\hat{f}_n) - \mathbb{E}(f^*) \leq A Q C \kappa \tau^2 n^{-1/4}, \tag{13}$$

where C, κ are as in Thm. 2.1,

$$A = \sqrt{\tau} \|F\|_{\infty} U_{\max}, \quad Q = \max_{1 \leq j \leq r} \|g^*_j/U_{\max}\|_{3\kappa}, U_{\max} = \max_{j,k} |U_{kj}|. \tag{14}$$

Proof. First, note that the excess risk $\mathbb{E}(f) - \mathbb{E}(f^*)$ is the same for L and for $L - c$ for any $c \in \mathbb{R}$, moreover both the definition of f^* and \hat{f} are invariant when $L - c$ is used instead of L. So we bound $\mathbb{E}(\hat{f}) - \mathbb{E}(f^*)$ with Eq. (10) applied to $L - c$, with c as in Eq. (11).

Applying Thm. 2.1 with the affine decomposition in Eq. (12) for $L - c$ and the definition of $c_{V,\psi}$ by [11], we have that $c_{V,\psi} := \sup_{x \in \mathcal{X}} \|F_{ij}\|_2 = \|F\|_{\infty}$ and $\|g^*_j\|_{\infty} = \sum_{k=1}^{y} \|g^*_j\|_{\infty} \leq \kappa \tau \max_{1 \leq j \leq r} \|g^*_j\|_{\infty}$. The final result is obtained by multiplying and dividing by U_{\max}.

The theorem above is essentially a version of Thm. 2.1 where we use the affine decomposition in Eq. (11) for the loss L, making explicit the dependence of the constants on structural properties of the loss, like the affine dimension.

In particular, we explicitly identify three distinct terms A, Q and $C \kappa \tau^2 n^{-1/4}$. The third term is completely explicit and does not depend on the loss nor on the data distribution. It expresses the dependence of the statistical error with respect to the number of examples n and the high probability confidence τ (C is a universal constant and κ the constant of the kernel). The second term depends on the data distribution P and measures in a sense the “regularity” of the most difficult regression scalar function g^*_j defining the surrogate conditional expectation for the given loss. Note that the Q is renormalized by U_{\max} so is invariant to the magnitude of the representation vector ψ. Finally A depends only on the chosen loss and measures the cost of using the QS method as surrogate approach. In the next subsection we give sharp bounds on the constant A for many discrete losses used in practice, together with the computational complexity required to evaluate the QS estimator. In particular, we prove that, contrary to what suggested by [12], A depends only polynomially on the number of labels, making the QS method a good systematic approach to deal with discrete losses.

3.2 Sharp constants for multilabel and ranking losses

In this section (Thm. 3.2, Table 1) we characterize explicitly the constants introduced in Thm. 3.1, for a
number of widely used losses for multi-labeling and ranking problems. In particular we show that they depend only polynomially on the number of labels (or equivalently polylog(|y|, |Z|)). Moreover in Remark 3.3 we show that the bounds obtained for many of the considered losses are sharp in a precise sense [16]. Finally we characterize the computational complexity of evaluating the QS estimator in Eq. (9) for such losses.

In the following we denote by \(m \in \mathbb{N} \) the number of classes of a multi-label/ranking problem, by \(\mathcal{P}_m \) the power-set of \([m] = \{1, \ldots, m\}\) and by \(\mathcal{S}_m \) the set of permutations of \(m \)-elements. In particular note that in the multi-label problems both the output space \(Z \) and the observation space \(\mathcal{Y} \) are equal to \(\mathcal{P}_m \), while in ranking \(Z = \mathcal{S}_m \) and \(\mathcal{Y} = \{1, \ldots, R\}^m = [R]^m \), the set of observed relevance scores for the \(m \) documents where \(R \) is the highest relevance [17]. Finally we denote by \([v]_j \) the \(j \)-th element of a vector \(v \) and we identify \(\mathcal{P}_m \) with \(\{0, 1\}^m \), moreover \(\sigma(j) \) is the \(j \)-th element of the permutation \(\sigma \), for \(\sigma \in \mathcal{S}_m \), \(j \in [m] \).

Theorem 3.2. The constant \(A \) and the computational complexity of the QS estimator for the multi-label losses: 0-1, block 0-1, Hamming, Prec@k, F-score and ranking losses: NDCG-type, PD and MAP, appearing in Table 1 hold.

Proof. We sketch here the analyses for the Hamming loss and the NDCG-type ranking measures. The complete analysis for all the losses is in Appendix B.

Hamming. Let \(m \in \mathbb{N} \) be the number of labels. We represent each output element as a binary vector \((Z_0 = \mathcal{Y} = \{0, 1\}^m) \). We re-write the Hamming loss as \(L(y, y) = \frac{1}{2} - \frac{1}{2m} \sum_{i=1}^{m} s_i(y) s_i(y) \), where \(s_i(y) = 2|y_i| - 1 \). Hence, this corresponds to an affine decomposition by setting \(F_2 = -\frac{1}{2m} s_j(z) \), \(U_y = (s_j(y))^{m+1} \), \(c = \frac{1}{2m} \).

We have that \(r = m, \|F\|_\infty = \frac{1}{2\sqrt{m}} \), \(U_{\max} = 1 \). This implies that \(A = \frac{1}{2} \). Finally, inference corresponds to \(\widehat{f}_j(x) = (\text{sign}(\widehat{g}_j(x)) + 1)/2 \) where \(\widehat{g}_j(x) = \sum_{i=1}^{m} s_j(y_i) \alpha_i(x) \). This is done in \(O(m) \).

NDCG-type. [18, 17, 19] Let \(Z = \mathcal{S}_m \) be the set of permutations of \(m \)-elements and \(\mathcal{Y} = [R]^m \) the set of relevance scores for \(m \) documents. Let the gain \(G : \mathbb{R} \rightarrow \mathbb{R} \) be an increasing function and the discount vector \(D = (D_j)_{j=1}^{m} \) be a coordinate-wise decreasing vector. The NDCG-type losses are defined as the normalized discounted sum of the gain of the relevance scores ordered by the predicted permutation:

\[
L(\sigma, r) = 1 - \frac{1}{N(r)} \sum_{j=1}^{m} G([r]_j) D_{\sigma(j)}, \tag{15}
\]

where \(N(r) = \max_{\sigma \in \mathcal{S}_m} \sum_{j=1}^{m} G([r]_j) D_{\sigma(j)} \) is a normalizer.

Note that looking at Eq. (15) we can directly write that \(r = m \) and

\[
F_\sigma = -(D_{\sigma(j)})_{j=1}^{m}, U_r = \left(\frac{G([r]_j)}{N(r)} \right)_{j=1}^{m}, c = 1. \tag{16}
\]

It follows that, \(\|F\|_\infty = \|D\|_2 \cdot U_{\max} = D_{\max} G_{\max} \), so \(A = \sqrt{mG_{\max} D_{\max} (\sum_{j=1}^{m} D_j^2)^{1/2}} \). For Table 1, assume \(D_1 = 1 \). If we define the vector \(v \in \mathbb{R}^m \) as

\[
v_j = \sum_{i=1}^{n} \frac{G([r]_j) \alpha_i(x)}{N(r_i)}, \quad 1 \leq j \leq m, \tag{17}
\]

then inference corresponds to \(f^*(x) = \text{argmax}_{\sigma \in \mathcal{S}_m} (v) \), which can be done in \(O(m \log m) \) operations. \(\square \)

The key result in Table 1 is that the generalization properties and the computational complexity of the algorithm are both polynomial in the number of labels \(m \) (or equivalently polylog(|y|, |Z|)) for all considered losses except the 0-1, which does not provide any structural information of the observation/output spaces \(y, Z \). This theoretically explains why in discrete structured prediction and in particular multi-labeling and ranking, learning is possible even if the size of the output space is exponentially large compared to the number labels and, potentially, to the number of examples. Moreover this result shows that the Quadratic Surrogate is a valid candidate for systemically addressing learning problems with discrete losses both from a statistical and from a computational viewpoint (in contrast with what conjectured in [12]).

Remark 3.3 (On the sharpness of the QS estimator). It is natural to ask to what extent the statistical rates provided by Thm. 3.1 can be considered representative of the statistical difficulty of solving the problem in Eq. (2). Of course, formally answering this question necessarily requires a study of the corresponding minimax rates under certain priors. In particular, one would be interested in studying the dependence of those rates both in the number of samples and the size of the output space \(Z \).

Although far from answering this question, we can provide a weaker notion of optimality on the framework of surrogate-based methods. In particular, by using the results in [16], we prove that cannot exist a consistent convex surrogate that maps the discrete problem in a vector valued problem of lower dimension than \(r \) (the one used by the QS estimator through the affine decomposition) for the following losses: 0-1, block 0-1, Hamming, Prec@k, NDCG, PD and MAP (see Appendix B).
More in detail, for the Hamming loss we obtain that the statistical complexity of the problem is independent of the number of labels. Intuitively this is explained by the fact that the QS estimator corresponds to estimating the m marginals independently. Our result is to be compared with [12], where they obtain a constant in the order of $O(m^2)$. For Prec@k, we obtain $A = \sqrt{\kappa}$, which is coherent with the intuition that the problem becomes more challenging when k is fixed and m increases. For the F-score the computational bound of the resulting algorithm is essentially in [20]. For the NDCG-type losses, $G : \mathbb{R} \rightarrow \mathbb{R}$, the gain is an increasing function and $D = (D_j)_{j=1}^m \in [0,1]^m$, the discount, is a coordinate-wise decreasing vector. For this family of losses A depends crucially on the discount factor D_j, tending to \sqrt{m} (the constant of Prec@1) for fast decaying D_j and to m for low decaying ones. For PD and MAP, estimating the surrogate function is statistically tractable, but both inference algorithms are NP-Hard (Minimum Weight Feedback Arcset problem (MFWAS) for PD and an instance of Quadratic Assignment Problem (QAP) for MAP), as was already noted in [21].

3.3 Improved rates under low-noise assumption

Intuitively, if there is small noise at the decision boundary between different labels, then it should be statistically easier to discriminate between them. To formalize this intuition, we define the margin $\gamma(x)$ as

$$
\gamma(x) = \min_{z' \neq f^*(x)} \ell(z', x) - \ell(f^*(x), x).
$$ (18)

The margin function γ measures the minimum suboptimality gap in terms of the Bayes risk. If for a given x the margin is small, then its cost at the optimum is very close to the cost at a suboptimal label. We will say that the p-noise condition is satisfied if

$$
P_X(\gamma(X) \leq \varepsilon) = o(\varepsilon^p),
$$ (19)

where P_X is the marginal of P over X, with $p \geq 0$. The parameter p characterizes how fast the noise vanishes at the boundary and corresponds to no assumption when $p = 0$.

Note that Eq. (19) is a generalization of the Tsybakov condition for binary classification [13] and of the condition in [22] for multi-class classification, to general discrete losses. Indeed, for the binary 0-1 loss ($Y = \{-1,1\}$), $\gamma(x) = |E[Y|x]|$, so we recover the classical Tsybakov condition.

Example 3.4 (Generalized Tsybakov for multiclass). For every $P(y|x)$ in the simplex, one associates the corresponding optimal label as $z^* = \arg\min_{z} \ell(z, x)$. Fig. 1 represents the partition of the simplex corresponding to the 0-1 loss for $Z = \{1,2,3\}$. In this case, $\gamma(x)$ corresponds to the distance to the boundary decision depicted in Fig. 1 and so $\{P(y|x) \mid \gamma(x) < \varepsilon\}$ corresponds to the yellow area. Eq. (19) says that the probability of falling in that region vanishes as $o(\varepsilon^p)$.

In the next theorem we improve the comparison inequality of Eq. (6) to take into account the generalized Tsybakov condition for discrete losses of Eq. (19).

Theorem 3.5 (Improved comparison inequality). Assume Y, Z to be finite and γ to satisfy Eq. (19) for $p > 0$. Then the following holds

1. $1/\gamma \in L_p(P_X)$.
2. Assume a decomposition as in Eq. (11) for the loss L. Then, for any bounded measurable $q : X \rightarrow \mathbb{R}$, $E(f) - E(f^*) \leq \gamma_p \sqrt{\kappa (R_{\gamma}(q) - R_{\gamma}(q^*))} \frac{1}{\gamma_p},$ (20)

where $\gamma_p = ||1/\gamma||_{L_p(P_X)}$. $q = (16||F||^2_X \kappa \gamma^2 \gamma_{\text{loss}}q_{\text{loss}})^{1/2}.$

The proof of the first part can be found in Lemma A.7, while the second part is Cor. A.11, both in the Appendix A. As you can note, the comparison inequality of Eq. (6) is recovered when $p = 0$ (i.e. when the generalized Tsybakov condition is always verified), while an exponent close to 1, instead of 1/2 is obtained when $p \geq 0$. Finally, by using the improved comparison inequality we refine the rates for the QS estimator in Thm. 3.1.

Corollary 3.6 (Improved rates). Under the p-noise condition, we have the following improvement on the generalization bound in Eq. (13),

$$
\mathbb{E}(\tilde{f}_n) - \mathbb{E}(f^*) \leq C \frac{1}{\gamma_p} \left(A^2 Q^2 \kappa^2 \gamma^2 n^{-1/4} \right)^{1/2},
$$ (21)

with C universal constant and A, Q, κ as in Thm. 3.1.

Note that the result of Thm. 3.1 is recovered for $p = 0$ (always verified), while we obtain a learning rate essentially in the order of $n^{-1/2}$, instead of $n^{-1/4}$, in conditions of low-noise (i.e. $p \gg 0$).
4 COMPUTATIONAL CONSIDERATIONS

As already observed in [11]: (1) the computation of the QS estimator (Eq. (9)) is divided in training step and inference step (or evaluation step), (2) the SELF-decomposition of the loss is not needed to run the algorithm, but only to derive the theoretical guarantees. Here we show how the explicit knowledge of the affine decomposition of the loss can be useful to improve also the computational implications have been studied in Sec. 3.1. First we recall the training and test steps.

Training. The training step requires only to have a kernel function k over \mathcal{X} and to have access to the training input examples $(x_i, y_i)_{i=1}^n$. It consists essentially in computing the inverse of the kernel matrix necessary for the second step, i.e. $W = (K + \lambda n I)^{-1}$, with K defined in Eq. (8).

Evaluation. The evaluation step requires only the knowledge of the loss L and to have access to the train observations $(y_i)_{i=1}^n$. Given a test input point $x \in \mathcal{X}$, it consists in: first, computing the coefficients $(\alpha(x))_{i=1}^n$ according to Eq. (8), i.e. $\alpha(x) = WKx$, with the notation in Eq. (8); second predicting the output $z \in \mathcal{Z}$ associated to the test input x, by solving Eq. (9).

4.1 Using the affine decomposition to speed up the QS estimator

Note that, to run the algorithm described above, only the loss L and kernel k are needed. This makes the QS-method (1) systematically applicable to any supervised learning problem with discrete loss, since it does not require to devise a specific surrogate for each loss (2) theoretically grounded with basic guarantees from [11] in terms of consistency and learning rates. Indeed note that the SELF-decomposition in terms of $\mathcal{F}, \varphi, \psi$ for the loss and in particular the affine decomposition of Eq. (11) is needed only to prove the sharper guarantees in Thms. 3.1, 3.2 and 3.5 and Cor. 3.6.

However it is possible to additionally exploit the affine decomposition to have even a computational benefit for the presented algorithm, as we are going to show in the rest of the section.

Improved training when U is known. When we know the affine decomposition of the loss, we have $\mathcal{X} = \mathbb{R}^r$ and $\psi(y) = Uy$, so we can compute explicitly the solution to Eq. (7) [15], $\hat{g}_n : \mathcal{X} \rightarrow \mathbb{R}^r$ that is $\hat{g}_n(x) = \sum_{i=1}^n k(x, x_i)C_i$, where $C_i \in \mathbb{R}^r$ is the i-th row of $C \in \mathbb{R}^{n \times r}$, the solution of the linear system

$$ (K + \lambda n I)C = \Psi^T, $$

with $\Psi = (\psi(y_1), \ldots, \psi(y_n)) \in \mathbb{R}^{r \times n}$. This is the same as solving r scalar KRR problems independently and its computation can be efficiently reduced from essentially $O(n^2r)$ to $O(n \sqrt{nr})$ via suitable random projection techniques [24, 25, 26].

Improved evaluation when F is known. Given a test point $x \in \mathcal{X}$, first we evaluate $\theta := \hat{g}_n(x) \in \mathbb{R}^r$, requiring essentially $O(nr)$ (up to $O(\sqrt{nr})$ by using random projection techniques [24, 25, 26]). Then we use the characterization of $f_n(x) = (d \circ \hat{g}_n)(x) = d \circ \theta$, to obtain the equivalent problem

$$ \min_{z \in \mathcal{Z}} F_z \theta, $$

(22)

where $F_z \in \mathbb{R}^r$ is the z-th row of F (see Eqs. (11) and (12)) and \cdot the dot-product. The computational complexity of Eq. (22) (we denote it by $\text{INF}_F(\|z\|)$ has been devised for a number of widely used losses in Thm. 3.2, Table 1 (see Appendix B for the proofs).

5 NUMERICAL EXPERIMENTS

We perform numerical experiments for the QS-estimator on multilabeling (9 datasets [27]) and ranking problems (1 dataset [28]), see Table 2. We use three evaluation measures for multilabel, namely, 0-1, Hamming and F-score, and NDCG@k for ranking (in the NDCG-type family [18]), which have been theoretically analysed in Sec. 3 and Table 1. All experiments are performed using 60% of the dataset for training, 20% for validation and 20% for testing. We compare the performance of the QS-estimator with a threshold-based method, which we denote by THBM [23], and the Structural SVM [9] (SSVM). THBM is a common method for multilabelling where learning is done in two stages. The method first estimates the m marginals $\hat{g}_n(\cdot)$ and then learns the best threshold function $\bar{t}(\cdot)$ minimizing via least-squares the measure of interest. The inference is performed via thresholding the estimated marginals by $\bar{t}(x)$ (see Sec. 2 in [23]). The SSVM corresponds to the multilabel-SVM [29], which is an instance of the SSVM with unary potentials that optimizes the Hamming loss. Note that we have used the same multilabel-SVM for all multilabel losses; for the F-score, there is no principled way of optimizing the measure with SSVMs. The experimental results in Table 2 show that the QS-estimator outperforms the other methods for 0-1 loss and F-score. Indeed, the method depends on the loss and is designed to be consistent with it. THBM achieves approximately the same accuracy for Hamming as it is based on estimating the marginals, while the SSVM is proven to be inconsistent even in this case [30], as the experimental result empirically shows. For the ranking experiment, we have used the SSVM from [9] called RankSVM as baseline to compare with the QS-estimator. The algorithm corresponding to the QS-estimator for NDCG, which
corresponds to the one in [17] for this measure, outperforms the SSVM. This highlights the importance of consistency in learning, and the importance of making the algorithm dependent on the measure willing to use for evaluation.

6 RELATED WORKS & DISCUSSION

While the QS for structured prediction generalizes the QS for binary classification, Structural SVMs (SSVMs) [8, 2] and Conditional Random Fields (CRFs) [5, 6, 31] generalize the binary SVM and logistic regression to the structured case. All of them are surrogate methods based on minimizing the expected risk of a certain surrogate loss \(S(v, y) : \mathcal{C} \times \mathcal{Y} \to \mathbb{R} \) in a convex surrogate space \(\mathcal{C} \). The corresponding surrogates are \(S_{QS}(v, y) = \|v - U_y\|_2^2 \), \(S_{SSVM}(v, y) = \max_{y' \in \mathcal{Y}} (v_{y'} + L(y', y)) - v_y \) and \(S_{CRF}(v, y) = \log(\sum_{y' \in \mathcal{Y}} \exp v_{y'}) - v_y \) (See Examples in Appendix A.1) for QS, SSVM and CRF, respectively. SSVMs and CRFs exploit the structure of the problem by decomposing each output element into cliques and considering only the features on this parts. This is necessary for the tractability of the methods. Moreover, for SSVMs, the loss \(L \) must decompose into these cliques to make possible the maximization inside the surrogate, often called augmented inference. The clique decomposability of the loss, can be seen as a low rank decomposition, analogous to our SELF-decomposition. While the QS has attractive statistical properties, it is generally not the case for the other surrogate methods. CRFs are only consistent for the 0-1 loss in the case that the model is well-specified [31]. This lack of calibration to a given loss is an important drawback of this method [7]. SSVMs are in general not Fisher consistent, even for the 0-1 loss, for which is only consistent if the problem is deterministic, i.e, there always exists a majority label \(y \) with probability larger than 1/2 [32].

QS for structured prediction. [21] proposed the QS through an affine decomposition of the loss and derived Fisher consistency of the corresponding surrogate method. They analyzed the inference algorithms for Prec@k, ERU (NDCG-type measure that we study in Appendix B), PD and NDC. As Fisher consistency is a property only at the optimum, their analysis is not able to provide any statistical guarantees. [17] analyzes consistency and calibration properties for the QS specialized for NDCG-type losses. In particular, they highlight the fact that estimating the normalized relevance scores is key to be consistent, which is a property that follows directly from our framework.

As far as we know, [12] is the only work that addresses the learning complexity of general discrete losses for structured prediction. They consider a different QS surrogate than ours, which could be potentially intractable to compute since it is defined on the space of labels (even when the loss is low-rank) \(\mathbb{E} \|Fg(X) - L(Y, Y)\|_2^2 \), and not in the low dimensional space of the decomposition \(\mathbb{E} \|g(X) - U_Y\|_2^2 \). They also obtain rates of the form \(\propto n^{-1/4} \), however, their constants are always larger than ours and computed explicitly only for a small number of loss functions. In particular, for A, they obtain \(O(2^{m/2}), O(b), O(m^3) \), while we obtain \(O(2^{m/2}), O(\sqrt{b}), O(1) \) for the 0-1, block 0-1 and Hamming, respectively. In addition, our constants are interpretable and most of them can be proven to be optimal (in the sense explained in Remark 3.3). Finally we provide a refined bound adaptive to the noise of the problem as in Cor. 3.6.

To conclude, [16] introduces and studies the concept of convex calibration dimension. We use their lower bound on this quantity to study the optimality of the dimension of the QS as reported in Remark 3.3.
References

