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A MOTIVATING EXPERIMENT: IMPORTANCE OF ESTIMATOR

Crowdsourcing is a primary marketplace to get labels on training datasets, to be used to train machine learning
models. In this section, using both semi-synthetic and real datasets, we investigate the impact of having higher
quality labels on real-world machine learning tasks. We show that sophisticated regression algorithms like BI
can produce high quality labels on the crowdsourced training datasets, improving the end-to-end performance
of convolutional neural network (CNN) on visual object detection or human age prediction. This highlights the
importance of estimator but also justifies the use of the proposed BI, in a real world system.

A.1 Visual Object Detection

Emulating a crowdsourcing system. To do so, we use PASCAL visual object classes (VOC) datasets from
(Everingham et al., 2015): VOC-07/12 consisting of 40, 058 annotated objects in 16, 551 images. Each object is
annotated by a bounding box expressed by two opposite corner points. We emulate the crowdsourcing system
with a random (` = 3, r = 10)-regular bipartite graph where each image is assigned to 3 workers and each worker
is assigned 10 images (' 24.2 objects on average) to draw the bounding boxes of every object in the assigned
images. Each worker has variance drawn uniformly at random from support S = {10, 1000}. and generates noisy
responses of which examples are shown in Figure S1.

(a) When σ2
u = 10 (b) When σ2

u = 1000

Figure S1: Examples of object annotations by a worker u with σ2
u = 10 or 1000.

Evaluation on visual object detection task. Using each training dataset from four different estimators
(Average, NBI, BI, Strong-Oracle), we train1 CNN of single shot multibox detector (SSD) model (Liu et al.,
2016), which shows the state-of-the-art performance. Then we evaluate the trained SSD’s in terms of the mean
average precision (mAP) which is a popular benchmarking metric for the datasets (see Table S1). Intuitively, a
high mAP means more true positive and less false positive detections.

Comparing mAP of Average, mAP’s of BI and NBI are 4% mAP higher as Figure S2 also visually shows the
improvement. Note that achieving a similar amount of improvement is highly challenging. Indeed, Faster-RCNN
in (Ren et al., 2015) is proposed to improve the mAP of Fast-RCNN in (Girshick, 2015) from 70.0% to 73.2%.
Later, SSD in (Liu et al., 2016) is proposed to achieve 4% mAP improvement over Faster-RCNN.

1As suggested by (Liu et al., 2016), we train SSD using 120, 000 iterations where the learning rate is initialized at
4 × 10−5, and is decreased by factor 0.1 at 80, 000-th and 100, 000-th iterations.
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Table S1: Estimation quality of Average, NBI, BI, and Strong-Oracle on crowdsourced VOC-07/12 datasets from
virtual workers in terms of MSE, and performance of SSD’s trained with the estimated dataset and ground truth
(VOC-07/12) in terms of mean average precision (mAP); mean portion of the output bounding box overlapped
on the ground truth (Overlap).

Estimator
Data noise Testing accuracy

(MSE) (mAP) (Overlap)
Average 355.6 71.80 0.741
NBI 116.1 75.62 0.767
BI 109.8 75.94 0.772

Strong-Oracle 109.8 76.05 0.774
Ground truth - 77.79 0.784
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Figure S2: Examples of detections of SSD trained by the crowdsourced VOC-07/12 datasets by Average, NBI, BI,
and Strong-Oracle.

A.2 Human Age Prediction

Real-world dataset. We also perform similar experiment using datasets from a real-world crowdsourcing
system. We use FG-NET datasets which has been widely used as a benchmark dataset for facial age estimation
(Lanitis, 2008). The dataset contains 1, 002 photos of 82 individuals’ faces, in which each photo has biological
age as ground truth. Furthermore, (Han et al., 2015) provide crowdsourced labels on FG-NET datasets, in which
165 workers in Amazon Mechanical Turk (MTurk) answer their own age estimation on given subset of 1, 002
photos so that each photo has 10 answers from workers, while each worker provides a different number (from 1
to 457) of answers, and 60.73 answers in average.

In the dataset, we often observe two extreme classes of answers for a task: a few outliers and consensus among
majority. For example, for Figures S3(a) and S3(b), there exist noisy answers 5 and 7, respectively, which
are far from majority 1 and 55, respectively. Such observations suggest to choose a simple support, e.g. S =
{σ2

good, σ
2
bad}. In particular, without any use of ground truth, we first run NBI and use the top 10% and bottom

10% workers’ reliabilities as the binary support, which is Sest = {6.687, 62.56} in our experiment.

Evaluation on human age prediction task. We first compare the estimation of BI to other algorithms as
reported in Table S2. Observe that MSE of BI with the binary support Sest is close to that of Strong-Oracle,
while the other algorithms have some gaps. This result from real workers supports the idea of simplified workers’
noise level in our model. We also evaluate the impact on de-noising process for human age prediction. To
this end, using the pruned datasets from different estimators, we train2 one of the state-of-art CNN models,
called VGG-16 (Simonyan and Zisserman, 2014), under some modification proposed by (Rothe et al., 2015) for
human age prediction. Although the crowdsourced dataset FG-NET is not large-scale in order to see performance

2 We train VGG-16 using batch normalization with standard hyper parameter setting, where we initialize based on the
imagenet pre-trained model. To regressed the estimated age of the given face images, we replaced final layer of VGG-16
with one dimensional linear output layer, and fine-tuned all the layers with initial learning rate 0.01 (and divided by 10
after 30, 60, 90 epoch). Protocol of measuring model performance is standard Leave One Person Out (LOPO) which uses
images of 81 subjects for training and use remaining subject for test, and the final result is averaged over the total 82
model training (Panis et al., 2016).
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Table S2: Estimation quality of Average, NBI, BI with Sest, and
Strong-Oracle on crowdsourced FG-NET datasets from Amazon
MTurk workers in terms of MSE, and performance of VGG-16’s
trained with the estimated datasets and the ground truth dataset
(FG-NET) in terms of median absolute error (MDAE).

Estimator
Data noise Testing error

(MSE) (MDAE)
Average 34.99 3.227
NBI 32.80 3.135
BI 28.72 3.100

Strong-Oracle 28.45 3.003
Ground truth - 1.822

(a) 1-year-old (b) 35-year-old

Figure S3: Easy and hard samples from FG-
NET in terms of average absolute error of
crowd workers’ answers: (1,1,1,1,1,1,1,1,2,5)
and (7,51,52,55,55,55,59,63,66,67) on photo
of (a) 1-year-old, and (b) 35-year-old, resp.

difference, models trained by both BI and NBI show superiority to that of Average (which is widely used in
practical crowdsourcing systems), in terms of median absolute errors (MDAE), as reported in Table S2.

B MODEL DERIVATIONS

B.1 Calculation of µ̄

We first show that the posterior density of µi given Ai = yi := {yiu ∈ Rd : u ∈ Mi} and σ2
Mi

is a Gaussian
density in the following:
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where we define σ̄2
i : SMi → R and µ̄i : Rd×Mi × SMi → Rd as follows
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The Gaussian posterior density (S2) follows from:
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The Gaussian density in (S2) leads to the posterior mean, which is weighted average of the prior mean and the
worker responses, each weighted by the inverse of its variance:

E[µi |Ai, σ2
Mi

] = µ̄i(Ai, σ
2
Mi

) .

Thus, the optimal estimator µ̂∗i (A) is given as (2).
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B.2 Factorization of Joint Probability

Using Bayes’ theorem, it is not hard to write the joint probability of σ2 given A = y = {yiu ∈ Rd : (i, u) ∈ E},

P[σ2 |A = y] ∝ fA[y |σ2] =
∏
i∈V

fAi [yi |σ2
Mi

] =
∏
i∈V
Ci(yi, σ2

Mi
) .

C PROOFS OF LEMMAS

C.1 Proof of Lemma 1

We first introduce an inference problem and connect its error rate to the expectation of likelihood of worker ρ’s
σ2
ρ given A. Let sρ ∈ {1, . . . , S} be the index of σ̃2

ρ, i.e., σ̃2
ρ = σ2

sρ . Consider the classification problem recovering
given but latent s from Aρ,2k, where Aρ,2k is generated from the crowdsourced regression model with fixed but
hidden σ2 = σ̃2. More formally, the problem is formulated as the following optimization problem:

minimize
ŝρ:estimator

P[sρ 6= ŝρ(Aρ,2k)] (S3)

where the optimal estimator, denoted by ŝ∗ρ, minimizes the classification error rate. From the standard Bayesian
argument, the optimal estimator ŝ∗ρ is given Aρ,2k as

ŝ∗ρ(Aρ,2k) := arg max
s′ρ=1,...,S

P[sρ = s′ρ |Aρ,2k] . (S4)

From the construction of the optimal estimator in (S4), it is not hard to check

Pσ̃2 [sρ = ŝ∗ρ(Aρ,2k)] := P[sρ = ŝ∗ρ(Aρ,2k) |σ2 = σ̃2] ≤ Eσ̃2

[
P[σ2

ρ = σ̃2
ρ |Aρ,2k]

]
. (S5)

Thus an upper bound of the average error rate of an estimator for (S3) will provide an upper bound of
Eσ̃2

[
P[σ2

ρ 6= σ̃2
ρ |Aρ,2k]

]
since the optimal estimator minimizes the average error rate. Indeed, we have

Eσ̃2

[
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]
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]
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= min
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P[sρ 6= ŝρ(Aρ, 2k)] .

Consider a simple estimator for (S3), denoted by ŝ†ρ, which uses only Aρ,2 ⊂ Aρ,2k as follows:

ŝ†ρ(Aρ,2) = arg min
s′ρ=1,...,S

∣∣∣(σ2
s′ρ

+ σ2
avg(S))− σ̂2(Aρ,2k)

∣∣∣ (S6)

where we define
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From now on, we condition σ2
∂2ρ additionally to σ2

ρ where ∂2ρ is the set of ρ’s grandchildren in Gρ,2. For every
i ∈ Nρ, we define

ai :=
∑

u∈Mi\{ρ}

σ̃2
u

(`− 1)2
+ σ̃2

ρ , and Zi :=

∑
u∈Mi\{ρ}Aiu

`− 1
−Aiρ .

Since the conditional density of Zi given σ2 = σ̃2 is φ(Zi | 0, ai), the conditional density of ‖Zi‖22/ai is χ2-
distribution with degree of freedom d. In addition, it is not hard to check that ‖Zi‖22 is sub-exponential with
parameters ((2ai

√
d)2, 2ai) such that for all |λ| < 1

2ai
,

Eσ̃2

[
exp

(
λ
(
‖Zi‖22 − dai

))]
=

(
e−aiλ√
1− 2aiλ

)d
≤ exp

(
(2ai
√
d)2λ2

2

)
.
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Thus it follows that for all |λ| ≤ mini∈Nρ
1

2ai
,
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λ ∑
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√
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2

)
.

From this, it is straightforward to check that rσ̂2(Aρ,2) =
∑
i∈Nρ ‖Zi‖

2
2 is sub-exponential with parameters

((6σ2
max

√
d)2, 6σ2

max) since

0 ≤ ai ≤ σ2
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(
`+ 1

`− 1

)
≤ 3σ2

max . (S7)

Using Bernstein bound, we have

Pσ̃2

[∣∣∣∣∣σ̂2(Aρ,2)−
∑
i∈Nρ ai

r

∣∣∣∣∣ ≥ ε

4

]
≤ 2 exp

(
− εr

48σ2
max

)
(S8)

where we let Pσ̃2 denote the conditional probability given σ2 = σ̃2. Using Hoeffding bound with (S7), it follows
that

Pσ̃2

[∣∣∣∣∣
∑
i∈Nρ ai

r
−
(
σ2
avg(S) + σ2

ρ

)∣∣∣∣∣ ≥ ε

4

]
≤ 2 exp

(
− ε2r

8σ2
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)
. (S9)

Combining (S8) and (S9) and using the union bound, it follows that

Pσ̃2

[
sρ 6= ŝ†ρ(Aρ,2)

]
≤ Pσ̃2

[∣∣σ̂2(Aρ,2)− (σ2
avg(S) + σ2
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≤ 2

(
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− ε2r

8(8ε+ 1)σ2
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)
(S10)

where for the first inequality we use |σ2
s′ − σ2

s′′ | ≥ ε for all 1 ≤ s′, s′′ ≤ S such that s′ 6= s′. Hence, noting that
ŝ† cannot outperform the optimal one ŝ∗ in (S5), this performance guarantee on ŝ† in (S10) completes the proof
of Lemma 1.

C.2 Proof of Lemma 2

We begin with the underlying intuition on the proof. As Lemma 1 states, if there is the strictly positive gap ε > 0
between σ2

min and σ2
max, one can recover σ2

ρ ∈ {σ2
min, σ

2
max} with small error using only the local information, i.e.,

Aρ,2k. On the other hand, A \ Aρ,2k is far from ρ and is less useful on estimating σ2
ρ. In the proof of Lemma 2,

we quantify the decaying rate of information w.r.t. k.

We first introduce several notations for convenience. For u ∈Wρ,2k, let Tu = (Vu,Wu, Eu) be the subtree rooted
from u including all the offsprings of u in tree Gρ,2k. Note that Tρ = Gρ,2k. We let ∂Wu ⊂ Wρ,2k denote the
subset of worker on the leaves in Tu and let Au := {Aiv : (i, v) ∈ Eu}. Since each worker u’s σ2

u is a binary
random variable, we define a function su : S → {+1,−1} for the given σ̃2 as follows:

su(σ2
u) =

{
+1 if σ2

u = σ̃2
u

−1 if σ2
u 6= σ̃2

u .

It is enough to show

Eσ̃2

[∣∣∣P[sρ(σ
2
ρ) = +1 |Aρ,2k, σ2

∂Wρ
]− P[sρ(σ

2
ρ) = +1 |Aρ,2k]

∣∣∣] ≤ 2−k (S11)
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since for each u ∈W , P[σ2
u = σ2

1 ] = P[σ2
u = σ2

2 ] = 1
2 .

To do so, we first define

Xu := 2P[su(σ2
u) = +1 |Au]− 1 , and Yu := 2P[su(σ2

u) = +1 |Au, , σ2
∂Wρ

]− 1

so that we have ∣∣∣P[sρ(σ
2
ρ) = +1 |Aρ,2k, σ2

∂Wρ
]− P[sρ(σ

2
ρ) = +1 |Aρ,2k]

∣∣∣ =
1

2
|Xρ − Yρ| .

Using the above definitions of Xu and Yu and noting |Xu − Yu| ≤ 2, it is enough to show that for given non-leaf
worker u ∈Wρ \ ∂Wρ,

Eσ̃2

[∣∣Xu − Yu
∣∣] ≤ 1

2|∂2u|
∑
v∈∂2u

Eσ̃2

[∣∣Xv − Yv
∣∣] (S12)

where we let ∂2u denote the set of grandchildren of u in Tu.

To do so, we study certain recursions describing relations among X and Y . For notational convenience, we define
g+
iu and g−iu as follows:

g+
iu(X∂ui;Ai) :=

∑
σ′2Mi
∈SMi :σ′2u =σ̃2

u

Ci(Ai, σ′2Mi
)
∏
v∈∂ui

1 + sv(σ
′2
v )Xv

2

g−iu(X∂iu;Ai) :=
∑

σ′2Mi
∈SMi :σ′2u 6=σ̃2

u

Ci(Ai, σ′2Mi
)
∏
v∈∂ui

1 + sv(σ
′2
v )Xv

2
.

where we may omit Ai in the argument of g+
iu and g−iu if Ai is clear from the context. Recalling the factor form

of the joint probability of σ2, i.e., and using Bayes’ theorem with the fact that P[su(σ2
u) = +1 |Au] = 1+Xu

2 and
some calculus, it is not hard to check

g+
iu(X∂ui;Ai) ∝ P

[
su(σ2

u) = +1 |Ai, X∂ui

]
(S13)

g−iu(X∂iu;Ai) ∝ P
[
su(σ2

u) = −1 |Ai, X∂ui

]
. (S14)

From the above, it is straightforward to check that

Xu = hu(X∂2u)

:=

∏
i∈∂u g

+
iu(X∂ui)−

∏
i∈∂u g

−
iu(X∂ui)∏

i∈∂u g
+
iu(X∂ui) +

∏
i∈∂u g

−
iu(X∂ui)

(S15)

where we let ∂u be the task set of all the children of worker u and ∂ui be the worker set of all the children of i
in tree Tu. Similarly, we also have

Yu = hu(Y∂2u) .

For simplicity, we now pick an arbitrary worker u ∈ Wρ which is neither the root nor a leaf, i.e., u /∈ ∂Wρ and
u 6= ρ, so that

∣∣∂2u
∣∣ = (`− 1)(r− 1). It is enough to show (S12) for only u. To do so, we will use the mean value

theorem. We first obtain a bound on the gradient of hu(x) for x ∈ [−1, 1]∂
2u. Define g+

u (x) :=
∏
i∈∂u g

+
iu(x∂ui)

and g−u (x) :=
∏
i∈∂u g

−
iu(x∂ui). Using basic calculus, we obtain that for v ∈ ∂ui,

∂hu
∂xv

=
∂

∂xv

g+
u − g−u
g+
u + g−u

=
2

(g+
u + g−u )2

(
g−u

∂g+
u

∂xv
− g+

u

∂g−u
∂xv

)
=

2g+
u g
−
u

(g+
u + g−u )2

(
1

g+
iu

∂g+
iu

∂xv
− 1

g−iu

∂g−iu
∂xv

)
.
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Using the fact that for x ∈ [−1, 1]∂
2u, both g+

u and g−u are positive, it is not hard to show that

g+
u g
−
u

(g+
u + g−u )2

≤

√
g−u

g+
u
. (S16)

We note here that one can replace g−u /g
+
u with g+

u /g
−
u in the upper bound. However, in our analysis, we use (S16)

since we will take the conditional expectation Eσ̃2 which takes the randomness of A generated by the condition
σ2 = σ̃2. Hence Xu and Yu will be closer to 1 than −1 thus g−u /g

+
u will be a tighter upper bound than g+

u /g
−
u .

From (S16), it follows that for x ∈ [−1, 1]∂
2u and v ∈ ∂ui,∣∣∣∣∂hu∂xv

(x)

∣∣∣∣ ≤ |g′uv(x∂ui)| ∏
j∈∂u : j 6=i

√√√√g−ju(x∂uj)

g+
ju(x∂uj)

where we define

g′uv(x∂ui) := 2

√
g−iu(x∂ui)

g+
iu(x∂ui)

(
1

g+
iu(x∂ui)

∂g+
iu(x∂ui)

∂xv
− 1

g−iu(x∂ui)

∂g−iu(x∂ui)

∂xv

)
.

Further, we make the bound independent of x∂ui ∈ [−1, 1]∂ui by taking the maximum of |g′uv(x∂ui)|, i.e.,

∣∣∣∣∂hu∂xv
(x)

∣∣∣∣ ≤ ηi(Ai) ∏
j∈∂u : j 6=i

√√√√g−ju(x∂uj ;Aj)

g+
ju(x∂uj ;Aj)

(S17)

where we define

ηi(Ai) := max
x∂ui∈[−1,1]∂ui

g′uv(x∂ui;Ai) .

Now we apply the mean value theorem with (S17) to bound |Xu − Yu| = |hu(X∂2u)− hu(Y∂2u)| by |Xv − Yv| of
v ∈ ∂2u. It follows that for given X∂2u and Y∂2u, there exists λ′ ∈ [0, 1] such that

|Xu − Yu| = |hu(X∂2u)− hu(Y∂2u)|

≤
∑
i∈∂u

∑
v∈∂ui

|Xv − Yv|
∣∣∣∣∂hu∂xv

(λ′X∂2u + (1− λ′)Y∂2u)

∣∣∣∣
≤
∑
i∈∂u

∑
v∈∂ui

|Xv − Yv|ηi(Ai)
∏

j∈∂u:j 6=i

max
λ∈[0,1]


√√√√g−ju(λX∂uj + (1− λ)Y∂uj ;Aj)

g+
ju(λX∂uj + (1− λ)Y∂uj ;Aj)

 . (S18)

where for the first and last inequalities, we use the mean value theorem and (S17), respectively. We note that
each term in an element of the summation in the RHS of (S18) is independent to each other. Thus, it follows
that

Eσ̃2 [|Xu − Yu|]

≤
∑
i∈∂u

∑
v∈∂ui

Eσ̃2 [|Xv − Yv|]Eσ̃2 [ηi(Ai)]
∏

j∈∂u:j 6=i

Eσ̃2

[
max
λ∈[0,1]

Γju(λX∂uj + (1− λ)Y∂uj)

]
(S19)

where we define function Γiu(x∂ui;Ai) for given x∂ui ∈ [−1, 1]∂ui as follows:

Γiu(x∂ui) :=

√
g−iu(x∂ui;Ai)

g+
iu(x∂ui;Ai)

.

Note that the assumption on σ2
min and σ2

max, i.e., σ2
min + ε ≤ σ2

max <
5
2σ

2
min. This implies(

− 1

σ2
max

+
1

σ2
min

)
3

2
− 1

σ2
max

< 0 .
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Hence, for constant ` and ε > 0, it is not hard to check that there is a finite constant η with respect to r such
that

max
σ̃2

Eσ̃2 [ηi(Ai)] ≤ η < ∞ (S20)

where η may depend on only ε, σ2
min, and σ2

max.

In addition, we also obtain a bound of the last term of (S19), when r is sufficiently large, in the following lemma
whose proof is presented in Section C.3.

Lemma 1. For given σ̃2
Mi
∈ SMi and u ∈ Mi, let σ̃′2Mi

∈ SMi be the set of σ̃′2v such that σ̃2
u 6= σ̃′2u and σ̃2

v = σ̃′2v
for all v ∈Mi \ {u}. Then, there exists a constant C ′`,ε such that for any r ≥ C ′`,ε,

Eσ̃2

[
max
λ∈[0,1]

Γiu(λX∂ui + (1− λ)Y∂ui)

]
≤ 1− ∆min

2
< 1,

where we let ∆min be the square of the minimum Hellinger distance between the conditional densities of Ai given
two different σ′2Mi

and σ′′2Mi
, i.e.,

∆min := min
σ2
Mi
,σ′2Mi

∈SMi :σ2
v 6=σ′2v ∃v∈Mi

H2(fAi |σ′2Mi
, fAi |σ′′2Mi

) > 0 .

Using the above lemma, we can find a sufficiently large constant C`,ε ≥ C ′`,ε such that if |∂u| = r ≥ C`,ε,∏
j∈∂u:j 6=i

Eσ̃2

[
max
λ∈[0,1]

Γju(λX∂uj + (1− λ)Y∂uj)

]
≤ η (1− ψmin)

C`,ε−2

2

≤ 1

2(`− 1)(C`,ε − 1)
≤ 1

2(`− 1)(r − 1)

which implies (S12) with (S19) and completes the proof of Lemma 2.

C.3 Proof of Lemma 1

We first obtain a bound on Xv and Yv for v ∈ ∂ui. Noting that v is a non-leaf node in Gρ,2k and |∂v| = r − 1,
Lemma 1 directly provides

Eσ̃2

[
P[σ2

v 6= σ̃2
v |Av,2k]

]
= Eσ̃2

[
1−Xv

2

]
≤ 4 exp

(
− ε2

8(8ε+ 1)σ2
max

(r − 1)

)
.

Using Markov inequality for 1−Xv
2 ≥ 0, it is easy to check that for any δ > 0,

Pσ̃2 [Xv < 1− δ] ≤ 8

δ
exp

(
− ε2

8(8ε+ 1)σ2
max

(r − 1)

)
. (S21)

Note that

4 exp

(
− ε2

8(8ε+ 1)σ2
max

(r − 1)

)
≥ Eσ̃2

[
P[σ2

v 6= σ̃2
v |Av]

]
≥ Eσ̃2

[
P[σ2

v 6= σ̃2
v |Av, A−v]

]
= Eσ̃2

[
1− Yv

2

]
.

Hence, we have the same bound in (S21) for Yv, i.e.,

Pσ̃2 [Yv < 1− δ] ≤ 8

δ
exp

(
− ε2

8(8ε+ 1)σ2
max

(r − 1)

)
.

Using the assumption that σ2
min + ε ≤ σ2

max <
5
2σ

2
min, similarly to (S20), we can find finite constants η′ and η′′

with respect to r such that for all x ∈ [0, 1]∂ui,

max
σ̃′2

Eσ̃′2 [|Γiu(x)|] ≤ η′ , and max
σ̃′2

Eσ̃2

[∣∣∣∣∂Γiu(x)

∂xv

∣∣∣∣] ≤ η′′.
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Then, it follows that for given δ > 0,

Eσ̃2

[
max
λ∈[0,1]

Γiu(λX∂ui + (1− λ)Y∂ui)

]
≤ (1− Pσ̃2 [Xv > 1− δ and Yv > 1− δ , ∀v ∈ ∂ui]) max

x∈[−1,1]∂ui
Eσ̃2 [Γiu(x)] + max

x∈[1−δ,1]∂ui
Eσ̃2 [Γiu(x)]

≤

( ∑
v∈∂ui

Pσ̃2 [Xv ≤ 1− δ] + Pσ̃2 [Yv ≤ 1− δ]

)
max

x∈[−1,1]∂iu
Eσ̃2 [Γiu(x)] + max

x∈[1−ε,1]∂iu
Eσ̃2 [Γiu(x)] (S22)

≤rη′ 8
δ

exp

(
− ε2

8(8ε+ 1)σ2
max

(r − 1)

)
+ max
x∈[1−δ,1]∂iu

Eσ̃2 [Γiu(x)] (S23)

≤rη′ 8
δ

exp

(
− ε2

8(8ε+ 1)σ2
max

(r − 1)

)
+ δη′′ + Eσ̃2 [Γiu(1∂ui)] (S24)

where for (S22), (S23), and (S24), we use the union bound, (S21), and the mean value theorem, respectively. We
will show there exists constant ∆ such that Eσ̃2 [Γiu(1∂ui)] ≤ 1−∆, since the first term in (S24) is exponentially
decreasing with respect to r thus there exists a constant C ′`,ε such that for r ≥ C ′`,ε,

Eσ̃2

[
max
λ∈[0,1]

Γiu(λX∂ui + (1− λ)Y∂ui)

]
≤ 1− ∆

2
.

Recalling the property of g+
iu and g−iu in (S13) and (S14), it directly follows that

Eσ̃2 [Γiu(1∂ui)]

=

∫
Rd×Mi

fAi [xi |σ2
Mi

= σ̃2
Mi

]

√
g−iu(1∂ui;Ai = xi)

g+
iu(1∂ui;Ai = xi)

dxi

=

∫
Rd×Mi

fAi [xi |σ2
Mi

= σ̃2
Mi

]

√
fAi [xi |σ2

Mi\{u} = σ̃2
Mi\{u}, σ

2
u = σ̃′2u ]

fAi [xi |σ2
Mi

= σ̃2
Mi

]
dxi

=

∫
Rd×Mi

√
fAi [xi |σ2

Mi
= σ̃2

Mi
]
√
fAi [xi |σ2

Mi\{u} = σ̃2
Mi\{u}, σ

2
u = σ̃′2u ] dxi .

For notational simplicity, we define

∆(σ̃2
Mi
, σ̃′2Mi

) :=
1

2
− 1

2

∫
Rd×Mi

√
fAi [xi |σ2

Mi
= σ̃2

Mi
]
√
fAi [xi |σ2

Mi\{u} = σ̃2
Mi\{u}, σ

2
u = σ̃′2u ] dxi .

Then 2∆(σ̃2
Mi
, σ̃′2Mi

) is equal to the square of the Hellinger distance H between the conditional densities of Ai
given σ2

Mi
= σ̃2

Mi
and σ2

Mi
= σ̃′2Mi

, i.e.,

∆(σ̃2
Mi
, σ̃′2Mi

) = H2(fAi | σ̃2
Mi
, fAi | σ̃′2Mi

) > 0 .

This implies ∆(σ̃2
Mi
, σ̃′2Mi

) > 0 and taking the minimum ∆, we complete the proof of Lemma 1.

C.4 Proof of inequality (10)

Noting that µ̂
BI(k)
i (A) is the weighted sum of µ̄i(Ai, σ

′2
Mi

) as described in (7), we can rewrite ‖µ̂BI(k)
i (A) − µi‖22

as follows:

‖µ̂BI(k)
i (A)− µi‖22 =

∑
σ′2Mi

∑
σ′′2Mi

(
µ̄i(Ai, σ

′2
Mi

)− µi
)>(

µ̄i(Ai, σ
′′2
Mi

)− µi
)
bki (σ′2Mi

)bki (σ′′2Mi
) .

Hence, using Cauchy-Schwarz inequality for random variables for the summation over all σ′2Mi
, σ′′2Mi

∈ S` except
σ′2Mi
6= σ̃2

Mi
, it follows that

Eσ̃2

[
‖µ̂BI(k)

i (A)− µi‖22
]
≤Eσ̃2

[∥∥(µ̄i (Ai, σ̃2
Mi

)
− µi

)∥∥2

2

]
+
∑
σ′′2Mi

∑
σ′2Mi
6=σ̃2

Mi

√
Eσ̃2

[(
bki (σ′2Mi

)bki (σ′′2Mi
)
)2]
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×

√
Eσ̃2

[((
µ̄i(Ai, σ′2Mi

)− µi
)>(

µ̄i(Ai, σ′′2Mi
)− µi

))2
]
. (S25)

Noting that the conditional density of X = (µ̄i(Ai, σ̃
2
Mi

)− µi) given σ2 = σ̃2 is identical to φ(X | 0, σ̄2
i (σ̃2

Mi
)), it

follows that

Eσ̃2

[∥∥(µ̄i (Ai, σ̃2
Mi

)
− µi

)∥∥2

2

]
= dσ̄2

i (σ̃2
Mi

) . (S26)

To complete the proof of (10), we hence obtain an upper bound of the last term in the RHS of (S25). For any
σ′2Mi
∈ SMi , the conditional density of the random vector µ̄i(Ai, σ

′2
Mi

)− µi conditioned on σ2 = σ̃2 is identical to

fµ̄i(Ai,σ′2Mi )−µi
[x |σ2 = σ̃2] = φ

(
x

∣∣∣∣ 0,
(
σ̄2
i (σ′2Mi

)
)2( 1

τ2
+
∑
u∈Mi

σ̃2
u

σ′4u

))
.

Using this with some linear algebra, it is straightforward to check that for all σ′2Mi
∈ SMi ,

Eσ̃2

[
‖µ̄i(Ai, σ′2Mi

)− µi‖42
]

= d(2 + d)

((
σ̄2
i (σ′2Mi

)
)2( 1

τ2
+
∑
u∈Mi

σ̃2
u

σ′4u

))2

= d(2 + d)

 1
τ2 +

∑
u∈Mi

σ̃2
u

σ′4u(
1
τ2 +

∑
u∈Mi

1
σ′2u

)2


2

≤ d(2 + d)

 1
τ2 + `

σ2
max

σ4
min(

1
τ2 + ` 1

σ2
min

)2


2

where for the last inequality, we use the fact that |Mi| = ` and σ2
min ≤ σ2

s ≤ σ2
max for any 1 ≤ s ≤ S. Using

Cauchy-Schwarz inequality with the above bound, it is not hard to check that for any σ′2Mi
, σ′′2Mi

∈ SMi ,

Eσ̃2

[((
µ̄i(Ai, σ

′2
Mi

)− µi
)>(

µ̄i(Ai, σ
′′2
Mi

)− µi
))2
]

≤ Eσ̃2

[∥∥µ̄i(Ai, σ′2Mi
)− µi

∥∥2

2

∥∥µ̄i(Ai, σ′′2Mi
)− µi

∥∥2

2

]
≤
√

Eσ̃2

[∥∥µ̄i(Ai, σ′2Mi
)− µi

∥∥4

2

]√
Eσ̃2

[∥∥µ̄i(Ai, σ′′2Mi
)− µi

∥∥4

2

]

≤ d(2 + d)

 1
τ2 + `

σ2
max

σ4
min(

1
τ2 + ` 1

σ2
min

)2


2

. (S27)

Combining (S25), (S26) and (S27), we have

Eσ̃2

[
‖µ̂BI(k)

i (A)− µi‖22
]
≤ dσ̄2

i (σ̃2
Mi

) +
√
d(2 + d)

 1
τ2 + `

σ2
max

σ4
min(

1
τ2 + ` 1

σ2
min

)2

∑
σ′′2Mi

∑
σ′2Mi
6=σ̃2

Mi

√
Eσ̃2

[(
bki (σ′2Mi

)bki (σ′′2Mi
)
)2]

.

(S28)

Using Cauchy-Schwarz inequality and Jensen’s inequality sequentially, it follows that∑
σ′′2Mi

∑
σ′2Mi
6=σ̃2

Mi

(
Eσ̃2

[(
bki (σ′2Mi

)bki (σ′′2Mi
)
)2])1/2

≤
∑
σ′′2Mi

∑
σ′2Mi
6=σ̃2

Mi

(
Eσ̃2

[(
bki (σ′2Mi

)
)4])1/4 (

Eσ̃2

[(
bki (σ′′2Mi

)
)4])1/4

=

 ∑
σ′2Mi
6=σ̃2

Mi

(
Eσ̃2

[(
bki (σ′2Mi

)
)4])1/4


∑
σ′′2Mi

(
Eσ̃2

[(
bki (σ′′2Mi

)
)4])1/4
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≤

 ∑
σ′2Mi
6=σ̃2

Mi

Eσ̃2

[(
bki (σ′2Mi

)
)4]

1/4∑
σ′′2Mi

Eσ̃2

[(
bki (σ′′2Mi

)
)4]

1/4

≤

 ∑
σ′2Mi
6=σ̃2

Mi

Eσ̃2

[
bki (σ′2Mi

)
]

1/4∑
σ′′2Mi

Eσ̃2

[
bki (σ′′2Mi

)
]

1/4

=
(
1− Eσ̃2

[
bki (σ̃2

Mi
)
])1/4

,

where for the last inequality and the last equality, we use the fact that bki is normalized, i.e., 0 ≤ bki (σ2
Mi

) ≤ 1

and
∑
σ2
Mi

bki (σ2
Mi

) = 1. This completes the proof of (10) with (S28).

C.5 Proof of Inequality (15)

We start with rewriting the difference between MSE’s of µ̂
ora(k)
τ (A) and µ̂

BI(k)
τ (A) for τ ∈ V as follows:

‖µ̂ora(k)
τ (A)− µτ‖22 − ‖µ̂BI(k)

τ (A)− µτ‖22
=

∑
σ′2Mτ ,σ

′′2
Mτ
∈S`

(
P[σ2

Mτ
= σ′2Mτ

|A, σ2
∂Wτ,2k+1

]P[σ2
Mτ

= σ′′2Mτ
|A, σ2

∂Wτ,2k+1
]− bkτ (σ′2Mτ

)bkτ (σ′′2Mτ
)
)

×
(
µ̄τ
(
Aτ , σ

′2
Mτ

)
− µτ

)> (
µ̄τ
(
Aτ , σ

′′2
Mτ

)
− µτ

)
.

Then, using Cauchy-Schwarz inequality for random variables X and Y , i.e., |E[XY ]| ≤
√

E[X2]E[Y 2], we have

E
[(

MSE(µ̂ora(k)
τ (A))−MSE(µ̂BI(k)

τ (A))
)]

≤
∑

σ2
Mτ

,σ′2Mτ∈S
`

√
E
[(

P[σ2
Mτ

= σ′2Mτ
|A, σ2

∂Wτ,2k+1
]P[σ2

Mτ
= σ′′2Mτ

|A, σ2
∂Wτ,2k+1

]− bkτ (σ′2Mτ
)bkτ (σ′′2Mτ

)
)2
]

×

√
E
[((

µ̄τ (Aτ , σ2
Mτ

)− µi
)>(

µ̄τ (Aτ , σ′2Mτ
)− µi

))2
]

which completes the proof of (15) with (S27).

References

M. Everingham, SM. A. Eslami, L. Van Gool, C. KI Williams, J. Winn, and A. Zisserman. The pascal visual object
classes challenge: A retrospective. International Journal of Computer Vision, 111(1):98–136, 2015.

R. Girshick. Fast r-cnn. In Proc. of the IEEE ICCV, 2015.

H. Han, C. Otto, X. Liu, and A. K. Jain. Demographic estimation from face images: Human vs. machine performance.
IEEE transactions on pattern analysis and machine intelligence, 37(6):1148–1161, 2015.

A. Lanitis. Comparative evaluation of automatic age-progression methodologies. EURASIP Journal on Advances in
Signal Processing, 2008:101, 2008.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. SSD: Single shot multibox detector. In
Proc. of ECCV, 2016.

G. Panis, A. Lanitis, N. Tsapatsoulis, and T. F. Cootes. Overview of research on facial ageing using the FG-NET ageing
database. IET Biometrics, 5(2):37–46, 2016.

S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks.
In Proc. of NIPS, 2015.

R. Rothe, R. Timofte, and L. Van Gool. Dex: Deep expectation of apparent age from a single image. In Proc. of ICCV,
pages 10–15, 2015.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.


