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A Experimental details

Visualization of Fig. 1: In Section 6.2, word feature vectors are computed from WordNet dataset. We used
feature vectors computed by SIPS with K = 5. Since (yi, ui) ∈ R5 for SIPS, we actually used yi ∈ R4 for the
visualization. We extracted 97 words from the n = 4027 nouns, and applied t-SNE to {yi} for the extracted
words. Words with any hypernymy relations are connected by segments. In other words, vi and vj are connected
when wij = 1. For extracting the 97 words, we chose the word “animal” as the root. Then chose four subordinate
words (“mammal”, “fish”, “reptile”, “invertebrate”) connected to the root, and sampled more subordinate words
from these four words, so that the total number of words becomes 97. Words are grouped by the four subordinate
words of the root, which are indicated by the colors.

Optimization: In Section 6.1, all parameters are initialized as He et al. (2015) and trained by Adam (Kingma
and Ba, 2014) with initial learning rate 0.01 and batch size 64. The number of iterations is 300,000. To ensure
robust comparison, we save model parameters at every 5,000 iterations, and select the best performance parameters
tested on the validation set. In Section 6.2, the most settings are the same as Section 6.1. All parameters are
initialized as He et al. (2015) and trained by Adam with initial learning rate 0.001 and batch size 128. The
number of iterations is 150,000.

B Relationship between the Poisson model and the Bernoulli model

For a pair (i, j) ∈ In, we consider the Poisson model wij ∼ Po(λij) with λij = exp(h(xi,xj)). In the below, wij
and λij are denoted as w and λ for simplifying the notation. Noting P (w = k) = exp(−λ)λk/k! for k ∈ {0, 1, . . . , },
by Taylor expansion around λ = 0, we have P (w = 0) = e−λ = 1− λ+ λ2/2 +O(λ3) and P (w = 1) = e−λλ =
(1− λ+ O(λ2))λ = λ− λ2 + O(λ3), and thus P (w ≥ 2) = 1− P (w = 0)− P (w = 1) = λ2/2 = O(λ2). On the
other hand, σ(h(xi,xj)) = (1 + λ−1)−1 = λ− λ2 +O(λ3). Therefore, P (w = 1) = σ(h(xi,xj)) +O(λ3), proving
(1).

When link weights are very sparse as is often seen in applications, most of λij ’s will be very small. Then the
above results imply that P (wij ≥ 2) ≈ 0 can be ignored and P (wij = 1) ≈ σ(h(xi,xj)) is interpreted as the
Bernoulli model.

Let us consider a transformation from wij to w̃ij ∈ {0, 1} as w̃ij := 1(wij > 0). By noting P (w̃ij = 1) = P (wij >
0) = 1− P (wij = 0) = λij − λij/2 +O(λ3

ij), we have

P (w̃ij = 1 | xi,xj) = σ(h(xi,xj)) +O(λ2
ij).

Thus the Poisson model for wij is also interpreted as the Bernoulli model for the truncated variable w̃ij .

C Proofs

C.1 Proof of Proposition 4.1

With v = (2M)2p and
∫

=
∫

[−M,M ]p
, a lower-bound of 1

v
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∥∥∥∥2
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∥∥∥∥2
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The terms in the last formula are computed as
∫
xdx = 0,

∫
dx = (2M)p,

∫
‖x‖22dx =

p∑
i=1

∫
x2
idx = (2M)p−1

p∑
i=1

∫ M

−M
x2
idxi = (2M)p−1 2pM3

3
= (2M)p

pM2

3
.

Considering ‖
∫
f(x)dx‖22 ≥ 0, we have

1

v

∫∫ ∣∣∣∣− ‖x− x′‖22 − 〈f(x),f(x′)〉
∣∣∣∣dxdx′ ≥ 2

v

∫
dx

∫
‖x‖22dx =

2pM2

3
.

Taking inff∈S(K) proves the assertion.

�

C.2 Proof of Theorem 4.1 (Approximation theorem for SIPS)

Since g
(CPD)
∗ : Y2 → R is a conditionally positive definite kernel on a compact set, Lemma 2.1 of Berg et al.

(1984) indicates that

g0(y∗,y
′
∗) := g

(CPD)
∗ (y∗,y

′
∗)− g

(CPD)
∗ (y∗,y0)− g(CPD)

∗ (y0,y
′
∗) + g

(CPD)
∗ (y0,y0)

is positive definite for arbitrary y0 ∈ Y. We fix y0 in the argument below. According to Okuno et al. (2018)
Theorem 5.1 (Theorem 3.2 in this paper), we can specify a neural network fNN(x) such that

sup
x,x′∈X

∣∣∣∣g0 (f∗(x),f∗(x
′))− 〈fNN(x),fNN(x′)〉

∣∣∣∣ < ε1

for any ε1. Next, let us consider a continuous function h∗(x) := g∗(f∗(x),y0)− 1
2g∗(y0,y0). It follows from the

universal approximation theorem (Cybenko, 1989; Telgarsky, 2017) that for any ε2 > 0, there exists mu ∈ N such
that

sup
x∈X
|h∗(x)− uNN(x)| < ε2.

Therefore, we have

sup
x,x′∈X

∣∣∣∣g(CPD)
∗ (f∗(x),f∗(x

′))− {〈fNN(x),fNN(x′)〉+ uNN(x) + uNN(x′)}
∣∣∣∣

= sup
x,x′∈X

∣∣∣∣(g0 (f∗(x),f∗(x
′))− 〈fNN(x),fNN(x′)〉)

+ (h∗(x)− uNN(x)) + (h∗(x
′)− uNN(x′))

∣∣∣∣
≤ sup

x,x′∈X

∣∣∣∣(g0 (f∗(x),f∗(x
′))− 〈fNN(x),fNN(x′)〉)

∣∣∣∣
+ sup

x∈X

∣∣∣∣h∗(x)− uNN(x)

∣∣∣∣+ sup
x′∈X

∣∣∣∣h∗(x′)− uNN(x′)

∣∣∣∣ (17)

< ε1 + 2ε2.

By letting ε1 = ε/2, ε2 = ε/4, the last formula becomes smaller than ε, thus proving

sup
x,x′∈X

∣∣∣∣g(CPD)
∗ (f∗(x),f∗(x

′))− {〈fNN(x),fNN(x′)〉+ uNN(x) + uNN(x′)}
∣∣∣∣ < ε.

�
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C.3 Proof of Theorem 4.2 (Approximation theorem for C-SIPS)

With fixed y0 ∈ Y, it follows from Berg et al. (1984) Lemma 2.1 and CPD-ness of the kernel g
(CPD)
∗ that

g0(y,y′) := g
(CPD)
∗ (y,y′)− g(CPD)

∗ (y,y0)− g(CPD)
∗ (y0,y

′) + g
(CPD)
∗ (y0,y0)

is PD. Since Y is compact, we have supy∈Y |g
(CPD)
∗ (y,y0)| = a2 is bounded. Let us take a sufficiently large r > a

and define τ(y) :=

√
r2 + g

(CPD)
∗ (y,y0). We consider a new kernel

g1(y,y′) := g0(y,y′) + 2τ(y)τ(y′).

Since both g0(y,y′) and τ(y)τ(y′) are PD, g1(y,y′) is also PD. Applying Taylor’s expansion
√

1 + x = 1 + x/2 +
O(x2), we have

τ(y)τ(y′) =

√
r2 + g

(CPD)
∗ (y,y0)

√
r2 + g

(CPD)
∗ (y′,y0)

= r2

√
1 + g

(CPD)
∗ (y,y0)/r2

√
1 + g

(CPD)
∗ (y′,y0)/r2

= r2(1 + g
(CPD)
∗ (y,y0)/2r2 +O(r−4))(1 + g

(CPD)
∗ (y′,y0)/2r2 +O(r−4))

= r2 +
1

2
(g

(CPD)
∗ (y,y0) + g

(CPD)
∗ (y′,y0)) +O(r−2),

thus proving

g1(y,y′) = g0(y,y′) + 2τ(y)τ(y′) = g
(CPD)
∗ (y,y′) + g

(CPD)
∗ (y0,y0) + 2r2 +O(r−2).

Let us define γ := g
(CPD)
∗ (y0,y0)+2r2 = O(r2). Considering the PD-ness of g1(y,y′) = g

(CPD)
∗ (y,y′)+γ+O(r−2),

we have

sup
x,x′∈X

∣∣∣∣g(CPD)
∗ (f∗(x),f∗(x

′))− (〈fNN(x),fNN(x′)〉 − γ)

∣∣∣∣
= sup

x,x′∈X

∣∣∣∣g1(f∗(x),f∗(x
′))− 〈fNN(x),fNN(x′)〉

∣∣∣∣+O(r−2) (18)

< ε+O(r−2).

�

D Approximation Error Rate

We first discuss the approximation error rate for truncating the series expansion of Mercer’s theorem in Section D.1
and the approximation error rate for NNs in Section D.2. Then, by considering these error rates, we prove
Theorems 5.1 and 5.2 for IPS and SIPS, respectively, in Sections D.3 and D.4.

D.1 Error rate for Mercer’s theorem

We evaluate the error rate for Mercer’s theorem (shown as Theorem 3.1 in this paper) to approximate PD kernels
g∗ satisfying conditions (C-1) and (C-2) of Section 5.

We define the error rate for Mercer’s theorem as

ε1(K) := sup
y,y′∈Y

∣∣∣∣g∗(y,y′)− K∑
k=1

λkφk(y)φk(y′)

∣∣∣∣. (19)

Then, the error rate is given in the lemma below.

Lemma D.1 For compact set Y ⊂ RK∗ , K∗ ∈ N, we consider a PD kernel g∗ : Y2 → R which satisfies conditions
(C-1) and (C-2). Then, ε1(K) = O(K−1/K∗).
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For proving the lemma, we first show a result of the decay rate for eigenvalues. The theorem below is a special
case of Theorem 4 of Cobos and Kühn (1990) by assuming µ as Lebesgue measure, and Ω = Y.

Theorem D.1 (Cobos and Kühn (1990)) Let Y ⊂ RL be a non-empty compact set for L ∈ N, and let
g : Y2 → R be a positive definite kernel satisfying

∫
Y ‖g(t, ·)‖Cαdt <∞, where 0 < α ≤ 1 and

‖g(t, ·)‖Cα := max

sup
y∈Y
|g(t,y)|, sup

y,y′∈Y
y 6=y′

|g(t,y)− g(t,y′)|
‖y − y′‖α2

 .

Then, the k-th largest eigenvalue of g is

λk = O(k−1−α/L).

We apply Theorem D.1 to g∗ by letting L = K∗ and α = 1. Then the eigenvalues of g∗ satisfy

λk = O(k−1−1/K∗), (20)

where the condition of g in Theorem D.1 will be verified later. On the other hand, Mercer’s theorem and the
condition (C-1) leads to

ε1(K) = sup
y,y′∈Y

∣∣∣∣ ∞∑
k=K+1

λkφk(y)φk(y′)

∣∣∣∣ ≤ ∞∑
k=K+1

λk sup
y∈Y,l∈N

|φl(y)| sup
y′∈Y,l′∈N

|φl′(y′)|

=

(
sup

y∈Y,k∈N
|φk(y)|

)2 ∞∑
k=K+1

λk = O

( ∞∑
k=K+1

λk

)
. (21)

Therefore, substituting (20) into (21), we have

ε1(K) = O

( ∞∑
k=K+1

λk

)
= O

(∫ ∞
K

k−1−1/K∗dk

)
= O

([
−K∗k−1/K∗

]∞
K

)
= O(K−1/K∗).

This proves Lemma D.1. Finally, we verify that g∗ satisfies the condition of g in Theorem D.1. As g∗ is continuous
on compact set,

sup
t∈Y

sup
y∈Y
|g∗(t,y)| <∞ (22)

obviously holds, and the condition (C-2) implies α-Hölder continuity, and so

sup
t∈Y

sup
y,y′∈Y
y 6=y′

|g∗(t,y)− g∗(t,y′)|
‖y − y′‖2

<∞. (23)

Inequalities (22) and (23) lead to

sup
t∈Y
‖g∗(t, ·)‖C1 ≤ max

{
sup
t∈Y

sup
y∈Y
|g∗(t,y)|, sup

t∈Y
sup

y,y′∈Y
y 6=y′

|g∗(t,y)− g∗(t,y′)|
‖y − y′‖2

}
<∞.

Thus g∗ satisfies ∫
Y
‖g∗(t, ·)‖C1dt ≤ sup

t∈Y
‖g∗(t, ·)‖C1

∫
Y

dt <∞,

because compact set Y ⊂ RK∗ is bounded and closed. �
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D.2 Error rate for NN approximations

We refer to the result of Yarotsky (2018). By combining Proposition 1 (α = 0, i.e., constant-depth shallow NNs)
and Theorem 2 (0 < α ≤ 1, i.e., deep NNs with growing depth as W increases) of Yarotsky (2018), we have the
following theorem.

Theorem D.2 (Yarotsky (2018)) For X = [−M,M ]p, M > 0, p ∈ N and 0 ≤ α ≤ 1, we consider the set of
real-valued NNs vNN ∈ Sα(W, 1) for W ∈ N. Let ω(v; r) := max{|v(x)− v(x′)| : x,x′ ∈ X , ‖x− x′‖ ≤ r} be the
modulus of continuity. Then, there exist a, c ∈ R such that

inf
vNN∈Sα(W,1)

sup
x∈X
|v∗(x)− vNN(x)| ≤ aω(v∗; cW

− 1+α
p )

holds for any real-valued continuous function v∗ : X → R.

In later sections, we will use the following two lemmas, which are immediate consequences of Theorem D.2.

Lemma D.2 Symbols are the same as those of Theorem D.2. Assume that v∗ is continuously differentiable over
X , and fix such a v∗. Then, as W →∞, we have

inf
vNN∈Sα(W,1)

sup
x∈X
|v∗(x)− vNN(x)| = O(W

− 1+α
p ).

Proof is based on the intermediate value theorem. For x,x′ ∈ X satisfying ‖x−x′‖ ≤ r, there exists x0 ∈ X such

that v∗(x)− v∗(x′) = ∂v∗(x)
∂x |x=x0(x− x′). Since b := supx∈X ‖∂v∗(x)/∂x‖ is bounded because of the continuity

of the first-order derivative ∂v∗(x)/∂x, Cauchy-Schwarz inequality indicates

|v∗(x)− v∗(x′)| ≤
∥∥∥∥∂v∗(x)

∂x

∣∣∣∣
x=x0

∥∥∥∥
2

‖x− x′‖2 ≤ br.

Thus we have ω(v∗; r) ≤ br, indicating

aω(v∗; cW
− 1+α

p ) ≤ abcW−
1+α
p . (24)

Substituting (24) into Theorem D.2 proves the lemma. �

Lemma D.3 For X = [−M,M ]p, M > 0, p ∈ N and 0 ≤ α ≤ 1, we consider the set of NNs vNN ∈ Sα(W,K)
for W,K ∈ N. Let v∗ : X → RK be a vector-valued continuously differentiable function over X such that
supk∈{1,...,K},x∈X ‖∂v∗k(x)/∂x‖2 ≤ b for some b which does not depend on K. Then, as W/K →∞, we have

inf
vNN∈Sα(W,K)

sup
x∈X
‖v∗(x)− vNN(x)‖2 = O(K

1
2 +

1+α
p W

− 1+α
p ).

Proof is based on applying Lemma D.2 to each of K output units of v∗. We consider K real-valued neural
networks of depth L = O((W/K)α) with W/K weights as shown in Fig. 2. Since such NNs are included in
Sα(W,K), we have

inf
vNN∈Sα(W,K)

sup
x∈X
‖v∗(x))− vNN(x)‖2 ≤

( K∑
k=1

inf
vk∈Sα(W/K,1)

sup
x∈X
|v∗k(x)− vk(x)|2

)1/2

,

where v∗(x) = (v∗1(x), v∗2(x), . . . , v∗K(x)),vNN(x) = (v1(x), v2(x), . . . , vK(x)). We apply Lemma D.2 with
W/K weights to each v∗k, where the same bound b is used in (24). Then the error is bounded by

√
K ×

abc(W/K)
− 1+α

p = O(K
1
2 +

1+α
p W

− 1+α
p ). �
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𝑊 Weights

𝐾 Output units

𝑝 Input units

𝑊/𝐾 weights 𝑊/𝐾 weights 𝑊/𝐾 weights

・
・
・

・
・
・

・
・
・

Depth: 

𝐿 = 𝑂 𝑊/𝐾 𝛼

𝛼 = 0: Constant-depth shallow NN
0 < 𝛼 ≤ 1: Deep NN with growing 

depth as 𝑊 increases

Figure 2: A structure of vector-valued neural network vNN : Rp → RK having W weights. We allocate W/K
weights to each output unit, so that weights are not shared by the K output units. In practice, internal units
are often shared by the output units, but we consider the above structure for showing the upper bound of the
approximation error.

D.3 Proof of Theorem 5.1 (Approximation error rate for IPS)

Applying Theorem 3.1 to a PD kernel g
(PD)
∗ , there exist eigenvalues {λk}∞k=1, λ1 ≥ λ2 ≥ · · · and eigenfunctions

{φk(y)}∞k=1 such that
∑K
k=1 λkφk(y)φk(y′) absolutely and uniformly converges to g

(PD)
∗ (y,y′) as K →∞. Here,

we define two vector-valued functions

ηK(y) := (λ
1/2
1 φ1(y), λ

1/2
2 φ2(y), . . . , λ

1/2
K φK(y)),

φ̃K(x) := ηK(f∗(x)),

so that 〈ηK(f∗(x)),ηK(f∗(x
′))〉 = 〈φ̃K(x), φ̃K(x′)〉 =

K∑
k=1

λkφk(f∗(x))φk(f∗(x
′)). Using these functions, for

any fNN ∈ Sα(Wf ,K), we have∣∣∣∣g(PD)
∗ (f∗(x),f∗(x

′))− 〈fNN(x),fNN(x′)〉
∣∣∣∣

≤
∣∣∣∣g∗(f∗(x),f∗(x

′))− 〈ηK(f∗(x)),ηK(f∗(x
′))〉
∣∣∣∣ (25)

+

∣∣∣∣〈φ̃K(x), φ̃K(x′)〉 − 〈φ̃K(x),fNN(x′)〉
∣∣∣∣+

∣∣∣∣〈φ̃K(x),fNN(x′)〉 − 〈fNN(x),fNN(x′)〉
∣∣∣∣. (26)

These terms (25) and (26) can be evaluated in the following way.

• Regarding the term (25),

sup
x,x′∈X

∣∣∣∣g(PD)
∗ (f∗(x),f∗(x

′))− 〈ηK(f∗(x)),ηK(f∗(x
′))〉
∣∣∣∣

≤ sup
y,y′∈Y

∣∣∣∣g(PD)
∗ (y,y′)− 〈ηK(y),ηK(y′)〉

∣∣∣∣
= sup

y,y′∈Y

∣∣∣∣g(PD)
∗ (y,y′)−

K∑
k=1

λkφk(y)φk(y′)

∣∣∣∣ = O(K−1/K∗),
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where the last formula follows by applying Lemma D.1 to g
(PD)
∗ . Thus, we have

inf
fNN∈Sα(Wf ,K)

sup
x,x′∈X

∣∣∣∣g(PD)
∗ (f∗(x),f∗(x

′))− 〈ηK(f∗(x)),ηK(f∗(x
′))〉
∣∣∣∣ = O(K−1/K∗). (27)

• Regarding the term (26),

sup
x,x′∈X

{∣∣∣∣〈φ̃K(x), φ̃K(x′)〉 − 〈φ̃K(x),fNN(x′)〉
∣∣∣∣+

∣∣∣∣〈φ̃K(x),fNN(x′)〉 − 〈fNN(x),fNN(x′)〉
∣∣∣∣}

≤ sup
x,x′∈X

{
‖φ̃K(x)‖2‖φ̃K(x′)− fNN(x′)‖2 + ‖fNN(x′)‖2‖φ̃K(x)− fNN(x)‖2

}
≤ sup

x,x′∈X

{
‖φ̃K(x)‖2‖φ̃K(x′)− fNN(x′)‖2 + (‖φ̃K(x′)‖2 + ‖φ̃K(x′)− fNN(x′)‖2)‖φ̃K(x)− fNN(x)‖2

}
= 2 sup

x∈X
‖φ̃K(x)‖2 sup

x′∈X
‖φ̃K(x′)− fNN(x′)‖2 + sup

x∈X
‖φ̃K(x)− fNN(x)‖22.

Here, ‖φ̃K(x)‖2 = ‖
∑K
k=1 λkφk(f∗(x))φk(f∗(x))‖2 ≤ ‖

∑∞
k=1 λkφk(f∗(x))φk(f∗(x))‖2 =

‖g(PD)
∗ (f∗(x),f∗(x))‖2 is bounded, because g

(PD)
∗ (f∗(x),f∗(x)) is continuous over the compact set

X 2. For applying Lemma D.3 to φ̃K(x), we need to show that the constant b exists. Noting
‖∂φ̃k/∂x‖22 =

∑p
i=1(∂φ̃k/∂xi)

2 ≤
∑p
i=1 λk‖∂φk/∂y‖22 ‖∂f∗/∂xi‖22, we have

sup
k∈N

sup
x∈X
‖∂φ̃k/∂x‖22 ≤ sup

k∈N
sup
y∈Y

λk‖∂φk/∂y‖22 sup
x∈X

p∑
i=1

‖∂f∗/∂xi‖22 <∞, (28)

where supk∈N supy∈Y λk‖∂φk/∂y‖22 <∞ follows from (C-1) and supx∈X
∑p
i=1 ‖∂f∗/∂xi‖22 <∞ follows from

(C-3). We can take b2 as the upper bound of (28), and then Lemma D.3 implies

inf
fNN∈Sα(Wf ,K)

sup
x∈X
‖φ̃K(x)− fNN(x)‖2 = O(K

1
2 +

1+α
p W

− 1+α
p

f ) (29)

so that the evaluation of (26) leads to

inf
fNN∈Sα(Wf ,K)

sup
x,x′∈X

{∣∣∣∣〈φ̃K(x), φ̃K(x′)〉 − 〈φ̃K(x),fNN(x′)〉
∣∣∣∣+

∣∣∣∣〈φ̃K(x),fNN(x′)〉 − 〈fNN(x),fNN(x′)〉
∣∣∣∣}

= O(K
1
2 +

1+α
p W

− 1+α
p

f ). (30)

Considering (27) and (30), we finally obtain

inf
fNN∈Sσ(Wf ,K)

sup
x,x′∈X

∣∣∣∣g(PD)
∗ (f∗(x),f∗(x

′))− 〈fNN(x),fNN(x′)〉
∣∣∣∣ = O

(
K−

1
K∗ +K

1
2 +

1+α
p W

− 1+α
p

f

)
.

�

D.4 Proof of Theorem 5.2 (Approximation error rate for SIPS)

Recall the inequality (17) in Section C.2.

sup
x,x′∈X

∣∣∣∣g(CPD)
∗ (f∗(x),f∗(x

′))− (〈fNN(x),fNN(x′)〉+ uNN(x) + uNN(x′))

∣∣∣∣
≤ sup

x,x′∈X

∣∣∣∣g0(f∗(x),f∗(x
′))− 〈fNN(x),fNN(x′)〉

∣∣∣∣+ 2 sup
x∈X

∣∣∣∣h∗(x)− uNN(x)

∣∣∣∣ (31)

We evaluate the two terms in (31). Since we have assumed that g
(CPD)
∗ is C1 (the condition C-2), g0 and h∗ are

also C1. Then, by applying Theorem 5.1 to the PD kernel g0, the first term in (31) is evaluated as

inf
fNN∈Sα(Wf ,K)

sup
x,x′∈X

∣∣∣∣g0(f∗(x),f∗(x
′))− 〈fNN(x),fNN(x′)〉

∣∣∣∣ = O
(
K−

1
K∗ +K

1
2 +

1+α
p W

− 1+α
p

f

)
. (32)
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By applying Lemma D.2 to h∗, the second term in (31) is evaluated as

inf
uNN∈Sα(Wu,1)

sup
x∈X

∣∣∣∣h∗(x)− uNN(x)

∣∣∣∣ = O
(
W
− 1+α

p
u

)
. (33)

Considering (31), (32) and (33), we obtain

inf
fNN∈Sα(Wf ,K)
uNN∈Sα(Wu,1)

sup
x,x′∈X

∣∣∣∣g(CPD)
∗ (f∗(x),f∗(x

′))− (〈fNN(x),fNN(x′)〉+ uNN(x) + uNN(x′))

∣∣∣∣
= O

(
K−

1
K∗ +K

1
2 +

1+α
p W

− 1+α
p

f +W
− 1+α

p
u

)
.

�

E Non-CPD Similarities

CPD includes a broad range of kernels, but there exists a variety of non-CPD kernels. One example is Epanechnikov
kernel g(y,y′) := (1− ‖y − y′‖22)1(‖y − y′‖2 ≤ 1). To approximate similarities based on such non-CPD kernels,
we propose a novel model, yet based on inner product, with high approximation capability beyond SIPS. Although
parameter optimization of this model is not always easy due to the excessive degrees of freedom, the model is, in
theory, shown to be capable of approximating more general kernels that are considered in Ong et al. (2004).

E.1 Proposed model

Let us consider a similarity h(x,x′) = g∗(f∗(x), f∗(x
′)) with any kernel g∗ : R2K∗ → R and a continuous map

f∗ : Rp → RK∗ . To approximate it, we consider a similarity model

h(xi,xj) = 〈fNN(xi),fNN(xj)〉 − 〈rNN(xi), rNN(xj)〉, (34)

where fNN : Rp → RK+ and rNN : Rp → RK− are neural networks. Since the kernel g(y,y′) = 〈y+,y
′
+〉−〈y−,y′−〉

with respect to y = (y+,y−) ∈ RK++K− represents the difference of two IPSs, we call (34) as inner product
difference similarity (IPDS) model.

By replacing fNN(x) and rNN(x) with (fNN(x)>, uNN(x), 1)> and uNN(x)− 1 ∈ R, respectively, IPDS reduces
to SIPS defined in eq. (6), meaning that IPDS includes SIPS as a special case. Therefore, IPDS approximates any
CPD similarities arbitrary well. Further, we prove that IPDS approximates more general similarities arbitrary
well.

E.2 Approximation theorem

Theorem E.1 (Approximation theorem for IPDS) Symbols and assumptions are the same as those of
Theorem 4.1 but g∗ is a general kernel, which is only required to be dominated by some PD kernels g, i.e., g − g∗
is PD. For arbitrary ε > 0, by specifying sufficiently large K+,K− ∈ N,m+ = m+(K+),m− = m−(K−) ∈ N,
there exist A ∈ RK+×m+ ,B ∈ Rm+×p, c ∈ Rm+ ,E ∈ RK−×m− ,F ∈ Rm−×p,o ∈ Rm− such that∣∣∣∣g∗ (f∗(x), f∗(x

′))−
(〈
fNN(x),fNN(x′)

〉
−
〈
rNN(x), rNN(x′)

〉) ∣∣∣∣ < ε

for all (x,x′) ∈ [−M,M ]2p, where fNN(x) = Aσ(Bx + c) ∈ RK+ and rNN(x) = Eσ(Fx + o) ∈ RK− are
1-hidden layer neural networks with m+ and m− hidden units, respectively.

In theorem E.1, the kernel g∗ is only required to be dominated by some PD kernels, thus g∗ is not limited to
CPD. We call such a kernel g∗ satisfying the condition in Theorem E.1, i.e., there exists a PD kernel g such
that g − g∗ is PD, as general kernel, and the general kernel g∗ is called indefinite if neither of g∗,−g∗ is positive
definite (Ong et al., 2004). General similarity and indefinite similarity are defined as well; IPDS approximates
any general similarities arbitrary well.
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Our proof for Theorem E.1 is based on Proposition 7 of Ong et al. (2004). This proposition indicates that the
kernel g∗ dominated by some PD kernels is decomposed as the difference of two PD kernels g+, g− by considering
Krein space consisting of two Hilbert spaces. Therefore, we have g∗(f∗(x),f∗(x

′)) = g+(f∗(x),f∗(x
′)) −

g−(f∗(x),f∗(x
′)). Because of the PD-ness of g+ and g−, Theorem 3.2 guarantees the existence of NNs

fNN, rNN such that 〈fNN(x),fNN(x′)〉 and 〈rNN(x), rNN(x′)〉, respectively, approximate g+(f∗(x),f∗(x
′)) and

g−(f∗(x),f∗(x
′)) arbitrary well. Thus proving the theorem. This idea for the proof is also interpreted as a

generalized Mercer’s theorem for Krein space (there is a similar attempt in Chen et al. (2008)) by applying
Mercer’s theorem to the two Hilbert spaces of Ong et al. (2004, Proposition 7).

E.3 Deep Gaussian embedding

To show another example of non-CPD kernels, Deep Gaussian embedding (Bojchevski and Günnemann, 2018) is
reviewed below.

Example E.1 (Deep Gaussian embedding) Let Y be a set of distributions over a set Z ⊂ Rq. Kullback-
Leibler divergence (Kullback and Leibler, 1951) between two distributions y,y′ ∈ Y is defined by

dKL(y,y′) :=

∫
Z

y(z) log
y(z)

y′(z)
dz,

where y(z) is the probability density function corresponding to the distribution y ∈ Y.

With the same setting in Section 2, Deep Gaussian embedding (Bojchevski and Günnemann, 2018), which
incorporates neural networks into Gaussian embedding (Vilnis and McCallum, 2015), learns two neural networks
µ : Rp → Rq,Σ : Rp → Rq×q+ so that the function σ(−dKL(Nq(µ(xi),Σ(xi)),Nq(µ(xj),Σ(xj)))) approximates

E(wij |xi,xj). Rq×q+ is a set of all q × q positive definite matrices and Nq(µ,Σ) represents the q-variate normal
distribution with mean µ and variance-covariance matrix Σ.

Unlike typical graph embedding methods, deep Gaussian embedding maps data vectors to distributions as

Rp 3 x 7→ y := Nq(µ(x),Σ(x)) ∈ Y,

where y is also interpreted as a vector of dimension K = q + q(q + 1)/2 by considering the number of parameters
in µ and Σ. Our concern is to clarify if dKL is CPD. However, in the first place, dKL is not a kernel since it
is not symmetric. In order to make it symmetric, Kullback-Leibler divergence may be replaced with Jeffrey’s
divergence (Kullback and Leibler, 1951)

dJeff(y,y′) := dKL(y,y′) + dKL(y′,y).

Although −dJeff is a kernel, it is not CPD as shown in Proposition E.1.

Proposition E.1 −dJeff is not CPD on P̃2
q , where P̃q represents the set of all q-variate normal distributions.

A counterexample of CPD-ness is, n = 3, q = 2, c1 = −2/5, c2 = −3/5, c3 = 1,yi = N2(µi,Σi) ∈ Y (i =
1, 2, 3),µ1 = (2, 1)>,µ2 = (−1, 1)>,µ3 = (1, 2)>,Σ1 = diag(1/10, 1),Σ2 = diag(1/2, 1),Σ3 = diag(1, 1).

We are yet studying the nature of deep Gaussian embedding. However, as Proposition E.1 shows, negative
Jeffrey’s divergence used in the embedding is already proved to be non-CPD; SIPS cannot approximate it. IPDS
model is required for approximating such non-CPD kernels. Thus we are currently trying to reveal to what extent
IPDS applies, by classifying whether each of non-CPD kernels including negative Jeffrey’s divergence satisfies the
assumption on the kernel g∗ in Theorem E.1.
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