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Appendix A Proof of Theorem 3.1

To simplify the notation, for a 3-tensor ∆, we often write ‖∆‖q = ‖∆‖q,q,q for all q ∈ (0,∞]. With this notation
‖∆‖2 = ‖∆‖F and we use them interchangably. Recall S∗ is the set that optimizes (2) and we refer σs(Θ

∗) as σs
when unambiguous from context.

A.1 Error bounds for M-estimators

Our main result Theorem 3.1 is an application of Theorem 1 from [18]. We start by stating their result. Let
R, with dual norm R∗ be a decomposable regularizer over (M,M⊥), i.e., for all x ∈ M and y ∈ M⊥,
R(x + y) = R(x) + R(y). For some loss function L, define θ∗ := argmin

θ∈Ω
EL(θ), and its estimator

θ̂ := argmin
θ∈Ω

L(θ) + λnR(θ), which has an error ∆ := θ̂ − θ. Let Ψ(M) := sup
M\{0}

R(u)
‖u‖2 and let

C(M; θ∗) := {∆ | R(∆M⊥) ≤ 3R(∆M) + 4R(θ∗M⊥)}.

Proposition A.1 [18, Theorem 1] If L is convex, differentiable, R is a decomposable norm over (M,M⊥), for
some choice of subspace M and the following assumptions hold

λn ≥ 2R∗(∇L(θ∗)) and (16)

L(θ̂)− L(θ∗)− 〈∇L(θ∗),∆〉 ≥ κ|||∆|||2F − τ2, ∀ ∆ ∈ C(M; θ∗), (17)

‖θ̂ − θ∗‖22 ≤ 9
λ2
n

κ2
Ψ2(M) +

λn
κ

(
2τ2 + 4R(θ∗M⊥

)
). �

Equation (17) is referred to as “L satisfies restricted strong convexity (RSC) with curvature κ and tolerance
τ2.” Notice that for the regularized MLE problem for the MBP, R(Θ) = ‖ · ‖1,1,1 which is a decomposable
norm, whereby its dual norm is given by R∗(∇L(Θ)) = ‖∇L(Θ)‖∞,∞,∞. Also note that M above can be any
subspace over which R is decomposable. For our purpose, we chooseMS∗ = {A ∈ RN×N×p | AS∗c = 0},, whereby
M⊥S∗ = {A ∈ RN×N×p | AS∗ = 0}, where recall S∗ is the support of the best s sparse `1 approximator of Θ∗

(from (2)). For this subspace, the approximation error term R(Θ∗M⊥
S∗

) = ‖ΘS∗c‖1,1,1 = σs(Θ
∗) = σs. Further, for

the corresponding subspace Ψ(MS∗) =
√
s.

The proof of the Theorem 3.1 is the application of the result above. Lemma 4.2 states that the choice

λn = 2
√

2Lf/ε
√

log(2N2p/δ)
n qualifies (16). Proposition 4.1 states that if the number of samples satisfy

n ≥ c1
Gf (Θ∗)

c2f c
6
`

s3 log(N2p),

the RSC condition (17) holds with curvature κ = min{1, 1
4cfc

2
`} and tolerance τ2 = σ2

s/s. Together these two
results prove the claim.

A.2 Proof of Lemma 4.2

Notice that ‖∇L(Θ∗)‖∞,∞,∞ = sup
j,k,`
|∇jk`L(Θ∗)|. We know that

∇jk`L(Θ∗) =
∂L(Θ∗)

∂Θjk`
=

1

n

n∑
t=1

(
1− xtk
1− ztk

− xtk
ztk

)
∂ztk
∂Θjk`

Xt−1
lm .

Therefore using the law of total expectation E∇jk`L(Θ∗) equals

E

[
1

n

n∑
t=1

E
[

1− xtk
1− ztk

− xtk
ztk

∣∣∣∣Xi−1
i−p

]
∂ztk
∂Θjk`

Xt−1
lm

]
= 0. (18)
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Observe that this means {
Di :=

(
1− xtk
1− ztk

− xtk
ztk

)
∂ztk
∂Θjk`

Xt−1
lm , σ(Xi)

}
is a martingale difference sequence since E[Di | Xi] = 0 as derived in (18), with each |Di| ≤ Lf

ε . Using the
Azuma-Hoeffding inequality [28] for martingale differences, we have that

P (|∇jk`L(Θ∗)| > t) = P

(
|
n∑
i=1

Di| > nt

)
≤ 2 exp

(
−nε2t2

2L2
f

)
.

Consequently, using the union bound we have

P
(
‖∇L(Θ∗)‖∞,∞,∞ ≥ t

)
= P

(
sup
j,k,`
|∇jk`L(Θ∗)| > t

)
≤
∑
j,k,`

P
(
|∇jk`L(Θ∗)| > t

)
≤ 2N2p · exp(−nε2t2/2L2

f )

from which we conclude that with probability at least 1− δ, we have

‖∇L(Θ∗)‖∞,∞,∞ ≤
Lf
ε

√
2

n
log

2N2p

δ
,

which proves the claim.

A.3 Proof of Proposition 4.1

In this section we show that with high probability the likelihood function satisfies restricted strong convexity
in the star-shaped set, C := C(MS∗ ; Θ∗) where S∗ is the optimum solution from (2), with cardinality |S∗| = s.
Recall that for an (s, 2) compressible Θ∗, its best s-sparse `1,1,1 approximator is supported on S∗ and we have
‖Θ∗ −Θ∗S∗‖1 = σ(Θ

∗). Here MS∗ denotes the subspace of 3-tensors Θ supported on S∗.

Here and elsewhere, we use X as a shorthand for the collection of Xt−1, t = 1, . . . , n or equivalently for

X := (xt)n−1
−p+1 = (xn−1, xn−2, . . . , x−p+1) ∈ Sn+p−1, (19)

where S := {0, 1}N .

Lemma A.2 The remainder of the first-order Taylor expansion of the loss, around Θ∗, satisfies

RL(∆; Θ∗) ≥ E(∆;X) :=
cf
n

n∑
t=1

N∑
k=1

〈∆k∗∗, X
t−1〉2, (20)

for all Θ ∈ Ω and ∆ ∈ RN×N×p.

By Lemma A.2, in order to establish RSC, it is enough to show E(∆;X) ≥ κ2‖∆‖2F − τ2 for all ∆ ∈ C(S∗; Θ∗).

Before we move on, let us record an alternative form E(∆;X), which will be useful in subsequent analysis. Let
X ∈ {0, 1}n×Np be the design matrix with ith row,

Xi∗ := [(xi−1)> (xi−2)> . . . (xi−p)>] ∈ {0, 1}Np (21)

and define a stacking operator S : RN×N×p → RN×Np that reshapes a tensor as follows:

S(∆) := [∆∗∗1 ∆∗∗2 . . .∆∗∗p] ∈ RN×Np. (22)

We have the following representation:

Lemma A.3 For any ∆ ∈ RN×N×p, we have

E(∆;X) =
cf
n
‖X S(∆)>‖2F =

cf
n

n∑
t=1

N∑
j=1

〈
∆j∗∗, X

t−1
〉2
. (23)
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We next show that at the population level EE(∆;X) satisfies the RSC:

Lemma A.4 (Strong convexity at the population level) Under Assumption (A1),

EE(∆;X) ≥ cf c2` ‖∆‖2F , for all ∆ ∈ RN×N×p. (24)

We then show that E(∆;X) concentrates around its mean for any fixed ∆:

Lemma A.5 (Concentration for fixed ∆) For any ∆ ∈ RN×N×p,

P
(∣∣E(∆;X)− EE(∆;X)

∣∣ > t‖∆‖22,1,1
)
≤ 2 exp

(
−nt2

Gf (Θ∗)

)
.

Combining the two Lemmas A.4 and A.5 and using a discretization argument, we can establish a uniform lower
bound on the random function ∆ 7→ E(∆;X):

Lemma A.6 (Uniform lower bound) Proposition 4.1 holds with RL(∆; Θ∗) replaced with E(∆;X).

Putting the pieces together establishes the claimed RSC for the loss L.

A.4 Proof of Lemma A.4

Recall the notation in (21) and (22) and (27), and the statement of Lemma A.3 which gives us that

EE(∆;X) = cf

N∑
j=1

E
〈
∆j··, X

i
〉2
,

for any i. Let D := S(∆) ∈ RN×Np and the design matrix X ∈ Rn×Np, whereby its ith row is Xi∗ ∈ R1×n. Notice
the summation above does not include i or a 1

n factor due to the expectation operator and the stationarity
assumption. Hence EE(∆;X) = cfE‖DX>i∗‖22 which equals

E[Xi∗D
>DX>i∗] = E(tr(Xi∗D

>DX>i∗) = tr(D>DEX>i∗Xi∗) =
〈
D>D,R

〉
,

where R ∈ RNp×Np denotes the population autocorrelation matrix EX>i∗Xi∗, and hence is independent of i. Since
R− λmin(R)I � 0, and D>D � 0, we have that

EE(∆;X) = cf
〈
D>D,R

〉
≥ cfλmin(R) 〈D,D〉 = cfλmin(R)‖D‖2F . (25)

Now let X (ω) ∈ CN×N be the power spectrum of the process for which m(X ) := min
ω∈[−π,π)

λmin(X (ω)),

then λmin(R) ≥ 2πm(X (ω)) (see [2, Proposition 2.3]). Observe that R is block symmetric matrix with

Rij := Cov(xt−i, xt−j) ∈ RN×N . Let u> =
[
u>0 u>2 . . . u>p−1

]
, where ui ∈ RN and let G(ω) =

p−1∑
r=0

ure
−jrω.

Consider

u>Ru =

p−1∑
r,s=0

u>r Cov(xt−r, xt−s)us =

p−1∑
r,s=0

∫ π

−π
u>r X (ω)ej(r−s)ωusdω =

∫ π

−π
GH(ω)X (ω)G(ω)dω.

Since X (ω) is a hermitian matrix, GH(ω)X (ω)G(ω) is always a Real matrix. Moreover, we have that
GH(ω)X (ω)G(ω) ≥ m(X (ω))GH(ω)G(ω), where by

u>Ru ≥ m(X )

∫ π

−π
GH(ω)G(ω)dω = 2πm(X )‖u‖22,

by Parseval’s theorem. Consequently we have that λmin(R) ≥ 2πm(X ) = c2` . This together with equation (25)
proves Lemma A.4.
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A.5 Proof of Lemma A.5

We start by stating a result by Kontorovich et al. [11] for a process consisting of dependent random variables
taking values in a countable space:

Proposition A.7 [11, Theorem 1.1] Consider a S-valued process {Xm}m∈[n] for some countable set S. Let
φ : Sn → R be an L Lipschitz function of X := {Xm}nm=1 with respect to the Hamming norm. Define the mixing
coefficient

ηk`
∆
= sup
w,w′ ∈ S
y ∈ Sk−1

‖P
(
Xn
` = · | Xk = w,Xk−1

1 = y
)
− P

(
Xn
` = · | Xk = w′, Xk−1

1 = y
)
‖TV.

and let η ∈ Rn×n be the matrix with entries ηk` for ` ≥ k and zero otherwise (i.e., an upper triangular matrix).
Then, φ concentrates around its mean as follows:

P{|φ(X)− Eφ(X)| > t} ≤ 2 exp

(
−t2

nL2|||η|||2∞

)
, ∀t > 0 (26)

where |||η|||∞ = maxk
∑
`≥k ηk` is the `∞ operator norm of matrix η. Further if X is Markov with a Dobrushin

ergodicity coefficient τ < 1, then ηk` ≤ τ `−k and |||η|||∞ ≤ (1− τ)−1. �

We apply the above result by finding the Lipschitz constant of L of the map X→ E(∆,X), and bounding the
mixing coefficients in terms of the process parameters Θ, p and the link function f . Lemma B.1 shows that

L2 ≤ 4c2f
‖∆‖42,1,1
n2

,

and Lemmas C.1 and C.2 together show that

max
k

(∑
`≥k

ηk`

)2

≤ Gf (Θ∗)

4c2f
.

Finally, we replace t with t‖∆‖22,1,1 in (26) which proves the claim.

A.6 Proof of Lemma A.6

Recall the notation ‖∆‖q := ‖∆‖q,q,q. for the `q norm of a 3-tensor ∆ ∈ R[N ]2×[p]. Also note that ‖∆‖2 = ‖∆‖F .
We also write Bq(r) for the tensor `q ball of radius r, and ∂ Bq(r) for the boundary of that ball. For example,

B1(r) := {∆ ∈ RN×N×p : ‖∆‖1 ≤ r}, ∂ B2(r) := {∆ ∈ RN×N×p : ‖∆‖2 = r},

Let Gf = Gf (Θ∗) be the quantity defined in (7). Recall that S∗ is the support of the best `1 approximator of Θ∗

that has cardinality s, i.e., the optimal solution to (2). Let

C∗ := C(S∗,Θ∗) =
{

∆ ∈ Ω∗ : ‖∆S∗c‖1 ≤ 3‖∆S∗‖1 + 4‖Θ∗S∗c‖1
}
.

Step 1: Fixed `2 norm. We first establish the RSC (with no tolerance) for tensors in C∗ of a given Frobenius
norm, say ‖∆‖2 = r1.

Note that for any ∆ ∈ C∗, we have ∆ = ∆S∗ + ∆S∗c , hence

‖∆‖1 = ‖∆S∗‖1 + ‖∆S∗c‖1 ≤ 4‖∆S∗‖1 + 4‖ΘS∗c‖1 ≤ 4
(√
s‖∆‖F + σs(Θ

∗)
)

using ‖∆S∗‖1 ≤
√
s‖∆S∗‖F and ‖ΘS∗c‖1 ≤ σs(Θ∗). It follows that for any r1 > 0,

C∗ ∩ ∂ BF (r1) ⊆ B1

(
r2

)
,

where r2 := 4
(
r1
√
s+ σs(Θ

∗)
)
. Next we consider covering C∗ ∩ ∂ BF (r1) by finding an ε-cover of B1(r2).

For a metric space (T, ρ), let N (ε, T, ρ) be the ε-covering number of T in ρ. The quantity logN (ε, T, ρ) is called
the metric entropy. The following is an adaptation of a result of [22, Lemma 3, case q = 1]:
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Lemma A.8 Let X ∈ Rn×d be a matrix with column normalization ‖X∗j‖2 ≤
√
n for all j. Consider the set of

matrices RN×d and let BN×d1 (u) be the (elementwise) `1 ball of radius u in that space, i.e.

BN×d1 (u) := {D ∈ RN×d : ‖D‖1 ≤ u}.

Consider the (pseudo) metric ρ(D1, D2) := 1√
n
‖X(D1 −D2)>‖2 on RN×d. Then, for a sufficiently small constant

C1 > 0, the metric entropy of B1(u) in ρ is bounded as

logN
(
ε,BN×d1 (u), ρ

)
≤ C2

u2

ε2
log(Nd), , ∀ε ≤ C1u.

Now, recall the design matrix X ∈ Rn×Np defined in (21). Note that X satisfies the column normalization property
‖X∗j‖2 ≤

√
n for all j since X∗j ∈ {0, 1}n. Fix ε ∈ (0, 2C1r2/r1) for sufficiently small C1 > 0. It follows that

there exists an (r1ε/2)-cover N ′′ of BN×Np1 (r2) in the metric defined in Lemma A.8 with cardinality bounded as

log |N ′′| . r2
2

r2
1ε

2
log(N2p).

Recalling the stacking map ∆ 7→ S(∆) from (22) (mapping tensors to matrices), we have

S(C∗ ∩ ∂ BF (r1)) ⊆ S(B1

(
r2

)
) = BN×Np1 (r2).

Define a (pseudo) metric on the tensor space by ρ(∆,∆′) = ρ(S(∆), S(∆′)). Since S is a bijection, it follows that
there is an exterior (r1ε/2)-covering of C∗ ∩ ∂ BF (r1) in metric ρ with the same cardinality as N ′′; call it N ′.
(Here, the exterior covering means that the elements need not belong the set they cover. Elements of N ′ are
tensors in B1(r2) but not necessarily in C∗ ∩ ∂ BF (r1).)

We can pass from N ′ to an (r1ε)-cover, say N , of C∗∩∂ BF (r1) with cardinality no more than N ′, i.e. |N | ≤ |N ′|,
(see Exercise 4.2.9 in [29, p.75]). In particular, we have N ⊆ C∗ ∩ BF (r1).

Recall from Lemma A.3 that
√
E(∆;X) = c

1/2
f ‖X S(∆)>‖F /

√
n. Then, by triangle inequality

|
√
E(∆;X)−

√
E(∆′;X)| ≤ c1/2f ρ(∆,∆′),

for any two tensors ∆ and ∆′. Using (a− b)2 ≥ 1
2a

2 − b2, we have

E(∆;X) ≥ 1

2
E(∆′;X)− cf ρ2(∆,∆′).

If follows that

inf
∆∈C∗ ∩ ∂ BF (r1)

E(∆;X) ≥ 1

2
inf

∆∈N
E(∆;X)− cf (r1ε)

2

By Lemma A.5 and the union bound, with probability at least 1− 2|N | exp(−nt2/Gf ), we have

|E(∆;X)− EE(∆;X)
∣∣ ≤ t‖∆‖22,1,1, ∀∆ ∈ N .

Since N ⊆ C∗ ∩ BF (r1), for any ∆ ∈ N we have ‖∆‖22,1,1 ≤ s‖∆‖22 and ‖∆‖2 = r1. It follows that with the same
probability,

E(∆;X) ≥ EE(∆;X)− t sr2
1 ≥ (cfc

2
` − ts) r2

1, ∀∆ ∈ N

where we have used Lemma A.4 in the second inequality. It follows that we the same probability

inf
∆∈C∗ ∩ ∂ BF (r1)

E(∆;X) ≥
(1

2
cfc

2
` −

1

2
ts− cfε2

)
r2
1.

To simplify, let σs = σs(Θ
∗). Taking r1 = (σs/

√
s) + 1{σs = 0}, we can balance the two terms in r2. We obtain

4
√
s ≤ r2/r1 ≤ 8

√
s.
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The constraint on ε is ε ≤ 2C1(r2/r1). It is enough to require ε ≤ 8C1
√
s. Taking ε2 = 1

8c
2
` and assuming that

s ≥ c2`
512C2

1
satisfies the constraint. Also, taking t = 1

4cfc
2
`/s, we obtain

P
(

inf
∆∈C∗ ∩ ∂ BF (r1)

E(∆;X) ≥
(1

4
cfc

2
`

)
r2
1

)
≥ 1− 2 exp

(
log |N | − c2fc4`

n

16s2Gf

)
=: P1

Noting that

log |N | ≤ C3

(
8
√
s
)2( 8

c2`

)
log(N2p),

the probability is further bounded as

1− P1 ≤ 2 exp
(512

c2`
C3 s log(N2p)− c2fc4`

n

16s2Gf

)
.

Assuming c2fc
4
`

n
16s2Gf

≥ 1024 c−2
` C3 s log(N2p), we have

1− P1 ≤ 2 exp
(
− 512C3c

−2
` s log(N2p)

)
≤ 2(N2p)−c1s.

where c1 = O(c−2
` ) only depends on c`. Thus, we have established RSC with high probability for tensors in

C∗ ∩ ∂ BF (r1) with curvature κ = 1
4cfc

2
` and tolerance τ2 = 0.

Note that when σs = 0 (i.e., the case of hard sparsity), C∗ is a cone hence the above extends immediately to all
∆ ∈ C∗, since E(t∆;X) = t2E(∆;X) for all t > 0, thus completing the proof.

Now let us assume σs > 0 in the rest of the proof.

Step 2: Extending to the complement of the `2 norm ball. For σs > 0, since C∗ is not a cone, we cannot
use a scale-invariance argument to extend to general tensors. However, we have the following:

Lemma A.9 Assume that RSC holds for E in the sense of E(∆;X) ≥ κ|||∆|||2F , for all ∆ ∈ C∗ ∩ ∂ BF (r). Then,
RSC holds in the same sense for all ∆ ∈ C∗ ∩ {∆ : |||∆|||F ≥ r}.

The lemma establishes the RSC of the previous step for all of C∗∩{∆ : |||∆|||F ≥ r1}. The proof is straightforward
and follows from the observation that E(·;X) satisfies E(t∆;X) = t2E(∆;X), for t ≥ 1.

Step 3: Extending to small radii. It remains to extend the result to ∆ ∈ C∗ ∩ {∆ : |||∆|||F < r1}. In this
case, we simply take τ2 := r2

1 = σ2
s/s (since σs > 0 by assumption) so that

E(∆;X) ≥ 0 ≥ |||∆|||2F − τ2

so that the RSC holds with curvature = 1 and tolerance τ2. Putting the pieces together, we have the RSC for all
∆ ∈ C with the probability given in Step 1, curvature κ = min{ 1

4cfc
2
` , 1} and tolerance τ2 = σ2

s/s. The proof is
complete.

Appendix B Auxiliary results

B.1 Proof of Lemma A.2

Recall that the loss can be written as

L(Θ) = − 1

n

N∑
i=1

n∑
t=1

`it(〈Θi∗∗, X
t−1〉)′

where `it(u) = xti log f(u) + (1− xti) log(1− f(u)) is the likelihood for xti ∼ Ber(f(u)). We have

∂2L
∂Θabc∂Θk`m

(Θ) = − 1

n

∑
t

`′′at(〈Θa∗∗, X
t−1〉)Xt−1

bc Xt−1
`m 1{k = a},
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where −`′′at(u) equals

xta
f ′2 − ff ′′

f2
(u) + (1− xta)

(1− f)f ′′ + f ′2

(1− f)2
(u) ≥ cf > 0,

where cf := min{ f
′2−ff ′′
f2 , f

′2+(1−f)f ′′

(1−f)2 } is assumed to be positive by assumption (A2). It follows that

∂2L
∂Θabc∂Θk`m

(Θ) ≥ cf
n

n∑
t=1

Xt−1
bc Xt−1

`m 1{k = a}, ∀Θ ∈ Ω.

Thus, the Hessian quadratic form is uniformly controlled from below as:

〈∆∇2L(Θ),∆〉 ≥
∑

a,b,c,k,`,m

∆abc

[cf
n

n∑
t=1

Xt−1
bc Xt−1

`m 1{k = a}
]
∆k`m,=

∑
k,b,c,`,m

∆kbc

[cf
n

n∑
t=1

Xt−1
bc Xt−1

`m

]
∆k`m

=
cf
n

N∑
k=1

n∑
t=1

(∑
b,c

∆kbcX
t−1
bc

)(∑
`,m

∆k`mX
t−1
`m

)
=

cf
n

n∑
t=1

N∑
k=1

〈∆k∗∗, X
t−1〉2,

for all Θ ∈ Ω and ∆ ∈ RN×N×p. The proof is complete.

B.2 Quadratic lower bound is Lipschitz

Lemma B.1 The map X 7→ E(∆;X) is (2cf‖∆‖22,1,1/n)-Lipschitz w.r.t. Hamming distance on Sn+p−1. �

Proof We recall the following alternative expressions,

〈∆k∗∗, X
t−1〉 =

p∑
α=1

〈∆k∗α, X
t−1
∗α 〉 =:

p∑
α=1

〈∆k∗α, x
t−α〉. (27)

It is enough to consider two sequences {xt} and {yt} which differ in one coordinate, say X = (x−p+1, x−p, . . . , xn−1)
and Y = (x−p+1, x−p, . . . , yr, . . . , xn−1), where r will be fixed. The general case follows, via triangle inequality,
since any Y can be reached from X by a sequence X =: X(0),X(1), . . . ,X(h) := Y where h is the hamming distance
of X and Y in Sn+p−1, such that X(i) and X(i−1) are Hamming distance 1 apart, for i = 1, 2, . . . h.

Let Xt−1 and Y t−1 be defined based on X and Y as before, i.e., the corresponding p-lag history at time t− 1.
Note that Xt−1 and Y t−1 are different only for t such that t ∈ {r + 1, . . . , r + p}, and for such r, we have

|〈∆k∗∗, X
t−1 − Y t−1〉| ≤ ‖∆k,∗,t−r‖1.

We also have

|〈∆k∗∗, X
t−1 + Y t−1〉| ≤ 2‖∆k∗∗‖1.

Combining we obtain

|E(∆;X)− E(∆;Y)| = cf
n

∣∣∣ r+p∑
t=r+1

N∑
k=1

[
〈∆k∗∗, X

t−1〉2 − 〈∆k∗∗, Y
t−1〉2

]∣∣∣
≤ 2cf

n

r+p∑
t=r+1

N∑
k=1

‖∆k,∗,t−r‖1 ‖∆k∗∗‖1 ≤
2cf
n

N∑
k=1

‖∆k∗∗‖21 =
2cf
n
‖∆‖22,1,1

where we have used
∑r+p
t=r+1 ‖∆k,∗,t−r‖1 = ‖∆k∗∗‖1. This proves the claim.

Lemma B.2 Assume that U ∼ Ber(p), and V ∼ Ber(q) for p, q ∈ [ε, 1− ε] for some ε ∈ (0, 1
2 ). Then,

DKL(U‖V ) = p log
p

q
+ (1− p) log

1− p
1− q

≤ 3

4ε(1− ε)
(p− q)2.
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If Ui are independent Bernoulli with means pi and Vi are independent Bernoulli with means qi, then the vectors
U = (U1, U2, . . . , Um) and V = (V1, V2, . . . , Bm) satisfy

DKL(U‖V) =

m∑
i=1

DKL(Ui‖Vi) ≤
3

4ε(1− ε)
‖p− q‖22.

�

Proof It is enough to prove for the case q ≥ p (the other case follows by applying the proven case to 1− p and
1 − q). The second claim follows from the decomposition of the KL divergence for product distributions. Let
δ := ε(1− ε). Fix p and consider the function

f(q) = p log
p

q
+ (1− p) log

1− p
1− q

− 1

4δ
(p− q)2,

over q ∈ [p, 1− ε]. We have

f ′(q) = (q − p)
( 1

q(1− q)
− 1

2δ

)
.

We have f(q) = f(p) + f ′(q̃)(q − p) for some q̃ ∈ [p, q]. Note that f(p) = 0 and

f ′(q̃) ≤ (q̃ − p)
(1

δ
− 1

2δ

)
≤ 1

2δ
(q − p)

using the fact that (q̃(1− q̃))−1 ∈ [4, δ−1]. Thus, we have f(q) ≤ (q − p)2/(2δ).

Appendix C Background on Markov contraction

We briefly state some properties of Markov kernels. This has been studied extensively in the literature on Markov
chains and their contraction. Here we discuss properties of homogeneous Markov chains only for the sake of
brevity, and since the MBP is time invariant. For a Markov chain over a discrete space S, let (Pij) ∈ R|S|×|S| be
its kernel. The Kernel is a non-negative stochastic matrix, with each row as a probability distribution. Let H1 be
the subspace {u ∈ R|S| | 1>u = 0}. This subspace is invariant to every Markov kernel P ∈ R|S|×|S|, i.e., for all
u ∈ H1, we have u>P ∈ H1. Consider the quantity

τ1(P ) := sup
u∈H1

‖u>P‖1
‖u‖1

,

also known as the Dobrushin ergodicity coefficient. Hence due to the invariance of H1 to P , we can conclude that

‖u>P `‖1 ≤ τ1(P )`‖u‖1 ∀ u ∈ H1. (28)

For all stochastic matrices τ1(P ) ≤ 1. The inequality is strict if and only if no two rows of P are orthogonal (such
Markov kernels are said to be scrambling). Some sufficient conditions for τ1(P ) < 1, which are easier to interpret,
are (i) P is a positive matrix, and (ii) P has a column with all entries positive.

Any process for which
P(xt | xt−1, xt−2, . . .) = P(xt | xt−1, xt−2, . . . xp), (29)

for some fininte p, can equivalently be represented with a Markov kernel K in R|S|p×|S|p , such that

Kij = P((xt, xt−1, . . . , xt−p+1) = j | (xt−1, xt−2, . . . , xt−p) = i), ∀ i, j ∈ Sp.

However, this Kernel matrix K is constrained since Kij 6= 0 if and only if (i1, i2, . . . , ip−1) = (j2, j3, . . . , jp).
One can then show that τ1(Kk) = 1 for all k < p. Fortunately, under the mild assumption that P(xt |
xt−1, xt−2, . . . , xt−p) > 0, one can show that τ1(Kp) < 1. We make use of this quantity to upper bound the
summation

∑
`≥k ηk`.

One can think of Kp as a |S|p × |S|p Markov kernel that gives the transition probabilities for consecutive blocks
of size p, i.e., for i, j ∈ Sp, we have that for any t,

(Kp)i,j = P(Xt+p
t+1 = j | Xt

t−p+1 = i).
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Lemma C.1 Let X be generated according to (1), where f : R→ [ε, 1− ε] is Lf -Lipschitz for some ε ∈ (0, 1
2 ).

Define

g2(Θ∗) =
3L2

f

2ε

p∑
`=1

N∑
j=1

(
N∑
k=1

p∑
i=`

|Θjki|

)2

.

Then

τ1(Kp) = sup
z,y∈Sp

‖e>z Kp − e>y Kp‖TV ≤ gf (Θ∗).

�

Proof Let Pz(·) denote P(Xt+p−1
t = · | Xt−1

t−p = z) for any t, since the process is assumed to be time-invariant.
Hence τ1(Kp) = supz,y∈Sp ‖Pz − Py‖TV. By Pinsker’s inequality, we have

‖Pz − Py‖2TV ≤
1

2
DKL(Pz‖Py).

Now, observe that

DKL(Pz‖Py) := E
X∼Pz

log
Pz(X)

Py(X)
= E
X∼Pz

log

p∏
i=1

P(Xi|Xi−1
1 ;X0

1−p = z)

P(Xi|Xi−1
1 ;X0

1−p = y)

= E
X∼Pz

p∑
i=1

log
P(Xi|Xi−1

1 ;X0
1−p = z)

P(Xi|Xi−1
1 ;X0

1−p = y)
=

p∑
i=1

E
X∼Pz

log
P(Xi|Xi−1

1 ;X0
1−p = z)

P(Xi|Xi−1
1 ;X0

1−p = y)

=

p∑
i=1

E
X∼Pz

E

[
log

(
P(Xi|Xi−1

1 ;X0
1−p = z)

P(Xi|Xi−1
1 ;X0

1−p = y)

)∣∣∣∣∣Xi−1
1 ;X0

1−p = z

]

=

p∑
i=1

E
X∼Pz

DKL

(
P(Xi|Xi−1

1 ;X0
1−p = z)

∥∥∥∥∥P(Xi|Xi−1
1 ;X0

1−p = y)

)
.

Now we know for i.i.d. bernoulli random vectors with mean vectors µ and ν, using Lemma B.2, their KL-divergence
is upper bounded as DKL(Ber(µ)‖Ber(ν)) ≤ 3

4ε(1−ε)‖µ− ν‖
2
2 = 3

4ε(1−ε)
∑N
j=1(µj − νj)2. The Lpschitzness of f

thus results in DKL(Pz‖Py) being upper bounded by

p∑
`=1

N∑
j=1

3

4ε(1− ε)
L2
f

∣∣∣∣∣
p∑
i=`

〈Θj∗i, (zi−`+1 − yi−`+1)〉

∣∣∣∣∣
2

≤
p∑
i=1

N∑
j=1

3L2
f

2ε

(
p∑
i=`

‖Θj∗i‖1

)2

=: g2(p; Θ; f),

since Xi−1
1 are common to evaluation of means for both distributions. We also used ε ≤ 1

2 above.

Lemma C.2 For a p-lag process over S, with an equivalent kernel representation K ∈ R|S|p×|S|p given by (29),

ηk` ≤ τ1(Kp)1+b(`−k−1)/p)c.

Consequently, if τ1(Kp) < 1, then using Lemma C.1,∑
`≥k

ηk`

2

≤

∑
`≥k

τ1(Kp)1+b(`−k−1)/pc

2

≤
(

1 +
pτ1(Kp)

1− τ1(Kp)

)2

≤ 2 +
2p2

( 1
g(p,Θ,f) − 1)2

=:
1

4c2f
G(p,Θ, f).

�

Proof Let z ∈ Sk−p. Observe that the ηk`-mixing coefficient is the sup
w,w′,y,z

of

‖P(Xn
` |Xk

1 = wyz)− P(Xn
` |Xk

1 = w′yz)‖TV =
1

2

∑
xn
`

|P(Xn
` = xn` |Xk

k−p+1 = wy)− P(Xn
` = xn` |Xk

k−p+1 = w′y)|,
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which follows from the process being p-Markov. This in turn is equal to

=
1

2

∑
x`+p−1
`

∑
xn
`+p

∣∣∣∣∣P(Xn
`+p = xn`+p|X

`+p−1
` = x`+p−1

` ;Xk
k−p+1 = wy)P(X`+p−1

` = x`+p−1
` |Xk

k−p+1 = wy)

− P(Xn
`+p = xn`+p|X

`+p−1
` = x`+p−1

` ;Xk
k−p+1 = w′y)P(X`+p−1

` = x`+p−1
` |Xk

k−p+1 = w′y)

∣∣∣∣∣
=

1

2

∑
x`+p−1
`

∑
xn
`+p

P(Xn
`+p = xn`+p|X

`+p−1
` = x`+p−1

` )

∣∣∣∣∣P(X`+p−1
` = x`+p−1

` |Xk
k−p+1 = wy)

− P(X`+p−1
` = x`+p−1

` |Xk
k−p+1 = w′y)

∣∣∣∣∣
=

1

2

∑
x`+p−1
`

∣∣∣∣∣P(X`+p−1
` = x`+p−1

` |Xk
k−p+1 = wy)− P(X`+p−1

` = x`+p−1
` |Xk

k−p+1 = w′y)

∣∣∣∣∣
=

1

2
‖(ewy − ew′y)>K`+p−1−i‖1.

Note here ei is the ith row of identity in R|S|p×|S|p , for i ∈ Sp.Observe that `− k− 1 = pb(`− k− 1)/pc+ (`− k−
1 mod p). Applying equation (28) for stochastic matrices K(`−k−1 mod p), and using 1

2 (ewy − ew′y) ∈ H1we get

ηk` ≤ sup
u∈H1

‖u>Kp+pb(`−k−1)/pc+(`−k−1 mod p)‖1 ≤ sup
u∈H1

‖u>(Kp)1+b(`−k−1)/pc‖1 ≤ τ1(Kp)1+b(`−k−1)/pc, (30)

where the last inequality follows again from equation (28).

Appendix D Scaling of gf (Θ) with p

Lemma D.1 If |Θjk`| ≤ Cjk · `−α, for some α > 3
2 . Then

gf (Θ) ≤

√
6α

ε(α− 3/2)
Lf‖C‖2,1.

Similarly, if |Θjk`| ≤ (1− β)`, for some β < 1, then

gf (Θ) ≤
Lf
√

3/2

β3/2ε1/2
‖C‖2,1.

�

Proof If a polynomial decay of Θjk` with 1
` is satisfied, then

N∑
k=1

p∑
i=`

|Θjki| ≤
N∑
k=1

∞∑
i=`

|Θjki| ≤
N∑
k=1

∞∑
i=`

|Cjk|i−α.

Now,
∑∞
i=` i

−α ≤ α
α−1`

1−α, by approximating the summation with an integral. Hence the summation in the
definition of g(Θ; f) is at most

p∑
`=1

N∑
j=1

‖Cj∗‖21
α2

(α− 1)2
`2−2α =

α2‖C‖22,1
(α− 1)2

∞∑
`=1

`2−2α

≤ 2α2

(α− 1)(2α− 3)
‖C‖22,1 ≤

6‖C‖22,1α
2α− 3

,

via another Reimann integral approximation. This shows the claim. Where we have used α > 3/2 to upper bound
some terms.
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Using the (1− β) geometric decay of Θ∗jk, the summation in the definition of g(Θ; f) is at most

p∑
i=1

N∑
j=1

(

N∑
k=1

|Cjk|
p∑
τ=i

(1− β)τ )2

≤
p∑
i=1

N∑
j=1

(

N∑
k=1

|Cjk|
(1− β)i

β
)2

≤
N∑
j=1

(

N∑
k=1

|Cjk|)2 (1− β)2

β2(1− (1− β)2)
≤
‖C‖22,1
β3

,

where we use β < 1 to upper bound some terms.
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