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1 Supplementary

1.1 Proof for Proposition 2.2

Proof. For any positive integer r ≥ 1, Kemp (1968) shows that

E((Xj)r | XPa(j)) = θr
p∏
i=1

(ai + r − 1)!

(ai − 1)!

q∏
j=1

(bj − 1)!

(bj + r − 1)!
. (1)

Then, the expectation can be obtained when r = 1.

E(Xj | XPa(j)) = θ ×
p∏
i=1

ai

q∏
j=1

1

bj
.

By plugging this into Eqn. (1), we have

E((Xj)r | XPa(j)) = E(Xj | XPa(j))
r

p∏
i=1

(ai + r − 1)!

(ai − 1)!ari

q∏
j=1

(bj − 1)!brj
(bj + r − 1)!

.

1.2 Proof for Theorem 2.4

Proof. Without loss of generality, we assume the true ordering is unique and π = (π1, ..., πp). For notational
convenience, we define X1:j = (Xπ1

, Xπ2
, · · · , Xπj

) and X1:0 = ∅. We prove the identifiability of our GHD DAG
models by mathematical induction.

As we discussed in the main body of the paper, for any node j ∈ V \ {π1}, Prop. 2.2 and Assumption 2.3 ensure
that

E((Xj)r)

f
(r)
j (E(Xj))

> 1, and
E((Xπ1

)r)

f
(r)
π1 (E(Xπ1

))
=
f
(r)
π1 (E(Xπ1

)))

f
(r)
π1 (E(Xπ1

))
= 1.

Hence we can determine π1 as the first element of the ordering.

For the (m− 1)th element of the ordering, assume that the first m− 1 elements of the ordering and their parents
are correctly estimated. Now, we consider the mth element of the ordering and its parents. Again Prop. 2.2 and
Assumption 2.3 yield that forj ∈ {πm+1, πm+2, · · · , πp},

E((Xj)r)

E(f
(r)
j (E(Xj | X1:(m−1))))

>
E(E((Xj)r | X1:(m−1)))

E(E(f
(r)
j (E(Xj | XPa(j))) | X1:(m−1)))

= 1.

In addition, it is clear that

E(E((Xπm)r | X1:(m−1)))

E(f
(r)
πm(E(Xπm

| X1:(m−1))))
=

E(E((Xπm)r | XPa(πm)))

E(f
(r)
πm(E(Xπm

| XPa(πm))))
=

E((Xπm)r)

E(f
(r)
πm(E(Xπm

| XPa(πm))))
= 1.
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Hence we can estimate a valid mth component of the ordering πm and its parents by testing whether the r-th
moments ratio is whether greater than or equal to 1. By the mathematical induction this completes the proof.

1.3 Proof for Theorem 3.2

Proof. We first reintroduce some necessary notations and definitions to make the proof concise. Without loss of
generality, assume that the true ordering is unique and π = (π1, ..., πp). In addition, we assume the true skeleton
is provided. For ease of notation, we drop the r in the both r-th moments ratio scores and CMR function. Then,
the element of the score can be written as:

S(j, k)(XCjk
) :=

E(Xr
k | XCjk

)

fk(E(Xk | XCjk
))−

∑r−1
m=0 s(r,m)E(Xm

k | XCjk
)
, and

Ŝ(j, k)(XĈjk
) :=

Ê(Xr
k | XĈjk

)

fk(Ê(Xk | XĈjk
))−

∑r−1
m=0 s(r,m)Ê(Xm

k | XĈjk
)
.

where Cjk is the candidate parents set and s(r, k) is Stirling numbers of the first kind. Hence the r-th moments
ratio score is

Ŝ(j, k) :=
∑

x∈XĈjk

n(x)

nĈjk

Ŝr(j, k)(x).

We define the following important events: For each node j ∈ V and set S ⊂ V \ (De(j) ∪ {j}) and for any ε > 0,
let

ζ1 :=

{
min

j=1,...,p−1
min

k=j,...,p

∣∣∣S(j, πk)− Ŝ(j, πk)
∣∣∣ > Mmin

2

}
ζ2 :=

{
max
j∈V

∣∣∣Ê(Xr
j | XS)− E(Xr

j | XS)
∣∣∣ < ε

}
ζ3 :=

{
max
j∈V

∣∣∣fj (Ê(Xj | XS)
)
− fj (E(Xj | XS))

∣∣∣ < ε

2

}
ζ4 :=

{
max
j∈V

∣∣∣∣∣
(
r−1∑
k=0

s(r, k)Ê(Xk
j | XS)−

r−1∑
k=0

s(r, k)E(Xk
j | XS)

)∣∣∣∣∣ < ε

2

}

ζ5 :=

{
max
j∈V

max
i∈{1,2,··· ,n}

|X(i)
j | < 4 log η

}
. (2)

Here we use the method of moments estimators 1
n

∑n
i=1(X

(i)
j )k as unbiased estimators for E(Xk

j ) for all 1 ≤ k ≤ r.

We prove that our algorithm recovers the ordering of any GHD DAG model in the high dimensional settings if
the indgree is bounded. The probability that ordering is correctly estimated from our method can be written as

P (π̂ = π)

= P

(
Ŝ(1, π1) < min

j=2,...,p
Ŝ(1, πj), Ŝ(2, π2) < min

j=3,...,p
Ŝ(1, πj), ..., Ŝ(p− 1, πp−1) < Ŝ(p− 1, πp)

)
= P

(
min

j=1,...,p−1
min

k=j+1,...,p
Ŝ(j, πk)− Ŝ(j, πj) > 0

)
= P

(
min

j=1,...,p−1
min

k=j+1,...,p

{
(S(j, πk)− S(j, πj))−

(
S(j, πk)− Ŝ(j, πk)

)
+
(
S(j, πj) + Ŝ(j, πj)

)}
> 0

)
≥ P

(
min

j=1,...,p−1
min

k=j+1,...,p
{(S(j, πk)− S(j, πj))} > Mmin, and min

j=1,...,p−1
min

k=j,...,p

∣∣∣S(j, πk)− Ŝ(j, πk)
∣∣∣ < Mmin

2

)
.
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By Assumption 3.1 (A1) S(j, πk) > 1 +Mmin, the above lower bound of the probability is reduced to

P (π̂ = π) ≥ 1− P
(

min
j=1,...,p−1

min
k=j,...,p

∣∣∣S(j, πk)− Ŝ(j, πk)
∣∣∣ > Mmin

2

)
= 1− P (ζ1)

= 1− {P (ζ1 | ζ2, ζ3, ζ4)P (ζ2, ζ3, ζ4) + P (ζ1 | (ζ2, ζ3, ζ4)c)P ((ζ2, ζ3, ζ4)c)}
≥ 1− {P (ζ1 | ζ2, ζ3, ζ4) + P ((ζ2, ζ3, ζ4)c)}
= 1− {P (ζ1 | ζ2, ζ3, ζ4) + P ((ζ2, ζ3, ζ4)c | ζ5)P (ζ5) + P ((ζ2, ζ3, ζ4)c | ζc5)P (ζc5)}
≥ 1− {P (ζ1 | ζ2, ζ3, ζ4) + P ((ζ2, ζ3, ζ4)c | ζ5) + P (ζc5)}

≥ 1−
{
P (ζ1 | ζ2, ζ3, ζ4)︸ ︷︷ ︸

Prop1.1

+P (ζc2 | ζ5) + P (ζc3 | ζ5) + P (ζc4 | ζ5)︸ ︷︷ ︸
Prop1.2

+ P (ζc5)︸ ︷︷ ︸
Prop1.3

}
.

Next we introduce the following three propositions to show that the above lower bound converges to 1. The first
proposition proves that estimated score is accurate under some regularity conditions. For ease of notation, let

gj(Ê(Xj | XĈjk
)) = fk(Ê(Xk | XĈjk

))−
r−1∑
m=0

s(r,m)Ê(Xm
k | XĈjk

).

Proposition 1.1. Given the sets ζ2, ζ3, ζ4 in Egn. (2), P (ζ1 | ζ2, ζ3, ζ4) = 0 if one of the following conditions
are satisfied for any S ⊂ V \ (De(j) ∪ {j}):

(i) 2E(Xr
j | XS) + (2−Mmin)gj(E(Xj | XS)) ≤ 0 or

(ii) ε < Mmingj(E(Xj |XS))2

(2E(Xr
j |XS)+(2−Mmin)gj(E(Xj |XS)))

.

The first condition (i) is satisfied if Mmin in Assumption 3.1 (A1) is sufficiently large and the second condition (ii)
is satisfied if ε is sufficiently small. This means that if the estimated r-th factorial moment is close to the true
r-th factorial moment, then ζ1 is not satisfied with probability 1. Hence we discuss the error bound for the r-th
factorial moment estimator in the next.

The following propositions show the error bound for the higher order moment Xk
j for 1 ≤ k ≤ r given the set ζ5,

and therefore the error bound for the r-th factorial moment estimator:

Proposition 1.2. For any node j ∈ V and any set S ⊂ V \ (De(j) ∪ {j}) and for any ε > 0,

(i) For ζ2,

P (ζc2 | ζ5) ≤ 2 · p · exp
{
− 2Nminε

2

(4 log2 η)r

}
.

(ii) For ζ3, and m ∈ (E(Xj | XS)− ε/2,E(Xj | XS) + ε/2),

P (ζc3 | ζ5) ≤ 2 · p · exp

{
− Nminε

2

8(max(f ′j(m)))2 log2 η

}
.

(iii) For ζ4,

P (ζc4 | ζ5) ≤ 2 · p · r · exp

{
− 2Nminε

2

maxk∈{1,...,r−1} s(r, k)(4 log2 η)r

}
.

where Nmin is a predetermined minimum sample size in Assumption 3.1 (A3) and s(r, k) is Stirling numbers of
the first kind.



Gunwoong Park, Hyewon Park

Proposition 1.3. Under Assumption 3.1 (A2),

P (ζc5) ≤ V1
η2
.

Hence for any ε ∈
(

0,
∣∣∣ Mmingj(E(Xj |XS))2

(2E((Xj)r|XS)+(2−Mmin)gj(E(Xj |XS)))

∣∣∣), the MRS algorithm recovers the true ordering at
least of

P (π̂ = π) ≥ 1−
{
P (ζ1 | ζ2, ζ3, ζ4)︸ ︷︷ ︸

Prop1.1

+P (ζc2 | ζ5) + P (ζc3 | ζ5) + P (ζc4 | ζ5)︸ ︷︷ ︸
Prop1.2

+ P (ζc5)︸ ︷︷ ︸
Prop1.3

}
.

= 1− 2 · p · exp
{
− 2Nminε

2

(4 log2 η)r

}
− 2 · p · exp

{
− Nminε

2

8(max(f ′j(m)))2 log2 η

}

−2 · p · r · exp

{
− 2Nminε

2

maxk∈{1,...,r−1} s(r, k)(4 log2 η)r

}
− V1
η2
.

This result clams that if Nmin = O(log2r(η) log(p)), our algorithm correctly estimate the ordering of the graph.

Lastly, we show the relationship between the sample size n and Nmin to satisfy Assumption 3.1 (A3). Suppose that
d is the maximum number of parents of a node. Then the maximum size of the candidate parents set is d. The
scenario is that a conditioning set has two possible cases. If there is only one element for the conditioning set, there
is no difference between the conditional and marginal distributions. In the best case, n = 2Nmin when the there
are two conditional distributions |XC | = 2. Hence if n = O((log2r(η)(log(p) + log(r))), our algorithm works in the
high dimensional settings. In the worst case given ζ5, the sample size is n = (4 log(η)d − 2)(Nmin − 1) + 2Nmin =

4 log(η)d(Nmin − 1) + 2 where the number of all elements of {x ∈ XC |
∑n
i 1(X

(i)
C = x) ≥ Nmin} is two and all

other elements of XC has Nmin − 1 repetitions. In this worst case, if n = O(log(η)(2r+d)(log(p) + log(r))) our
algorithm correctly recovers the ordering with high probability.

1.3.1 Proof for Proposition 1.1

Proof. For ease of notation, let η = max{n, p} and the r-th moments ratio score:

Ŝ(j, k) :=
∑

x∈XĈjk

n(x)

nĈjk

Ŝr(j, k)(x).

In addition, let

gk(Ê(Xk | XĈjk
)) = fk(Ê(Xk | XĈjk

))−
r−1∑
m=0

s(r,m)Ê(Xm
k | XĈjk

).

For any j ∈ V , k ∈ {πj , ..., πp} and x ∈ XĈjk
, we have

P

(
|Ŝ(j, k)(x)− S(j, k)(x)| > Mmin

2

∣∣∣ζ2, ζ3, ζ4)
= P

(∣∣∣∣∣ Ê(Xr
k | x)

gk(Ê(Xk | x))
− E(Xr

k | x))

gk(E(Xk | x))

∣∣∣∣∣ > Mmin

2

∣∣∣∣ζ2, ζ3, ζ4
)

≤ P

(
E(Xr

k | x) + ε

gk(E(Xk | x))− ε
− E(Xr

k | x))

gk(E(Xk | x))
>
Mmin

2
or

E(Xr
k | x))

gk(E(Xk | x))
− E(Xr

k | x)− ε
gk(E(Xk | x)) + ε

>
Mmin

2

)
= P

(
ε(gk(E(Xk | x)) + E(Xr

k | x))

gk(E(Xk | x))(gk(E(Xk | x))− ε)
>
Mmin

2
or

ε(gk(E(Xk | x)) + E(Xr
k | x))

gk(E(Xk | x))(gk(E(Xk | x)) + ε)
>
Mmin

2

)
= P

(
Mmingk(E(Xk | x))2 < ε (2E(Xr

k | x) + (2−Mmin)gk(E(Xk | x)))
)
.

Simple calculations yield that the above upper bound is zero if either



Gunwoong Park, Hyewon Park

(i) 2E(Xr
k | x) + (2−Mmin)gk(E(Xk | x)) ≤ 0 or

(ii) ε < Mmingk(E(Xk|x))2

(2E(Xr
k |x)+(2−Mmin)gk(E(Xk|x)))

.

1.3.2 Proof for Proposition 1.2

Since the proof for Prop. 1.2 (i) - (iii) are analogous, we provide the proof for (iii) and then we provide the proof
for (ii).

Proof. Using Hoeffding’s inequality given ζ5, for 1 ≤ k ≤ r and any ε > 0,

P
(∣∣∣Ê(Xk

j | XS)− E(Xk
j | XS)

∣∣∣ > ε
)
≤ 2 · p · exp

{
− Nminε

2

8 log2k η

}
.

Hence, given ζ5,

P

(∣∣∣∣∣
r−1∑
k=0

s(r, k)Ê(Xk
j | XS)−

r−1∑
k=0

s(r, k)E(Xk
j | XS)

∣∣∣∣∣ > ε | ζ5

)

≤
r−1∑
k=1

P

(∣∣∣Ê(Xk
j | XS)− E(Xk

j | XS)
∣∣∣ > ε

s(r, k)
| ζ5
)

≤
r−1∑
k=1

2 · p · exp
{
− Nminε

2

8s(r, k) log2k η

}
≤ 2 · p · r · exp

{
− Nminε

2

8 maxk s(r, k) log2r η

}
.

Now we provide the proof for (ii).

Proof. By Mean value theorem, we obtain

fj(Ê(Xj | XS))− fj(E(Xj | XS)) = f ′j(m̄)
(
Ê(Xj | XS)− E(Xj | XS)

)
.

where f ′j is the first derivative of fj and m̄ is some point between Ê(Xj | XS) and E(Xj | XS).

Given the |Ê(Xj)− E(Xj)| < ε/2 from Prop. 1.2(iii), we obtain

fj(Ê(Xj | XS))− fj(E(Xj | XS)) = max
m

f ′j(m)
(
Ê(Xj | XS)− E(Xj | XS)

)
.

for m ∈ (E(Xj | XS)− ε/2,E(Xj | XS) + ε/2). Again applying Hoeffding’s inequality given ζ5, for any ε > 0,

P

(
min
j∈V

fj

(
Ê(Xj | XS)

)
− fj (E(Xj)) > ε | ζ5

)
≤ p ·min

j∈V
P

((
Ê(Xj | XS)− E(Xj | XS)

)
>

ε

maxm f ′j(m)
| ζ5

)

≤ 2 · p · exp

{
− Nminε

2

8(maxm f ′j(m))2 log2 η

}
.
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Distributions p.g.f. G(s) Parameters

Poisson 0F0[; ;λ(s− 1)] λ > 0
Hyper-Poisson (Bardwell and Crow) 1F1[1; b;λ(s− 1)] λ > 0
Negative Binomial 1F0[k; ; p(s− 1)] k, p > 0
Poisson Beta 1F1[a; a+ b;λ(s− 1)] a, b, λ > 0
Negative Binomial Beta 2F1[k, a; a+ b;λ(s− 1)] k, a, b, λ > 0
STERRED Geometric 2F1[1, 1; 2; q(s− 1)/(1− q)] 1 > q > 0
Shifted UNSTERRED Poisson 1F1[2; 1;λ(s− 1)] 1 ≥ λ > 0

Table 1: Examples of hypergeometric distributions and their probability generating functions G(s)

(a) DAG Precision:p = 20 (b) DAG Recall:p = 20 (c) MEC Precision:p = 20 (d) MEC Recall:p = 20

Figure 1: Comparison of our MRS algorithms using GES and MMHC algorithms in Step 1) and r = 2 to the
ODS, GES, MMHC algorithms in terms of precision and recall for Poisson and Hybrid DAG models with p = 20.

1.3.3 Proof for Proposition 1.3

Proof. The proof is directly from the concentration bound:

P (ζc5) = P

(
min
j∈V

min
i∈{1,2,...,n}

∣∣∣X(i)
j

∣∣∣ > 4 log η

)
≤ n · p · P

(
P
∣∣∣X(i)

j

∣∣∣ > 4 log η
)

≤ n · p ·
E(exp(X

(i)
j ))

η4

≤ n · p ·
E(E(exp(X

(i)
j ) | XPa(j)))

η4

(a)

≤ n · p · V1
η4

≤ V1
η2
.

Inequality (a) is from Assumption 3.1 (A2).

1.4 Examples of Hypergeometric Distributions

We provide examples of hypergeometric distributions and their probability generating functions in Table 1.

1.5 Simulations

In this section, we provide various simulation results by comparing the MRS algorithm to state-of-the-art ODS,
GES and MMHC algorithms in terms of recovering MECs and DAGs.

Not surprisingly, the MRS algorithm performs better than ODS, GES and MMHC algorithms in terms of
recovering MECs since the ordering is well estimated by the MRS algorithm. Fig. 1 empirically confirms this in
Poisson and Hybrid DAG models with p = 20.
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(a) Poisson: p = 20 (b) Poisson: p = 100 (c) Hybrid: p = 20 (d) Hybrid: p = 100

Figure 2: Comparison of the MRS algorithms using different values of r = 2, 3, 4 for the scores in terms of
recovering the ordering of Poisson and Hybrid DAG models given the true skeletons.

(a) Poisson: Precision (b) Poisson: Recall (c) Hybrid: Precision (d) Hybrid: Recall

Figure 3: Comparison of our MRS algorithms using GES and MMHC algorithms in Step 1) and r = 2 to the
ODS, GES, MMHC algorithms in terms of recovering Poisson and Hybrid DAG models with p = 100.

To authenticate the validation of Thm. 3.2, we again plot the average precision (# of correctly estimated edges
# of estimated edges ) as a

function of sample size (n ∈ {100, 200, ..., 1000}) for different node sizes (p = {20, 100}) given the true skeleton.
As explained with large-scale graphs, Fig. 2 supports our main idea: (i) our algorithm recovers the ordering more
accurately as sample size increases; (ii) our algorithm can recover the ordering in high dimensional settings; and
(iii) the required sample size n = Ω(log2r+d(max (n, p)) log(p)) depends on the choice r because our algorithm
with r = 2 performs significantly better than our algorithms with r = 3, 4. For Hybrid DAG models with r = 4,
the accuracy seems poor because Binomial with N = 3 cannot satisfy Assumption 3.1 (A1) with r = 4 i.e.,
E((Xj)4) = 0. However the overall precision is significantly better than 0.5 which is the precision of the random
graph with the true skeleton.

In Fig. 3, we compare the MRS algorithm where r = 2 for the score, and GES and MMHC algorithms are applied
in Step 1) to state-of-the art ODS, GES and MMHC algorithms by providing two results as a function of sample
size n ∈ {100, 200, ..., 1000} for fixed node size p = 100: (i) the average precision (# of correctly estimated edges

# of estimated edges ); (ii)
the average recall (# of correctly estimated edges

# of ture edges ). We also provide an oracle where the true skeleton is used while
the ordering is estimated via the moments ratio scores.

As we explained with DAG models with p ∈ {200, 500} in the main body of the paper, Fig. 3 also provides that
the MRS algorithm is more accurate than state-of-the-art ODS, GES and MMHC algorithms in both precision
and recall.

1.6 Real Multivariate Count Data: 2009/2010 NBA Player Statistics

The original data set contains 24 covariates: player name, team name, player’s position, total minutes played,
total number of field goals made, field goals attempted, threes made, threes attempted, free throws made, free
throws attempted, offensive rebounds, rebounds, assists, steals, turnovers, blocks, personal fouls, disqualifications,
technicals fouls, ejections, flagrant fouls, games started and total points. We eliminated player name, team name,
number of games played, and player’s position, because our focus is to find the directional or causal relationships
between statistics. We also eliminated ejections and flagrant fouls because both did not occur in our data set.
Therefore the data set we consider contains 18 discrete variables.

Fig. 4 (left) shows that the magnitude of NBA statistics are significantly different, and hence we expect our
MRS algorithm would be more accurate than the comparison ODS algorithm. Moreover, Fig. 4 (right) shows
that all 18 variables are positively correlated. This makes sense because the total minutes played is likely to be
positively correlated with other statistics, and some statistics have causal or directional relationships (e.g., the
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TotalMinutesPlayed

FieldGoalsMade

FieldGoalsAttempted

ThreesMade

ThreesAttempted

FreeThrowsMade

FreeThrowsAttempted

OffensiveRebounds

TotalRebounds

Assists

Steals

Turnovers

Blocks

PersonalFouls

Disqualifications

TotalPoints

Technicals

GamesStarted

Figure 4: Box plots for some NBA statistics depending on positions (left). Box plots consider the total minutes
played, total number of field goals made and attempted, threes made and attempted, offensive rebounds, assists,
and technical fouls. Correlation Plots for NBA statistics (right). Blue represents a high correlation and white
represents a small correlation.

(a) DAG from MRS (b) DAG from ODS

Figure 5: NBA players statistics DAG estimated by MRS (left) and DAG estimated by ODS (right).

Explanable TotalMinutesPlayed → PersonalFouls, Steals and GamesStarted,
edges ThreeAttempted → ThreeMade, TotalRebounds → OffensiveRebounds,

PersonalFouls → Disqualification

Unexplanable OffensiveRebounds → Blocks, FreeThrowsAttempted → Techincals
edges

Table 2: The set of directed edges in the estimated DAG via the MRS algorithm while the estimated DAG via
the ODS algorithm has opposite directions.

more shooting attempt implies the more shooting made).

Here we shortly explain the summary of the data. All basketball statistics have significantly different levels of
frequencies because some statistics such as the number of steals, blocks, and technical fouls are close to zero
in general while the number of field goals attempted, free throws attempted, threes attempted are large. For
example, the averages of the number of field goals attempted and technical fouls are 455.7 and 1.6, and their
standard deviations are 373.3 and 2.6, respectively.

Fig. 5 shows the estimated directed graphs using the MRS and ODS algorithms. Explainable edges in Table. 2
shows the directed edges in the estimated DAG from the MRS algorithm while the estimated DAG from the
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ODS algorithm has opposite directions. This set of directed edges is more acceptable because the total minutes
played would be a reason for other statistics, and a large number of shooting attempted would lead to the more
shootings made. Unexplainable edges in Table. 2 shows the set of unaccountable edges in terms of causal or
directional relationships regardless of directions. Hence they are introduced by Step 1) estimation of the skeleton.
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