A Supplementary Proofs

A. 1 Exp2 Regret Proofs

First, we directly analyze Exp2's regret for the two kinds of feedback.

A.1.1 Full Information

Lemma 19. Let $L_{t}(X)=X^{\top} l_{t}$. If $\left|\eta L_{t}(X)\right| \leq 1$ for all $t \in[T]$ and $X \in\{0,1\}^{n}$, the Exp2 algorithm satisfies for any X :

$$
\sum_{t=1}^{T} p_{t}^{\top} L_{t}-\sum_{t=1}^{T} L_{t}(X) \leq \eta \sum_{t=1}^{T} p_{t}^{\top} L_{t}^{2}+\frac{n \log 2}{\eta}
$$

Proof. (Adapted from [11] Theorem 1.5) Let $Z_{t}=$ $\sum_{Y \in\{0,1\}^{n}} w_{t}(Y)$. We have:

$$
\begin{aligned}
Z_{t+1} & =\sum_{Y \in\{0,1\}^{n}} \exp \left(-\eta L_{t}(Y)\right) w_{t}(Y) \\
& =Z_{t} \sum_{Y \in\{0,1\}^{n}} \exp \left(-\eta L_{t}(Y)\right) p_{t}(Y)
\end{aligned}
$$

Since $e^{-x} \leq 1-x+x^{2}$ for $x \geq-1$, we have that $\exp \left(-\eta L_{t}(Y)\right) \leq 1-\eta L_{t}(Y)+\eta^{2} L_{t}(Y)^{2}$ (Because we assume $\left.\left|\eta L_{t}(X)\right| \leq 1\right)$. So,

$$
\begin{aligned}
Z_{t+1} & \leq Z_{t} \sum_{Y \in\{0,1\}^{n}}\left(1-\eta L_{t}(Y)+\eta^{2} L_{t}(Y)^{2}\right) p_{t}(Y) \\
& =Z_{t}\left(1-\eta p_{t}^{\top} L_{t}+\eta^{2} p_{t}^{\top} L_{t}^{2}\right)
\end{aligned}
$$

Using the inequality $1+x \leq e^{x}$,

$$
Z_{t+1} \leq Z_{t} \exp \left(-\eta p_{t}^{\top} L_{t}+\eta^{2} p_{t}^{\top} L_{t}^{2}\right)
$$

Hence, we have:

$$
Z_{T+1} \leq Z_{1} \exp \left(-\sum_{t=1}^{T} \eta p_{t}^{\top} L_{t}+\sum_{t=1}^{T} \eta^{2} p_{t}^{\top} L_{t}^{2}\right)
$$

For any $X \in\{0,1\}^{n}, \quad w_{T+1}(X)=$ $\exp \left(-\sum_{t=1}^{T} \eta L_{t}(X)\right)$. Since $w(T+1)(X) \leq Z_{T+1}$ and $Z_{1}=2^{n}$, we have:
$\exp \left(-\sum_{t=1}^{T} \eta L_{t}(X)\right) \leq 2^{n} \exp \left(-\sum_{t=1}^{T} \eta p_{t}^{\top} L_{t}+\sum_{t=1}^{T} \eta^{2} p_{t}^{\top} L_{t}^{2}\right)$
Taking the logarithm on both sides manipulating this inequality, we get:

$$
\sum_{t=1}^{T} p_{t}^{\top} L_{t}-\sum_{t=1}^{T} L_{t}(X) \leq \eta \sum_{t=1}^{T} p_{t}^{\top} L_{t}^{2}+\frac{n \log 2}{\eta}
$$

Theorem 3. In the full information setting, if $\eta=$ $\sqrt{\frac{\log 2}{n T}}$, Exp2 attains the regret bound:

$$
E\left[\mathcal{R}_{T}\right] \leq 2 n^{3 / 2} \sqrt{T \log 2}
$$

Proof. Using $L_{t}(X)=X^{\top} l_{t}$ and applying expectation with respect to the randomness of the player to definition of regret, we get:

$$
\begin{aligned}
E\left[\mathcal{R}_{T}\right] & =\sum_{t=1}^{T} \sum_{X \in\{0,1\}^{n}} p_{t}(X) L_{t}(X)-\min _{X^{\star} \in\{0,1\}^{n}} \sum_{t=1}^{T} L_{t}\left(X^{\star}\right) \\
& =\sum_{t=1}^{T} p_{t}^{\top} L_{t}-\min _{X^{\star} \in\{0,1\}^{n}} \sum_{t=1}^{T} L_{t}\left(X^{\star}\right)
\end{aligned}
$$

Applying Lemma 19, we get $E\left[\mathcal{R}_{T}\right] \leq \eta \sum_{t=1}^{T} p_{t}^{\top} L_{t}^{2}+$ $n \log 2 / \eta$. Since $\left|L_{t}(X)\right| \leq n$ for all $X \in\{0,1\}^{n}$, we get $\sum_{t=1}^{T} p_{t}^{\top} L_{t}^{2} \leq T n^{2}$.

$$
E\left[\mathcal{R}_{T}\right] \leq \eta T n^{2}+\frac{n \log 2}{\eta}
$$

Optimizing over the choice of η, we get the regret is bounded by $2 n^{3 / 2} \sqrt{T \log 2}$ if we choose $\eta=\sqrt{\frac{\log 2}{n T}}$.
To apply Lemma $19,\left|\eta L_{t}(X)\right| \leq 1$ for all $t \in[T]$ and $X \in\{0,1\}^{n}$. Since $\left|L_{t}(X)\right| \leq n$, we have $\eta \leq 1 / n$.

A.1.2 Bandit

Lemma 20. Let $\tilde{L}_{t}(X)=X^{\top} \tilde{l}_{t}$, where $\tilde{l}_{t}=$ $P_{t}^{-1} X_{t} X_{t}^{\top} l_{t}$. If $\left|\eta \tilde{L}_{t}(X)\right| \leq 1$ for all $t \in[T]$ and $X \in\{0,1\}^{n}$, the Exp2 algorithm with uniform exploration satisfies for any X
$\sum_{t=1}^{T} q_{t}^{\top} L_{t}-\sum_{t=1}^{T} L_{t}(X) \leq \eta \mathbb{E}\left[\sum_{t=1}^{T} q_{t}^{\top} \tilde{L}_{t}^{2}\right]+\frac{n \log 2}{\eta}+2 \gamma n T$
Proof. We have that:

$$
\begin{aligned}
\sum_{t=1}^{T} q_{t}^{\top} \tilde{L}_{t}-\sum_{t=1}^{T} \tilde{L}_{t}(X) & =(1-\gamma)\left(\sum_{t=1}^{T} p_{t}^{\top} \tilde{L}_{t}-\sum_{t=1}^{T} \tilde{L}_{t}(X)\right) \\
& +\gamma\left(\sum_{t=1}^{T} \mu^{\top} \tilde{L}_{t}-\sum_{t=1}^{T} \tilde{L}_{t}(X)\right)
\end{aligned}
$$

Since the algorithm essentially runs Exp2 using the losses $\tilde{L}_{t}(X)$ and $\left|\eta \tilde{L}_{t}(X)\right| \leq 1$, we can apply Lemma 19 :

$$
\begin{aligned}
\sum_{t=1}^{T} q_{t}^{\top} \tilde{L}_{t}-\sum_{t=1}^{T} \tilde{L}_{t}(X) & \leq(1-\gamma)\left(\frac{n \log 2}{\eta}+\eta \sum_{t=1}^{T} p_{t}^{\top} \tilde{L}_{t}^{2}\right) \\
& +\gamma\left(\sum_{t=1}^{T} \mu^{\top} \tilde{L}_{t}-\sum_{t=1}^{T} \tilde{L}_{t}(X)\right)
\end{aligned}
$$

Apply expectation with respect to X_{t}. Using the fact that $\mathbb{E}\left[\tilde{l}_{t}\right]=l_{t}$ and $\mu^{\top} L_{t}-L_{t}(X) \leq 2 n$:

$$
\begin{aligned}
\sum_{t=1}^{T} q_{t}^{\top} L_{t}-\sum_{t=1}^{T} L_{t}(X) & \leq(1-\gamma)\left(\frac{n \log 2}{\eta}+\eta \mathbb{E}\left[\sum_{t=1}^{T} p_{t}^{\top} \tilde{L}_{t}^{2}\right]\right) \\
& +\gamma\left(\sum_{t=1}^{T} \mu^{\top} L_{t}-\sum_{t=1}^{T} L_{t}(X)\right) \\
& \leq \eta \mathbb{E}\left[\sum_{t=1}^{T} q_{t}^{\top} \tilde{L}_{t}^{2}\right]+\frac{n \log 2}{\eta}+2 \gamma n T
\end{aligned}
$$

Theorem 4. In the bandit setting, if $\eta=\sqrt{\frac{\log 2}{9 n^{2} T}}$ and $\gamma=4 n^{2} \eta$, Exp2 with uniform exploration on $\{0,1\}^{n}$ attains the regret bound:

$$
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq 6 n^{2} \sqrt{T \log 2}
$$

Proof. Applying expectation with respect to the randomness of the player to the definition of regret, we get:

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{R}_{T}\right] & =\mathbb{E}\left[\sum_{t=1}^{T} L_{t}\left(X_{t}\right)-\min _{X^{\star} \in\{0,1\}^{n}} L_{t}\left(X^{\star}\right)\right] \\
& =\sum_{t=1}^{T} q_{t}^{\top} L_{t}-\min _{X^{\star} \in\{0,1\}^{n}} \sum_{t=1}^{T} L_{t}\left(X^{\star}\right)
\end{aligned}
$$

Applying Lemma 20

$$
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq \eta \mathbb{E}\left[\sum_{t=1}^{T} q_{t}^{\top} \tilde{L}_{t}^{2}\right]+\frac{n \log 2}{\eta}+2 \gamma n T
$$

We follow the proof technique of [6] Theorem 4. We have that:

$$
\begin{aligned}
q_{t}^{\top} \tilde{L}_{t}^{2} & =\sum_{X \in\{0,1\}^{n}} q_{t}(X)\left(X^{\top} \tilde{l}_{t}\right)^{2} \\
& =\sum_{X \in\{0,1\}^{n}} q_{t}(X)\left(\tilde{l}_{t}^{\top} X X^{\top} \tilde{l}_{t}\right) \\
& =\tilde{l}_{t}^{\top} P_{t} \tilde{l}_{t} \\
& =l_{t}^{\top} X_{t} X_{t}^{\top} P_{t}^{-1} P_{t} P_{t}^{-1} X_{t} X_{t}^{\top} l_{t} \\
& =\left(X_{t}^{\top} l_{t}\right)^{2} X_{t}^{\top} P_{t}^{-1} X_{t} \\
& \leq n^{2} X_{t}^{\top} P_{t}^{-1} X_{t}=n^{2} \operatorname{Tr}\left(P_{t}^{-1} X_{t} X_{t}^{\top}\right)
\end{aligned}
$$

Taking expectation, we get $E\left[q_{t}^{\top} \tilde{L}_{t}^{2}\right] \leq$ $n^{2} \operatorname{Tr}\left(P_{t}^{-1} \mathbb{E}\left[X_{t} X_{t}^{\top}\right]\right)=n^{2} \operatorname{Tr}\left(P_{t}^{-1} P_{t}\right)=n^{3}$. Hence,

$$
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq \eta n^{3} T+\frac{n \log 2}{\eta}+2 \gamma n T
$$

However, in order to apply Lemma 20, we need that $\left|\eta X^{\top} \tilde{l}_{t}\right| \leq 1$. We have that

$$
\left|\eta X^{\top} \tilde{l}_{t}\right|=\eta\left|\left(X_{t}^{\top} l_{t}\right) X^{\top} P_{t}^{-1} X_{t}\right| \leq 1
$$

As $\left|X_{t}^{\top} l_{t}\right| \leq n$ and $\left|X_{t}^{\top} X\right| \leq n$, we get $\eta n\left|X^{\top} P_{t}^{-1} X_{t}\right| \leq \eta n\left|X^{\top} X_{t}\right|\left\|P_{t}^{-1}\right\| \leq \eta n^{2}\left\|P_{t}^{-1}\right\| \leq 1$. The matrix $P_{t}=(1-\gamma) \Sigma_{t}+\gamma \Sigma_{\mu}$. The smallest eigenvalue of Σ_{μ} is $1 / 4[8]$. So $P_{t} \succeq \frac{\gamma}{4} I_{n}$ and $P_{t}^{-1} \preceq \frac{4}{\gamma} I_{n}$. We should have that $\frac{4 n^{2} \eta}{\gamma} \leq 1$. Substituting $\gamma=4 n^{2} \eta$ in the regret inequality, we get:

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{R}_{T}\right] & \leq \eta n^{3} T+8 \eta n^{3} T+\frac{n \log 2}{\eta} \\
& \leq 9 \eta n^{3} T+\frac{n \log 2}{\eta}
\end{aligned}
$$

Optimizing over the choice of η, we get $\mathbb{E}\left[\mathcal{R}_{T}\right] \leq$ $2 n^{2} \sqrt{9 T \log 2}$ when $\eta=\sqrt{\frac{\log 2}{9 n^{2} T}}$.

A. 2 Lower Bounds

A.2.1 Full Information Lower bound

In the game between player and adversary, the players strategy is to pick some probability distribution $p_{t} \in \Delta\left(\{0,1\}^{n}\right)$ for $t=1 \ldots T$. The adversary picks a density q_{t} over loss vectors $l \in[-1,1]^{n}$ for $t=1 \ldots T$. So player picks $X_{t} \sim p_{t}$ and adversary picks $l_{t} \sim q_{t}$. The min max expected regret is:

$$
\inf _{p_{1} \ldots p_{T}} \sup _{q_{1} \ldots q_{t}} \mathbb{E}_{l_{t} \sim q_{t}} \mathbb{E}_{X_{t} \sim p_{t}}\left[\sum_{t=1}^{T} l_{t}^{\top} X_{t}-\min _{X} \sum_{t=1}^{T} l_{t}^{\top} X\right]
$$

Let $\mathbb{E}_{X_{t} \sim p_{t}}=x_{t}$.

$$
\inf _{p_{1} \ldots p_{T}} \sup _{q_{1} \ldots q_{t}} \mathbb{E}_{l_{t} \sim q_{t}}\left[\sum_{t=1}^{T} l_{t}^{\top} x_{t}-\min _{X} \sum_{t=1}^{T} l_{t}^{\top} X\right]
$$

Theorem 12. For any learner there exists an adversary producing L_{∞} losses such that the expected regret in the full information setting is:

$$
\mathbb{E}\left[\mathcal{R}_{T}\right]=\Omega(n \sqrt{T})
$$

Proof. We choose q_{t} to be the density such that $l_{t, i}$ is a Rademacher random variable, ie, $l_{t, i}=+1 \mathrm{w} . \mathrm{p} .1 / 2$ and $l_{t, i}=-1 \mathrm{w} . \mathrm{p} 1 / 2$ for all $t=1 \ldots T$ and $i=[n]$. So,

$$
\begin{aligned}
& \inf _{p_{1} \ldots p_{T}} \sup _{q_{1} \ldots q_{t}} \mathbb{E}_{l_{t} \sim q_{t}}\left[\sum_{t=1}^{T} l_{t}^{\top} x_{t}-\min _{X} \sum_{t=1}^{T} l_{t}^{\top} X\right] \\
& \geq \inf _{p_{1} \ldots p_{T}} \mathbb{E}_{l_{t}}\left[\sum_{t=1}^{T} l_{t}^{\top} x_{t}-\min _{X} \sum_{t=1}^{T} l_{t}^{\top} X\right]
\end{aligned}
$$

For our choice of q_{t}, we have $\mathbb{E}_{l_{t}}\left[l_{t}^{\top} x_{t}\right]=0$. So,

$$
\begin{aligned}
& \inf _{p_{1} \ldots p_{T}} \mathbb{E}_{l_{t}}\left[\sum_{t=1}^{T} l_{t}^{\top} x_{t}-\min _{X} \sum_{t=1}^{T} l_{t}^{\top} X\right] \\
= & \inf _{p_{1} \ldots p_{T}} \mathbb{E}_{l_{t}}\left[-\min _{X} \sum_{t=1}^{T} l_{t}^{\top} X\right] \\
= & \mathbb{E}_{l_{t}}\left[\max _{X} \sum_{t=1}^{T} l_{t}^{\top} X\right]
\end{aligned}
$$

Simplifying this, we get:

$$
\begin{aligned}
\mathbb{E}_{l_{t}}\left[\max _{X} \sum_{t=1}^{T} l_{t}^{\top} X\right] & =\mathbb{E}_{l_{t}}\left[\max _{X_{1} \ldots X_{n}} \sum_{t=1}^{T} \sum_{i=1}^{n} l_{t, i} X_{i}\right] \\
& =\mathbb{E}_{l_{t}}\left[\sum_{i=1}^{n} \max _{X_{i}} \sum_{t=1}^{T} l_{t, i} X_{i}\right] \\
& =\sum_{i=1}^{n} \mathbb{E}_{l_{t, i}}\left[\max _{X_{i}} \sum_{t=1}^{T} l_{t, i} X_{i}\right] \\
& =n \mathbb{E}_{Y}\left[\max _{x} \sum_{t=1}^{T} Y_{t} x\right]
\end{aligned}
$$

Here Y is a Rademacher random vector of length T and $x \in\{0,1\}$. We have that

$$
\max _{x}\left[\sum_{t=1}^{T} Y_{t} x\right]= \begin{cases}0 & \text { If } \sum_{t=1}^{T} Y_{t} \leq 0 \\ \sum_{t=1}^{T} Y_{t} & \text { otherwise }\end{cases}
$$

So

$$
\begin{aligned}
\mathbb{E}_{Y}\left[\max _{x} \sum_{t=1}^{T} Y_{t} x\right] & =\mathbb{E}_{Y}\left[\sum_{t=1}^{T} Y_{t} \mid \sum_{t=1}^{T} Y_{t}>0\right] \\
& =\frac{1}{2} \mathbb{E}_{Y}\left|\sum_{t=1}^{T} Y_{t}\right|
\end{aligned}
$$

Using Khintchine's inequality, we have positive constants A and B such that:

$$
A\left(\sum_{t=1}^{T}|1|^{2}\right)^{1 / 2} \leq \mathbb{E}_{Y}\left|\sum_{t=1}^{T} Y_{t}\right| \leq B\left(\sum_{t=1}^{T}|1|^{2}\right)^{1 / 2}
$$

Hence, the regret is lower bounded by $\Omega(n \sqrt{T})$.

A.2. 2 Bandit Lower bound

Theorem 13. For any learner there exists an adversary producing L_{∞} losses such that the expected regret in the Bandit setting is:

$$
\mathbb{E}\left[\mathcal{R}_{T}\right]=\Omega\left(n^{3 / 2} \sqrt{T}\right)
$$

Proof. We consider 2^{n} stochastic adversaries indexed by $X \in\{0,1\}^{n}$. Adversary X draws losses as follows:

$$
l_{t, i}= \begin{cases}\left\{+1 \text { w.p } \frac{1}{2}+\epsilon\right. & \text { if } X_{i}=0 \\ -1 \text { w.p } \frac{1}{2}-\epsilon & \\ +1 \text { w.p } \frac{1}{2}-\epsilon \\ -1 \text { w.p } \frac{1}{2}+\epsilon & \text { if } X_{i}=1\end{cases}
$$

Let $\tilde{l}_{t}=\left[X_{1}^{\top} l_{1}, X_{2}^{\top} l_{2}, \ldots, X_{t}^{\top} l_{t}\right]$. We consider deterministic algorithms, ie X_{t} is a deterministic function of \tilde{l}_{t-1}. So, the only the adversary's randomness remains. The obtained result can be extended to randomized algorithms via application of Fubini's Theorem. Let E_{X} denote the expectation conditioned on adversary X. When playing against adversary X, the vector X is the best action in expectation. The expected regret when playing against adversary X.

$$
\begin{aligned}
\mathbb{E}_{X}\left[\mathcal{R}_{T}\right] & =\mathbb{E}_{X}\left[\sum_{t=1}^{T} l_{t}^{\top} X_{t}-\min _{X^{\star}} \sum_{t=1}^{T} l_{t}^{\top} X^{\star}\right] \\
& \geq \mathbb{E}_{X}\left[\sum_{t=1}^{T} l_{t}^{\top} X_{t}-\sum_{t=1}^{T} l_{t}^{\top} X\right] \\
& =2 \epsilon \sum_{i=1}^{n} \mathbb{E}_{X}\left[\sum_{t=1}^{T} \mathbf{1}\left(X_{i, t} \neq X_{i}\right)\right] \\
& =2 \epsilon T \sum_{i=1}^{n}\left(1-\frac{\mathbb{E}_{X}\left[\sum_{t=1}^{T} \mathbf{1}\left(X_{i, t}=X_{i}\right)\right]}{T}\right)
\end{aligned}
$$

$\sum_{t=1}^{T} \mathbf{1}\left(X_{i, t}=X_{i}\right) / T$ is the empirical mean of playing X_{i}. Let J_{i} be a Bernoulli random drawn according to this mean. Hence,

$$
\mathbb{E}_{X}\left[\mathcal{R}_{T}\right] \geq 2 \epsilon T \sum_{i=1}^{n}\left(1-\mathbb{P}_{X}\left(J_{i}=X_{i}\right)\right)
$$

Taking the average over adversaries:

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{R}_{T}\right] & =\frac{1}{2^{n}} \sum_{X} \mathbb{E}_{X}\left[\mathcal{R}_{T}\right] \\
& \geq 2 \epsilon T \sum_{i=1}^{n}\left(1-\frac{1}{2^{n}} \sum_{X} \mathbb{P}_{X}\left(J_{i}=X_{i}\right)\right)
\end{aligned}
$$

Let $X^{\oplus i}$ be the vector X with the i 'th bit flipped. Using Pinsker's inequality, we have that:

$$
\mathbb{P}_{X}\left(J_{i}=X_{i}\right) \leq \mathbb{P}_{X \oplus i}\left(J_{i}=X_{i}\right)+\sqrt{\frac{1}{2} K L\left(\mathbb{P}_{X \oplus i} \| \mathbb{P}_{X}\right)}
$$

Taking the summation, and using the concavity of square root:
$\frac{1}{2^{n}} \sum_{X} \mathbb{P}_{X}\left(J_{i}=X_{i}\right) \leq \frac{1}{2}+\sqrt{\frac{1}{2} \frac{1}{2^{n}} \sum_{X} K L\left(\mathbb{P}_{X} \oplus_{i} \| \mathbb{P}_{X}\right)}$

The sequence of observed losses $\tilde{l}_{T} \in\{-n, \ldots,+n\}^{T}$ determines the empirical distribution of plays. Let \mathbb{P}_{X}^{T} be the law of \tilde{l}_{T} when playing against adversary X. So, using the chain rule of Kullback Leibler divergence:

$$
\begin{aligned}
& K L\left(\mathbb{P}_{X \oplus i} \| \mathbb{P}_{X}\right) \leq K L\left(\mathbb{P}_{X \oplus i}^{T} \| \mathbb{P}_{X}^{T}\right) \\
& =K L\left(\mathbb{P}_{X}^{1}{ }^{\oplus i} \| \mathbb{P}_{X}^{1}\right) \\
& +\sum_{t=2}^{T} \sum_{\tilde{l}_{t-1}} \mathbb{P}_{X \oplus i}^{t-1}\left(\tilde{l}_{t-1}\right) K L\left(\mathbb{P}_{X \oplus i}^{t}\left(\cdot \mid \tilde{l}_{t-1}\right) \| \mathbb{P}_{X}^{t}\left(\left(\cdot \mid \tilde{l}_{t-1}\right)\right)\right. \\
& =K L\left(\mathcal{B}_{0} \| \mathcal{B}^{\prime}{ }_{0}\right) \mathbf{1}\left(X_{1, i}=X_{i}\right) \\
& +\sum_{t=T}^{t} \sum_{\tilde{l}_{t-1}: X_{t, i}=X_{i}} \mathbb{P}_{X \oplus i}^{t-1}\left(\tilde{l}_{t-1}\right) K L\left(\mathcal{B}_{\tilde{l}_{t-1}} \| \mathcal{B}_{\tilde{l}_{t-1}}\right)
\end{aligned}
$$

Here, $\mathcal{B}_{\tilde{l}_{t-1}}, \mathcal{B}^{\prime} \tilde{l}_{t-1}$ are sums of at most n Bernoulli random variables such that their means agree on all coordinates except i. Using Lemma 24 from [2], we get that:

$$
K L\left(\mathcal{B}_{\tilde{l}_{t-1}} \| \mathcal{B}_{\tilde{l}_{t-1}}^{\prime}\right) \leq \frac{16 \epsilon^{2}}{n}
$$

Substituting this back into the previous expression, we get:

$$
\begin{aligned}
K L\left(\mathbb{P}_{X{ }^{\oplus i}} \| \mathbb{P}_{X}\right) & \leq \frac{16 \epsilon^{2}}{n} \sum_{t=1}^{T} \sum_{\tilde{l}_{1: t-1}: X_{t, i}=X_{i}} \mathbb{P}_{X \oplus i}^{t}\left(\tilde{l}_{1: t-1}\right) \\
& \leq \frac{16 \epsilon^{2}}{n} \sum_{t=1}^{T} \mathbb{E}_{X \oplus i}\left(\mathbf{1}\left(X_{i, t}=X_{i}\right)\right) \\
& =\frac{16 \epsilon^{2}}{n} T \mathbb{P}_{X \oplus i}\left(J_{i}=X_{i}\right)
\end{aligned}
$$

Taking the summation, we have:

$$
\frac{1}{2^{n}} \sum_{X} K L\left(\mathbb{P}_{X \oplus i} \| \mathbb{P}_{X}\right) \leq \frac{8 \epsilon^{2}}{n} T
$$

Substituting this in the regret inequality:

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{R}_{T}\right] & \geq 2 \epsilon T \sum_{i=1}^{n}\left(1-\frac{1}{2}-\sqrt{\frac{4 \epsilon^{2} T}{n}}\right) \\
& =2 \epsilon T n\left(\frac{1}{2}-2 \epsilon \sqrt{\frac{T}{n}}\right)
\end{aligned}
$$

Optimizing over ϵ, we get that $\mathbb{E}\left[\mathcal{R}_{T}\right]=\Omega\left(n^{3 / 2} \sqrt{T}\right)$

A. $3 \quad\{-1,+1\}^{n}$ Hypercube Case

Lemma 21. Exp2 on $\{-1,+1\}^{n}$ with losses l_{t} is equivalent to Exp2 on $\{0,1\}^{n}$ with losses $2 l_{t}$ while using the map $2 X_{t}-\mathbf{1}$ to play on $\{-1,+1\}^{n}$.

Proof. Consider the update equation for $\operatorname{Exp} 2$ on $\{-1,+1\}^{n}$

$$
p_{t+1}(Z)=\frac{\exp \left(-\eta \sum_{\tau=1}^{t} Z^{\top} l_{\tau}\right)}{\sum_{W \in\{-1,+1\}^{n}} \exp \left(-\eta \sum_{\tau=1}^{t} W^{\top} l_{\tau}\right)}
$$

$Z \in\{-1,+1\}^{n}$ can be mapped to a $X \in\{0,1\}^{n}$ using the bijective map $X=(Z+1) / 2$. So:

$$
\begin{aligned}
p_{t+1}(Z) & =\frac{\exp \left(-\eta \sum_{\tau=1}^{t}(2 X-\mathbf{1})^{\top} l_{\tau}\right)}{\sum_{Y \in\{0,1\}^{n}} \exp \left(-\eta \sum_{\tau=1}^{t}(2 Y-\mathbf{1})^{\top} l_{\tau}\right)} \\
& =\frac{\exp \left(-\eta \sum_{\tau=1}^{t} X^{\top}\left(2 l_{\tau}\right)\right)}{\sum_{Y \in\{0,1\}^{n}} \exp \left(-\eta \sum_{\tau=1}^{t} Y^{\top}\left(2 l_{\tau}\right)\right)}
\end{aligned}
$$

This is equivalent to updating the $\operatorname{Exp} 2$ on $\{0,1\}^{n}$ with the loss vector $2 l_{t}$.

Theorem 14. Exp2 on $\{-1,+1\}^{n}$ using the sequence of losses l_{t} is equivalent to PolyExp on $\{0,1\}^{n}$ using the sequence of losses $2 \tilde{l}_{t}$. Moreover, the regret of Exp2 on $\{-1,1\}^{n}$ will equal the regret of PolyExp using the losses $2 \tilde{l}_{t}$.

Proof. After sampling X_{t}, we play $Z_{t}=2 X_{t}-1$. So $\operatorname{Pr}\left(X_{t}=X\right)=\operatorname{Pr}\left(Z_{t}=2 X-1\right)$. In full information, $2 \tilde{l}_{t}=2 l_{t}$ and in the bandit case $\mathbb{E}\left[2 \tilde{l}_{t}\right]=2 l_{t}$. Since $2 \tilde{l}_{t}$ is used to update the algorithm, by Lemma 21 we have that $\operatorname{Pr}\left(X_{t+1}=X\right)=\operatorname{Pr}\left(Z_{t+1}=2 X-\mathbf{1}\right)$. Вy equivalence of $\operatorname{Exp} 2$ to PolyExp, the first statement follows immediately.
Let $Z^{\star}=\min _{Z \in\{-1,+1\}^{n}} \sum_{t=1}^{T} Z^{\top} l_{t}$ and $2 X^{\star}=Z^{\star}+\mathbf{1}$. The regret of $\operatorname{Exp} 2$ on $\{-1,+1\}^{n}$ is:

$$
\begin{aligned}
\sum_{t=1}^{T} l_{t}^{\top}\left(Z_{t}-Z^{\star}\right) & =\sum_{t=1}^{T} l_{t}^{\top}\left(2 X_{t}-\mathbf{1}-2 X^{\star}+\mathbf{1}\right) \\
& =\sum_{t=1}^{T}\left(2 l_{t}\right)^{\top}\left(X_{t}-X^{\star}\right)
\end{aligned}
$$

