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A Conditional Independence in
Figure 2b

In this section, we prove the key conditional indepen-
dence in Figure 2b that makes GPAR work:

Theorem 1. Let a set of observations D be closed
downwards. Then yi ⊥ Di+1:M | D1:i, where D1:i are
the observations for outputs 1, . . . , i and Di+1:M for
i+ 1, . . . ,M .1

To begin with, we review some basic notions concerning
graphical models. Let a path be a sequence of nodes
v1, . . . , vn from some directed graph G where, for each
vi, G either contains an edge from vi to vi+1, or an
edge from vi+1 to vi. If G contains an edge from a to b,
then write a→ b to mean the two-node path in which
node b follows node a. Similarly, if G contains an edge
from b to a, then write a ← b to mean the two-node
path in which b follows a. Write a
 b to mean either
a→ b or b← a.

Definition 1 (Active Path (Definition 3.6 from Koller
and Friedman (2009))). Let P = v1 
 · · ·
 vn be a
path in a graphical model. Let Z be a subset of the
variables from the graphical model. Then, call P active
given Z if (1) for every v-structure vi−1 → vi ← vi+1

in P , vi or a descendant of vi is in Z; and (2) no other
node in P is in Z.

Definition 2 (d-Separation (Definition 3.7 from Koller
and Friedman (2009))). Let X, Y , and Z be three sets
of nodes from a graphical model. Then, call X and Y
d-separated given Z if no path between any x ∈ X and
y ∈ Y is active given Z.

Theorem 2 (d-Separation Implies Conditional Inde-
pendence (Theorem 3.3 from Koller and Friedman
(2009))). Let X, Y , and Z be three sets of nodes from
a graphical model. If X and Y are d-separated given
Z, then X ⊥ Y |Z.

1 D1:i = {y(n)
j ∈ D : j ≤ i, n ≤ N} and Di+1:M =

{y(n)
j ∈ D : j > i, n ≤ N}.

Define the layer of a node in Figure 2b to be

layer(fi) = layer(yi(x)) = i.

We are now ready to prove Theorem 1.

Proof of Theorem 1. For i < j, let P be a path be-
tween any yi(x′) ∈ yi and yj(x) ∈ Di+1:N . Let yk(x̂)
be the first node in P such that layer(yk(x̂)) > i. Then
P contains

· · · → ym(x̂)→ yk(x̂) 
 · · ·

for some m ≤ i < k.

If yk(x̂) ∈ Di+1:N , then, since D is closed downwards,
ym(x̂) ∈ D1:i, meaning that P is inactive.

If, on the other hand, yk(x̂) /∈ D, then, since D is closed
downwards, yk′(x̂) /∈ D for all k′ ≥ k. Therefore, yj(x)
cannot be descendant of yk(x̂), so P must contain

· · · → yk′(x̂)→ yk′′(x̂)← fk′′ → · · ·

for some m ≤ k′ < k′′, which forms a v-structure.
We conclude that P is inactive, because yk′′(x̂) nor a
descendant of yk′′(x̂) can be in D.

B The Nonlinear and Linear
Equivalent Model

In this section, we construct equivalent models for
GPAR (Lemmas 1 and 2). These models make GPAR’s
connection to other models in the literature explicit.

To begin with, we must introduce some notation and
definitions. For functions A,B : X × (YM )X → YM ,
define composition ◦ as follows: (A ◦ B)(x, y) =
A(x,B( · , y)). Note that ◦ is well-defined and as-
sociative. For a function u : X → YM , denote
A ◦ u : X → YM , A ◦ u = A( · , u). Again, note that
(A ◦B) ◦ u = A ◦ (B ◦ u). Furthermore, denote

A ◦ · · · ◦A︸ ︷︷ ︸
n times

= An.
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Consider a function A : X × (YM )X → YM such that
Ai(x, y) : X × (YM )X → Y depends only on (x, y1:i−1),
where A1 = 0. Further let u, y : X → YM , denote
T f = u+A◦f , and denote N consecutive applications
of T by TN .

The expression TM−1 u will be key in constructing
the equivalent models. We show that it is the unique
solution of a functional equation:

Proposition 1. The unique solution of y = u+A ◦ y
is y = TM−1 u.

Proof of Proposition 1. First, we show that y = u +
A ◦ y has a solution, and that this solution is unique.
Because Ai(x, y) depends only on (x, y1:i−1), it holds
that

yi = ui +Ai ◦ y = ui +Ai ◦ (y1:i−1, 0),

where (y1:i−1, 0) represents the concatenation of y1:i−1
and M − i + 1 zeros. Thus, yi can uniquely be con-
structed from ui, Ai, and y1:i−1; therefore, y1 exists
and is unique, so y2 exists and is unique: by induction
we find that y exists and is unique.

Second, we show that y = TM−1 u satisfies y = u +
A ◦ y = T y. To show this, we show that (Tn u)i =
(Tn−1 u)i for i = 1, . . . , n, for all n. To begin with, we
show the base case, n = 1:

(Tu)1 = u1 +A1 ◦ u = u1 = (T0 u)1,

since A1 = 0. Finally, suppose that the claim holds for
a particular n. We show that the claim then holds for
n+ 1: Let i ≤ n+ 1. Then

(Tn+1 u)i = ui +Ai ◦ Tn u

= ui +Ai ◦ ((Tn u)1:i−1, (T
n u)i:M )

= ui +Ai ◦ ((Tn−1 u)1:i−1, (T
n u)i:M )

(By assumption)
(∗)
= ui +Ai ◦ ((Tn−1 u)1:i−1, (T

n−1 u)i:M )

= ui +Ai ◦ Tn−1 u

= (Tn u)i,

where (∗) holds because Ai(x, y) depends only on
(x, y1:i−1).

In the linear case, TM−1 u turns out to greatly simplify.

Proposition 2. If A(x, y) is linear in y, then
TM−1 u = (

∑M−1
i=0 Ai) ◦ u.

Proof of Proposition 2. If A(x, y) is linear in y, then

one verifies that ◦ distributes over addition. Therefore,

TM−1 u = u+A ◦ TM−2 u

= u+A ◦ u+A2 ◦ TM−3 u

...

= u+A ◦ u+ · · ·+AM−1 ◦ u.

We now use Propositions 1 and 2 to construct a non-
linear and linear equivalent model.

Lemma 1 (Nonlinear Equivalent Model). Let A be an
M -dimensional vector-valued process over X × (YM )X ,
each Ai drawn from GP(0, kAi) independently, and let
u be an M -dimensional vector-valued process over X ,
each ui drawn from GP(0, kui

) independently. Further-
more, let Ai(x, y) : X × (YM )X → Y depend only on
(x, y1:i−1), meaning that kAi

= kAi
(x, y1:i−1, x

′, y′1:i−1),
and let A1 = 0. Denote T f = u+ A ◦ f , and denote
N consecutive applications of T by TN . Then

y |A, u = TM−1 u ⇐⇒
yi | y1:i−1 ∼ GP(0, kui

+ kAi
( · , y1:i−1, · , y1:i−1)).

Proof of Lemma 1. Since Ai(x, y) depends only on
(x, y1:i−1), it holds by Proposition 1 that any sam-
ple from y |A, u satisfies yi = ui + Ai ◦ y, so yi =
ui + Ai ◦ (y1:i−1, 0), where (y1:i−1, 0) represents the
concatenation of y1:i−1 and M − i + 1 zeros. The
equivalence now follows.

Lemma 2 (Linear Equivalent Model). Suppose that
A was instead generated from

A(x, y) | Â =

∫
Â(x− z)y(z) dz,

where Â is an (M ×M)-matrix-valued process over
X , each Âi,j drawn from GP(0, kÂi,j

) independently if
i > j and Âi,j = 0 otherwise. Then

y |A, u =

(
M−1∑
i=0

Ai

)
◦ u ⇐⇒

yi | y1:i−1 ∼ GP(0, kui
+ kAi

( · , y1:i−1, · , y1:i−1)), (1)

where

kAi
(x, y1:i−1, x

′, y′1:i−1)

=

i−1∑
j=1

∫
kÂi,j

(x− z, x′ − z′)yj(z)y′j(z′) dz dz′.

Proof of Lemma 2. First, one verifies that Ai(x, y) still
depends only on (x, y1:i−1), and that Ai(x, y) is linear
in y. The result then follows from Lemma 1 and Propo-
sition 2, where the expression for kAi follows from
straightfoward calculation.
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As mentioned in the paper, the kernels for f1:M de-
termine the types of relationships between inputs and
outputs that can be learned. Lemmas 1 and 2 make
this explicit: Lemma 1 shows that nonlocal GPAR can
recover a model where M latent GPs u are repeatedly
composed with another latent GP A, where A has a
particular dependency structure, and Lemma 2 shows
that nonlocal GPAR can recover a model where M
latent GPs u are linearly transformed, where the linear
transform T =

∑M−1
i=0 Ai is lower triangular and may

vary with the input.

In Lemma 2, note that it is not restrictive that T is
lower triangular: Suppose that T were dense. Then,
letting y |T, u = T ◦ u, y |T is jointly Gaussian. Hence
yi | y1:i−1, T is a GP whose mean linearly depends upon
y1:i−1 via T , meaning that yi | y1:i−1 is of the form of
Equation (1) where kui

may be more complicated. If,
however, Â(z) = δ(z)B for some random (M ×M)-
matrix B, each Bi,j drawn from N (0, σ2

Bi,j
) if i > j and

Bi,j = 0 otherwise, then it is restrictive that T is lower
triangular: In this case, y(x) |B, u =

∑M−1
i=0 Biu(x). If

T =
∑M−1

i=0 Bi were dense, then, letting y |T, u = Tu,
y can be represented with Lemma 2 if and only if y |T ’s
covariance can be diagonalised by a constant, invertible,
lower-triangular matrix. This condition does not hold
in general, as Lemma 3 proves.

C Lemma 3

Call functions k1, . . . , kM : X → R linearly independent
if (

∀x :

M∑
i=1

ciki(x) = 0

)
=⇒ c1 = . . . = cM = 0.

Lemma 3. Let k1, . . . , kM : X → R be linearly in-
dependent and arrange them in a diagonal matrix
K = diag(k1, . . . , kn). Let A be an invertible M ×M
matrix such that its columns cannot be permuted into a
triangular matrix. Then there does not exist an invert-
ible triangular matrix T such that T−1BK(x)BTT−T

is diagonal for all x.

Proof. Suppose, on the contrary, that such T does exist.
Then two different rows ap and aq of A = T−1B share
nonzero elements in some columns C; otherwise, A
would have exactly one nonzero entry in every column—
A is invertible—so A would be the product of a per-
mutation matrix and a diagonal matrix, meaning that
B = TA’s columns could be permuted into a triangu-
lar matrix. Now, by T−1BK(x)BTT−T = AK(x)AT

being diagonal for all x ∈ X ,
∑

i ap,iaq,iki(x) = 0 for
all x. Therefore, by linear independence of k1, . . . , kN ,
it holds that ap,iaq,i = 0 for all i. But ap,iaq,i 6= 0 for
any i ∈ C, which is a contradiction.

D Experimental Details

For every experiment, the form of the kernels is deter-
mined by the particular GPAR model used: GPAR-L,
GPAR-NL, or GPAR-L-NL (see Table 2 in the main
paper), potentially with a D-∗ prefix to indicate the de-
noising procedure outlined in “Potential deficiencies of
GPAR” in Section 2 of the paper main. For GPAR-NL,
we always used exponentiated quadratic (EQ) kernels,
except for the exchange rates experiment, where we
used rational quadratic (RQ) kernels (Rasmussen and
Williams, 2006). Furthermore, in every problem we
simply expanded according to Equation (1) in the main
paper or greedily optimised the ordering, in both cases
putting the to-be-predicted outputs last. We used
scipy’s implementation of the L-BFGS-B algorithm
(Nocedal and Wright, 2006) to optimise hyperparame-
ters.
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