
Reversible Jump Probabilistic Programming

David A Roberts Marcus Gallagher Thomas Taimre
The University of Queensland, Australia

Abstract

In this paper we present a method for auto-
matically deriving a Reversible Jump Markov
chain Monte Carlo sampler from probabilistic
programs that specify the target and pro-
posal distributions. The main challenge in
automatically deriving such an inference pro-
cedure, in comparison to deriving a generic
Metropolis–Hastings sampler, is in calculat-
ing the Jacobian adjustment to the proposal
acceptance ratio. To achieve this, our ap-
proach relies on the interaction of several dif-
ferent components, including automatic dif-
ferentiation, transformation inversion, and
optimised code generation. We also present
Stochaskell, a new probabilistic program-
ming language embedded in Haskell, which
provides an implementation of our method.

1 INTRODUCTION

Probabilistic programming languages (PPLs) comprise
two components: a language for concisely specifying
probabilistic models, and a procedure for translating
such a specification into an executable program cap-
able of performing probabilistic inference. The task of
inference is to compute the posterior distribution of
model parameters given evidence, and often takes the
form of drawing approximate samples from the pos-
terior. By automating this translation, inference for
models can be implemented more easily and with less
risk of human error, compared to the manual deriva-
tion process required to implement inference proced-
ures for probabilistic models in non-specialised pro-
gramming languages. A wide variety of PPLs are cur-
rently available (Roy, 2018).

The Lightweight Metropolis–Hastings (M–H) frame-

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

work (Wingate et al., 2011) is a popular option for im-
plementing inference in PPLs. By combining the M–H
algorithm with a simple proposal distribution, namely
incrementally resampling from the prior model, Light-
weight M–H can derive an inference procedure in a
fully automated manner. However, such a simple pro-
posal is often not the most efficient choice for perform-
ing inference on any given model.

One approach to alleviating the performance issues as-
sociated with M–H inference is to utilise additional in-
formation about the target distribution within propos-
als. A popular approach in this vein is the Hamiltonian
Monte Carlo (HMC) method, which uses the gradient
of the target distribution to guide proposals (Betan-
court, 2017). However, the price of relying on gradi-
ents is that HMC is not applicable to models with
discrete parameters. In particular, this precludes the
ability to perform inference on trans-dimensional mod-
els, in which the dimensionality of the parameter space
is itself an unknown parameter. In practice this means
that users of PPLs relying on HMC must avoid such
models entirely or, where possible, manually margin-
alise such parameters out of the model prior to imple-
mentation (Stan Development Team, 2017, §15).

A promising alternative approach to addressing the
performance of M–H inference in PPLs is to allow
users to specify custom proposal distributions in the
form of a probabilistic program (Cusumano-Towner
and Mansinghka, 2018). This avoids HMC’s limita-
tions on discrete parameters, whilst allowing the user
to improve the efficiency of the inference procedure by
supplying their own domain-specific knowledge. The
trade-off is that inference is no longer fully automated,
as users must supply a proposal program, but it is still
possible to automate much of the work that would be
required to implement this procedure without the aid
of a PPL.

A deeper limitation is that, in its usual formulation,
M–H is only applicable to models in which the di-
mensionality of the parameter space is constant. Al-
though this limitation can be safely ignored in some
circumstances, such as in the case of Lightweight M–H
(Wingate et al., 2011, p. 773), in general doing so can

Reversible Jump Probabilistic Programming

lead to the inference procedure producing incorrect
results (Ranca and Ghahramani, 2015, §3.2.1). To ad-
dress this limitation, we can turn to Reversible Jump
Markov chain Monte Carlo (RJMCMC), a well-known
reformulation of M–H that can safely perform infer-
ence on trans-dimensional models (Green and Hastie,
2009).

We will begin by briefly discussing the necessary back-
ground knowledge on RJMCMC. Following this we
present our PPL, Stochaskell, focusing on the features
it provides that aid in implementing our approach to
automatically deriving RJMCMC samplers. We then
provide a high-level overview of our approach and its
implementation in Stochaskell, before outlining the
various components it relies upon. Finally, we demon-
strate our approach by implementing RJMCMC infer-
ence for two standard example models, and conclude
by discussing potential directions for future work.

2 BACKGROUND

The purpose of a probabilistic program is to unam-
biguously specify the joint distribution p(x, y) of the
hidden parameters (or state) x and observations y of
a probabilistic model. The task of a PPL is to then
infer the posterior distribution p(x|y) given values for
the observations. The posterior density is often in-
tractable to compute, so we rely instead on methods
that require only the computation of f(x) = p(x, y)
which is proportional to p(x|y) for fixed y.

The M–H algorithm is a Markov chain Monte
Carlo (MCMC) method often used for approximately
sampling from posterior distributions. Samples are
produced in an iterative manner, with each iteration
involving two steps. The first step takes the most
recent sample x, and generates a candidate for the
next sample x∗ according to a problem-specific pro-
posal density q(x∗|x). The second step is to decide
whether to accept this candidate as the next sample,
or to reject it and take the next sample to simply be a
duplicate of the last. This decision is made randomly,
accepting with probability min(1, α) where the accept-
ance ratio α is defined as

α =
f(x∗)q(x|x∗)
f(x)q(x∗|x)

.

Note the efficiency of the M–H method depends on
selecting a suitable proposal distribution that makes
large enough jumps in parameter space whilst keeping
the acceptance ratio close to unity, in order to explore
the target distribution as quickly as possible.

Building on the same framework as M–H, RJMCMC
begins by making some additional assumptions about
the structure of the proposal distribution:

• For an initial state x, it should be possible to
deconstruct the proposal distribution into a two
step process: sampling an auxiliary variable u
from some density g(·), and then calculating the
proposed transition x∗ = h(u;x), where h is a
deterministic function invertible in its first argu-
ment.

• Likewise, considering the reverse move, if the ini-
tial state had been x∗, the proposal would sample
the auxiliary u∗ ∼ g∗(·) and calculate the determ-
inistic transform x = h(u∗;x∗).

• In order to be able to make the Jacobian ad-
justment to the acceptance ratio, the dimension-
ality of these auxiliary variables is constrained
such that dimensionality of (x, u) equals that of
(x∗, u∗). Either auxiliary variable may be absent,
in which case we count its dimensionality as zero.

Fortunately proposals with this structure can be eas-
ily expressed as probabilistic programs. With these
assumptions, RJMCMC defines the acceptance ratio

α =
f(x∗)g∗(u∗)

f(x)g(u)

∣∣∣∣∂(x∗, u∗)∂(x, u)

∣∣∣∣ (1)

where the latter term is the absolute value of the de-
terminant of the Jacobian matrix of (x∗, u∗) differenti-
ated with respect to (x, u). This is easily extended to
handle discrete parameters, by including their associ-
ated probabilities in the ratio but leaving them absent
from the Jacobian (Green and Hastie, 2009).

Note that u∗ is not directly observed, but instead needs
to be calculated from x and x∗ by inverting the trans-
formation x = h(u∗;x∗) to obtain u∗ = h−1(x;x∗).
This will be discussed in further detail in section 4.

3 STOCHASKELL

Here we present Stochaskell, a new domain-specific
language for probabilistic programming, embedded
in Haskell. Stochaskell programs are simply regular
Haskell programs, augmented with a library of data
types and functions which allow probabilistic mod-
els to be conveniently constructed. This embedded
approach, as opposed to creating a standalone lan-
guage with its own syntax, allows us to immediately
take advantage of the host language’s type system, ex-
isting libraries, build tools, capacity for abstraction
and modularity, and other general-purpose facilities
(Kiselyov and Shan, 2009). Haskell is a particularly
convenient host language to use in this context, as its
first-class support for monads makes it easy to express
probabilistic programs (Ścibior et al., 2015). Code and
documentation for Stochaskell is freely available.1

1https://davidar.github.io/stochaskell

https://davidar.github.io/stochaskell

David A Roberts, Marcus Gallagher, Thomas Taimre

program : : P RVec
program = do

n ← po i s s o n 5
l e t base = un i fo rm 0 5
x ← orderedSample n base : : P RVec
l e t mu = v e c t o r [0 | i ← 1 . . . n]

k e r n e l a b = exp (−(a − b)^2 / 2)
+ i f a == b then 1e−6 e l s e 0

cov = mat r i x
[k e r n e l (x ! i) (x ! j)
| i ← 1 . . . n , j ← 1 . . . n]

g ← normal mu cov
r e t u r n g

(a)

!

!

i

j

− × /

2

−
0

exp

= ifThenElse

10−6 0

+

i = 1, . . . n, j = 1, . . . n

x ∼ orderedSampleuniform
0
5

n ∼ poisson5

g ∼ normal0

(b)

Figure 1: (a) A simple probabilistic program written in
Stochaskell, with (b) an illustration of the correspond-
ing intermediate representation. The rounded rect-
angle represents the cov matrix, with the double circle
indicating the root node which represents the value of
the matrix entry for any given values of i and j. The
rectangles represent the values of random variables,
with the double rectangle being the return value of
the program.

3.1 Intermediate Representation

We will now provide a brief overview of Stochaskell’s
intermediate representation (IR). The IR follows the
structure of the probabilistic programs written by
users in Stochaskell fairly closely, but with a focus on
enabling it to be consumed and produced by other pro-
grams. In particular, our method for automatically
deriving RJMCMC samplers operates upon this IR.
The IR consists of two main components — expres-
sions and programs — which will now be considered
in turn. Figure 1 illustrates the IR of a simple program
chosen to illustrate several features of the IR.

Stochaskell expressions are written as regular Haskell
expressions. However, rather than producing a con-
crete numeric value, these expressions evaluate to a
symbolic representation, stored as a directed acyclic
graph (DAG). These graphs consist of several kinds of
nodes, each representing a value, with incoming edges
connecting them to the nodes which represent their
inputs (if any). The following kinds of nodes are avail-
able:

Var external variable, e.g. the value of a random vari-

able or an array index

Const constant value, from scalars through to n-
dimensional concrete arrays

Data combines a variant tag and zero or more fields
into an instance of an algebraic data type (ADT)

BlockArray generalisation of block matrices to n-
dimensional arrays

Index application of the subscript operator (!)

Extract retrieves a specific field from an ADT

Cond conditional reference, associates a set of mu-
tually exclusive conditions with a value to take
whenever the corresponding condition is true

Apply application of a mathematical operation or
primitive function

Array generated by abstract array definitions, e.g.
cov in Fig. 1

FoldScan applications of the fold and scan higher-
order functions

Case case expression, which destructures an ADT
and evaluates a different expression per tag

Each DAG represents a single scope, and nested
scopes (such as those created by abstract array defin-
itions) are represented by the sequence of correspond-
ing DAGs, called a Block. Although a DAG can belong
to a number of different Blocks, its position in the se-
quence is always the same — as the sequence of parent
scopes cannot change, due to lexical scoping — which
we call the level of the DAG. Edges can connect nodes
from different DAGs in a Block, but can only be direc-
ted from parent scopes to child scopes, not vice versa.
An Expression is defined as a function that takes an
existing Block of definitions, and returns an updated
Block containing any additional nodes required by the
expression, along with a reference to the root node
representing the value of the whole expression.

Probabilistic programs are represented as a sequence
of stochastic choices, linked by a graph of determin-
istic transformations (represented by a Block). Each
of these is either a sample from a primitive distribu-
tion (e.g. normal), or a random array with marginals
specified by primitive distributions. Distributions are
associated with a list of references to the nodes rep-
resenting the relevant parameters. They may also take
another primitive distribution as a parameter, as in the
case of orderedSample. To represent conditional distri-
butions, each random variable can optionally be asso-
ciated with a concrete value corresponding to the con-
ditioned value. Finally, this representation is wrapped
within Haskell’s State monad, to define the P monad
visible in the type signatures of the programs presen-
ted in this paper.

Reversible Jump Probabilistic Programming

3.2 Code Generation

As mentioned in section 3.1, the IR is designed to be
a representation of probabilistic programs that can be
consumed and transformed by other programs. One
particularly useful kind of transformation is provided
by code generators, which transform the IR into code
that can be used with an external (probabilistic) pro-
gramming language. This allows users to write a
model once in Stochaskell, and apply multiple prob-
abilistic programming systems to various parts of it.
Stochaskell currently provides code generators target-
ing several different PPLs, including Stan (Carpenter
et al., 2017), PyMC3 (Salvatier et al., 2016), Edward
(Tran et al., 2017), and Church (Goodman et al.,
2008). A C++ code generator is also provided, for
compiling the IR to optimised machine code.

In section 5 we exploit this to perform inference on a
model implemented in Stochaskell via a combination of
our RJMCMC approach alongside HMC provided by
Stan. This allows us to provide high-performance in-
ference for (conditionally) fixed-dimensional, continu-
ous model parameters, whilst maintaining the ability
to support trans-dimensional and discrete model para-
meters via RJMCMC.

4 APPROACH

This section outlines our approach to automatically
deriving RJMCMC inference procedures. We require
the user to supply two probabilistic programs, specify-
ing a target and proposal distribution. Using these,
our method produces a third probabilistic program,
implementing the transition kernel of the reversible
jump Markov chain.

We have implemented our method within the
Stochaskell PPL, where it is exposed to the user via
the rjmc operator. In combination with the C++ code
generation backend discussed earlier, this allows us to
easily perform RJMCMC inference:

l e t t r a n s i t i o n x =
t a r g e t ‘ r jmc ‘ p r o po s a l ‘ runCC ‘ x

samples ← i t e r a t e L i m i t 1000 t r a n s i t i o n x0

At a high level, the implementation of this operator
is quite simple, encoding the structure of a RJMCMC
transition into a probabilistic program:

r jmc t a r g e t p r o po s a l x = do
l e t a = r jmcRat i o t a r g e t p r o po s a l
y ← p r opo s a l x
accep t ← b e r n o u l l i (min ′ 1 (a x y))
r e t u r n (i f accep t then y e l s e x)

Most of the complexity here is hidden inside the func-
tion rjmcRatio, which produces a deterministic pro-

gram (as a Stochaskell expression) for computing the
RJMCMC acceptance ratio (1). Implementing this
function requires a number of components, which we
describe in the following subsections.

4.1 Automatic Gradient Computation

There are a number of different techniques for comput-
ing the gradients of numeric functions implemented as
computer programs. Numerical differentiation meth-
ods achieve this by approximating the derivative via
a finite difference calculation, whereas automatic dif-
ferentiation and symbolic differentiation transform the
program into one which implements the exact derivat-
ive (Baydin et al., 2018).

We follow the approach of Theano (Theano Devel-
opment Team, 2016) and TensorFlow (Abadi et al.,
2016). We represent probabilistic programs as a com-
putation graph, in the form of the Stochaskell IR de-
scribed earlier. Computing the derivative of an expres-
sion with respect to one of its variables can be achieved
by walking through this graph. We first consider the
root node, and apply the chain rule to decompose the
derivative into a function of the derivatives of the de-
pendencies of this node. This process continues re-
cursively until reaching nodes with no dependencies,
whose derivative is constant. Composing all of these
partial derivatives yields a new IR graph, represent-
ing the required derivative. Tuples of values can also
be differentiated, in which case the result is a block
matrix containing the individual Jacobian matrices.

4.2 Transformation Inversion

As discussed earlier, we also need to be able to in-
vert the deterministic transformation x = h(u∗;x∗)
within the proposal probabilistic program, to obtain
a deterministic program that computes the auxiliary
variable u∗ = h−1(x;x∗). For this we utilise a simple
equation solver.

The solver operates by traversing the computation
graph in a similar manner to the automatic differenti-
ator. Equations are recursively rewritten according to
a list of rules for each primitive transformation. Most
of these rules are quite straightforward, such as rewrit-
ing ez = c to z = log c. In this case, if the left hand
side z is a random variable, we record this equation as
its solution. Otherwise, we substitute the definition of
z into the equation and apply another rewrite rule.

Note that this works with not just mathematical ex-
pressions, but also with more general data manipula-
tion functions. For example, to solve v insertAt(i, e) =
c (where the left hand side is the vector v with an ele-
ment e inserted at index i), we find the first index j

David A Roberts, Marcus Gallagher, Thomas Taimre

Algorithm 1 Rule for solving equations of the form
(case i of 1→ e1; 2→ e2; . . . n→ en) = c

let θj contain the solutions of ej = c, for j = 1, . . . n
let ϕj = θj restricted to solutions of program inputs
for k = 1, . . . n do

condition solutions in θk on “i = k”
if ϕk is not empty and ϕk 6= ϕj for j 6= k then

solve i = k, conditioning solutions on:
“all equations in ϕk must be satisfied”

return all the conditioned solutions

where vj 6= cj , then solve both i = j and e = cj .

In the case of binary operators, inversion is performed
only with respect to the operand with unknown value.
So, to solve a + b = c when a already has a solution,
we rewrite the equation to b = c− a.

The most complex rule is for dealing with case ex-
pressions, outlined in Algorithm 1. The conditioned
solutions returned by this are later combined to form
conditional reference nodes.

The main limitation of this (relatively simple) method
is that it is unable to solve systems of simultaneous
equations. As such, proposals should be written so
that each component of the proposed state introduces
at most one auxiliary variable. That is, we require
h(u;x) to be represented in the following form:

h(u;x) = (h1(u1;x), h2(u1, u2;x), . . . , hn(u;x)).

4.3 Code Optimisation

Programs that have been automatically generated by
procedures such as those described above often contain
many redundant and inefficient computations. Passing
these programs unmodified through to the code gener-
ators would therefore result in poor performance when
they are eventually executed. To avoid this, it is ne-
cessary to apply a number of optimisation passes to
programs prior to code generation.

We have implemented several such code optimisations
in Stochaskell to address major performance issues.
The first set of optimisations are automatically applied
to all Stochaskell programs as they are constructed. In
particular, common subexpression elimination is per-
formed using the hash-consing technique described by
Kiselyov (2011). Constant floating is also performed to
lift nodes into parent scopes whenever possible, which
improves the efficiency of generated code by avoiding
unnecessary recomputation.

Various basic arithmetic simplifications are also
performed, such as immediately evaluating con-
stant expressions, removing identity operations

(e.g.multiplication by one or applying a function to its
inverse), flattening nested conjunctions (as well as re-
moving duplicate terms and detecting contradictions),
and expanding determinants of products. At this stage
conditional references are also propagated through the
computation graph so that they can be combined and
simplified (e.g. removing conditions known to be false).

In addition to this, there is a set of optional optim-
isations that need to be explicitly triggered. These
are mostly related to conditional references, block
matrices, and combinations thereof. In particular,
nested conditional references are flattened (including
cases where conditions are themselves conditional ref-
erences), conditional references are lifted out of block
matrices (discussed further below), matrix operations
on block matrices are expanded in terms of operations
on individual blocks, and determinants of block tri-
angular matrices are optimised by evaluating only de-
terminants on the diagonal.

4.4 Reversible Jump Jacobian

To compute the Jacobian term in the RJMCMC ac-
ceptance ratio (1), we begin by expressing it in a
more direct manner. Substituting x∗ = h(u;x) and
u∗ = h−1(x;x∗), and applying the chain rule yields∣∣∣∣∣ ∂h(u;x)

∂x
∂h(u;x)

∂u
∂h−1(x;x∗)

∂x + ∂h−1(x;x∗)
∂x∗

∂h(u;x)
∂x

∂h−1(x;x∗)
∂x∗

∂h(u;x)
∂u

∣∣∣∣∣ .
(2)

A symbolic expression for h−1(x;x∗) can be obtained
by solving x = h(u∗;x∗) for u∗ using the equation
solver outlined in section 4.2. Each of the derivatives
within (2) can then be obtained by applying the auto-
matic differentiator, and combined into a block matrix.

It is common for proposal distributions to be expressed
as a mixture of sub-proposals, in which one of the sub-
proposals is randomly selected on each step according
to some probability distribution. A proposal might
include multiple auxiliary variables with only a subset
of them being used by each sub-proposal, in which case
the Jacobian for each sub-proposal would include rows
and columns for only those auxiliary variables it uses.

It is worth describing how the components of our
procedure interact when encountering proposals with
this structure. When the solver is invoked on u∗ =
h−1(x;x∗), the case expression used in the proposal
to delegate to sub-proposals results in conditional
references being returned for the auxiliary variables.
These conditional references indicate which of the sub-
proposals each auxiliary is used in, along with the
value each auxiliary variable takes in each case. These
conditional references are propagated through to the
final Jacobian, resulting in a block matrix filled with

Reversible Jump Probabilistic Programming

conditional references. The code optimiser is then
triggered to transform the Jacobian to a single condi-
tional reference which delegates to Jacobians for each
sub-proposal. This is achieved by selecting the ap-
propriate value of the blocks for each condition, or
removing blocks when the associated auxiliary is un-
constrained by that condition.

4.5 Probability Density Functions

In addition to the Jacobian, the RJMCMC acceptance
ratio (1) involves calculating the probability density
function associated with the target distribution. In the
simplest case, a probabilistic program may sample a
sequence of auxiliary random variables from primitive
distributions, returning them directly without apply-
ing any transformation. In this case, the joint density
can be easily obtained by taking the product of the
densities of the individual primitive distributions.

In general, probabilistic programs may instead return
a (deterministic) transformation of the auxiliary vari-
ables, z = t(u). As such transformations can be arbit-
rarily complicated, it would be infeasible to expect to
be able to automatically compute the resulting prob-
ability density for all possible probabilistic programs
(which may involve intractable integrals). Therefore,
we will restrict our focus to the case where the trans-
formation is invertible. In this case, the probabil-
ity density of the whole program can be expressed in
terms of the joint density of the auxiliary variables g(u)
along with a Jacobian adjustment: p(z) = g(u)/

∣∣ ∂z
∂u

∣∣
(Kroese et al., 2011, §A.6). As in the previous section,
we can utilise the transform inverter to determine the
value of the auxiliary variables u = t−1(z), and the
automatic differentiator to calculate the Jacobian.

5 EXPERIMENTS

Here we demonstrate how our approach can be used to
easily implement RJMCMC inference for two standard
example models. For each, both the generative model
and proposal distribution are written as Stochaskell
programs,2 which are then used to automatically de-
rive a RJMCMC sampler over the posterior.

5.1 Soccer Goals

Figure 2 provides an implementation of the simple
model described in Green and Hastie (2009, §3.1).
This trans-dimensional model is a model choice prob-
lem with two candidate models. Model 1 distributes

2Note that the proposal is specified as a single probabil-
istic program, which Stochaskell automatically decomposes
into the required auxiliary distribution g(u) and determin-
istic transformation h(u;x).

s o c c e r 1 : : Z → P (R , ZVec)
s o c c e r 1 n = do

lam ← gamma 25 10
y ← j o i n t v e c t o r [p o i s s o n lam

| _ ← 1 . . . n]
r e t u r n (lam , y)

s o c c e r 2 : : Z → P (R,R , ZVec)
s o c c e r 2 n = do

lam ← gamma 25 10
kap ← gamma 1 10
l e t a = 1/kap

b = a/ lam
y ← j o i n t v e c t o r [negB inomia l a b

| _ ← 1 . . . n]
r e t u r n (lam , kap , y)

data Model = Model1 R ZVec
| Model2 R R ZVec

s o c c e r : : Z → P (Expr Model)
s o c c e r n = do

(lam1 , y1) ← s o c c e r 1 n
(lam2 , kap2 , y2) ← s o c c e r 2 n
k ← b e r n o u l l i 0 . 5
r e t u r n $ i f k

then f romConcre te (Model1 lam1 y1)
e l s e f romConcre te (Model2 lam2 kap2 y2)

soccerJump : : Model → P (Expr Model)
soccerJump (Model1 lam y) = do

u ← normal 0 1 . 5
l e t kap = 0 .015 ∗ exp u
r e t u r n $ f romConcre te (Model2 lam kap y)

soccerJump (Model2 lam _ y) =
r e t u r n $ f romConcre te (Model1 lam y)

soccerHMC : : Z → Model → IO Model
soccerHMC n (Model1 lam y) = do

l e t p o s t e r i o r =
[lam ′

| (lam ′ , y ′) ← s o c c e r 1 n
, y ′ == y]

samp les ← hmcStan In i t 10 p o s t e r i o r lam
l e t lam ′ = l a s t samp les
r e t u r n (Model1 lam ′ y)

soccerHMC n (Model2 lam kap y) = do
l e t p o s t e r i o r =

[(lam ′ , kap ′)
| (lam ′ , kap ′ , y ′) ← s o c c e r 2 n
, y ′ == y]

l e t s0 = (lam , kap)
samples ← hmcStan In i t 10 p o s t e r i o r s0
l e t (lam ′ , kap ′) = l a s t samp les
r e t u r n (Model2 lam ′ kap ′ y)

s o c c e r S t ep : : Z → Model → IO Model
s o c c e r S t ep n m = do

m′ ← soccerHMC n m
m′ ′ ← s o c c e r n ‘ rjmcC ‘ soccerJump

‘ runCC ‘ f romConcre te m′

r e t u r n $ f romRight (e v a l ′ m′ ′)

Figure 2: Stochaskell implementation of the soccer
goal model from Green and Hastie (2009).

David A Roberts, Marcus Gallagher, Thomas Taimre

the observed data y according to a Poisson distribu-
tion, as defined by the probabilistic program soccer1.
Model 2 instead distributes the data according to a
negative binomial distribution, as shown in soccer2.
These candidate models are then combined into the
full trans-dimensional model soccer.

The proposal distribution has two parts, depending
on whether the current state of the Markov chain is in
model 1 or 2. In the former case, Green and Hastie
(2009) propose a jump from model 1 to 2 by sampling
an auxiliary variable u ∼ N (0, 1.5) and transform-
ing the model parameters as λ 7→ (λ, 0.015eu). The
reverse proposal simply discards a parameter, as
(λ, κ) 7→ λ. The combined proposal is transcribed to
the probabilistic program soccerJump.

This takes care of proposing jumps between models 1
and 2, but we still need to define within-model jumps
to complete the inference procedure. Green and Hastie
(2009) do not specify any particular method for doing
this, so we simply offload this task to the Stan code
generation backend, as shown in soccerHMC.3 Finally,
we combine all these elements to produce the Markov
chain transition kernel soccerStep.

Note that nowhere have we had to concern ourselves
with the details of implementing the RJMCMC infer-
ence procedure; this has all been taken care of auto-
matically by Stochaskell as described in section 4.

To test this model, we use the total soccer goal data
from Curley (2016). Performing inference by running
iterateLimit 5000 (soccerStep n) (Model1 1 goalData)
yields a posterior probability of 70.76% in favour of
model 1, in agreement with Green and Hastie (2009).

5.2 Coal Mining Disasters

We now consider a more complex model, namely the
coal mining disaster model introduced in the seminal
RJMCMC paper (Green, 1995). The model partitions
a time series into a number of segments separated by
n change-points at locations (si)i=1,...n, with s0 = 0
and sn+1 = t as fixed endpoints. The data is mod-
elled by a Poisson process, with rate gj between each
pair of change-points (sj−1, sj). This is encoded in the
probabilistic program coalLikelihood in Fig. 3.

The number of change-points n is assumed to have
a truncated Poisson prior distribution, their locations
(si)i=1,...n to be the even-numbered order statistics of
the uniform distribution over the interval [0, t], and the

3It should also be possible to perform the HMC update
within the RJMCMC proposal using our approach com-
bined with the mechanism proposed by Al-Awadhi et al.
(2004), which involves only minimal modifications to the
acceptance ratio (1).

c o a l L i k e l i h o o d : : R→ (Z , RVec , RVec)→P RVec
c o a l L i k e l i h o o d t (n , s , g) = do

l e t r a t e y = g ! (f i n d S o r t e d I n s e r t I n d e x y s)
w id th s = v e c t o r

[(s ! (i+1)) − (s ! i)
| i ← 1 . . . (n−1)] : : RVec

w = b l o ckVec t o r [c a s t (s ! 1) , w idths ,
c a s t (t − (s ! n))] : : RVec

a r e a s = v e c t o r [(w! j) ∗ (g ! j)
| j ← 1 . . . (n+1)]

a r ea = sum ′ a r e a s
y ← po i s s o nP r o c e s s t r a t e a r ea
r e t u r n y

c o a l P r i o r : : R → P (Z , RVec , RVec)
c o a l P r i o r t = do

l e t lam = 3 ; nMax = 30 ; a = 1 ; b = 200
n ← t r un c a t e d 1 nMax (po i s s o n lam)
s ′ ← orderedSample

(2 ∗n + 1) (un i fo rm 0 t) : : P RVec
l e t s = v e c t o r [s ′ ! (2 ∗ i) | i ← 1 . . . n]
g ← j o i n t v e c t o r [gamma a b

| _ ← 1 . . . (n+1)]
r e t u r n (n , s , g)

type Model = (Z , RVec , RVec , RVec)
c o a l : : R → P Model
c o a l t = do

(n , s , g) ← c o a l P r i o r t
y ← c o a l L i k e l i h o o d t (n , s , g)
r e t u r n (n , s , g , y)

Figure 3: Stochaskell implementation of the coal min-
ing disaster model from Green (1995).

rates (gj)j=1,...n+1 to be iid Gamma distributed. This
is expressed by the probabilistic program coalPrior.
Combining these yields the full generative model coal.

There are four sub-proposals implemented in Fig. 4:
two for updating individual change-point locations and
rates, and two for incrementing or decrementing the
number of change-points. The former two are quite
straightforward, as expressed by the programs coal-
MovePoint and coalMoveRate. The latter two sub-
proposals, as used by Green (1995, pp. 720–721), are
a little more involved. In the interests of simplicity,
we will use slightly different sub-proposals than those
described in the original paper, as specified by coal-
MoveBirth and coalMoveDeath.

We then define the function coalMoveProbs (not shown
due to space considerations) to calculate the probab-
ility of selecting each sub-proposal, derived from the
constraints described in Green (1995, p. 719). Finally
we encode the full proposal distribution in coalMove,
and the RJMCMC transition kernel is automatically
derived in coalStep. Figure 5 shows the result of run-
ning this model on the coal dataset provided by the
boot package for R.

Reversible Jump Probabilistic Programming

coa lMovePoint : : R → Model → P Model
coa lMovePoint t (n , s_ , g , y) = do

l e t s i = i f i == 0 then 0
e l s e i f i == (n+1) then t
e l s e (s_ ! i)

j ← un i fo rm 1 n
u ← un i fo rm 0 1
l e t s j ′ = s (j −1) +

(s (j+1) − s (j −1)) ∗ u
s ′ = s_ ‘ r ep l a c eAt ‘ (j , s j ′)

r e t u r n (n , s ′ , g , y)

coalMoveRate : : R → Model → P Model
coalMoveRate t (n , s , g , y) = do

j ← un i fo rm 1 (n+1)
u ← un i fo rm (−1/ 2) (1 / 2)
l e t g j = exp (l o g (g ! j) + u)

g ′ = g ‘ r ep l a c eAt ‘ (j , g j)
r e t u r n (n , s , g ′ , y)

coa lMoveB i r th : : R → Model → P Model
coa lMoveB i r th t (n , s , g , y) = do

x ← un i fo rm 0 t
l e t j = f i n d S o r t e d I n s e r t I n d e x x s

s ′ = s ‘ i n s e r tA t ‘ (j , x)
u ← l ogno rma l 0 1
l e t g ′ = g ‘ i n s e r tA t ‘ (j+1 , u ∗ (g ! j))
r e t u r n (n+1 , s ′ , g ′ , y)

coalMoveDeath : : R → Model → P Model
coalMoveDeath t (n , s , g , y) = do

j ← un i fo rm 1 n
l e t s ′ = s ‘ d e l e t eAt ‘ j

g ′ = g ‘ de l e t eAt ‘ (j+1)
r e t u r n (n−1, s ′ , g ′ , y)

coalMove : : R → Model → P Model
coalMove t m@(n ,_,_,_) = do

l e t (e , p , b , d) = coalMoveProbs n
mix tu r e ′ [(e , coalMoveRate t m)

, (p , coa lMovePoint t m)
, (b , coa lMoveB i r th t m)
, (d , coalMoveDeath t m)]

c oa l S t ep : : R → Model → IO Model
c oa l S t ep t m =

c o a l t ‘ r jmc ‘ coalMove t ‘ runStep ‘ m

Figure 4: Inference for the model in Fig. 3.

R
at

e
(p

os
te

ri
or

m
ea

n)

0 5000 10000 15000 20000 25000 30000 35000 40000
0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Time (days)

Figure 5: Result of running the inference procedure in
Fig. 4, in agreement with Green (1995, Fig. 1).

6 DISCUSSION

We have presented a method for automatically de-
riving RJMCMC inference procedures when provided
with the target and proposal probabilistic programs.
We have also presented Stochaskell, a new PPL em-
bedded in Haskell, which provides an implementa-
tion of this method. Stochaskell’s IR also enables
other applications which rely on transforming prob-
abilistic programs, such as combining inference meth-
ods provided by multiple PPLs to be used on a single
model. We demonstrated how this can be used to con-
cisely implement RJMCMC for models, whilst being
powerful enough to handle a realistic problem.

Integrating RJMCMC inference with PPLs has been
previously investigated. For instance, it is possible to
implement RJMCMC samplers within the NIMBLE
PPL, however this requires the user to manually cal-
culate RJMCMC acceptance ratios and implement the
associated bookkeeping themselves (NIMBLE Devel-
opment Team, 2017). Narayanan and Shan (2018)
have recently presented an extension to the disinteg-
ration method utilised by the Hakaru PPL that allows
it to compute acceptance ratios from RJMCMC pro-
posal distributions implemented as probabilistic pro-
grams. However, they note that it is still necessary
for users to manually specify an additional base distri-
bution for each proposal distribution. To the best of
our knowledge, the implementation of our method in
Stochaskell is the first to provide automatic derivation
of a RJMCMC inference procedure, when provided
with only probabilistic programs implementing the
generative model and proposal distribution.

We have demonstrated that our method can be ap-
plied to realistic models with minimal manual effort,
but there is further work that needs to be done to en-
sure that the computational efficiency of RJMCMC
samplers automatically produced by our method is
competitive with that of handwritten samplers. As
discussed in section 4.3, the main concern is in optim-
ising away inefficiencies present in automatically gen-
erated code. We have outlined the optimisation passes
we have already implemented to address some of these,
but further work will be required to close this gap.

Another direction for future work is to investigate al-
ternative methods for automatically inverting trans-
formations of random variables. Although the simple
method we describe in section 4.2 works well for a vari-
ety of transformations, including those necessary to
implement realistic proposal distributions, it does not
handle arbitrarily complex transformations. As such,
it may be worthwhile investigating the integration of
more sophisticated formalisations, such as the preim-
age semantics introduced by Toronto et al. (2015).

David A Roberts, Marcus Gallagher, Thomas Taimre

Acknowledgements

We thank the anonymous reviewers for providing help-
ful recommendations regarding the presentation of the
paper. This research was supported by an Australian
Government Research Training Program Scholarship.

References

M. Abadi et al. Tensorflow: A system for large-scale
machine learning. In 12th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 16), pages 265–283, Savannah, GA, 2016.
USENIX Association. ISBN 978-1-931971-33-1. URL
https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/abadi.

F. Al-Awadhi, M. Hurn, and C. Jennison. Improving
the acceptance rate of reversible jump MCMC pro-
posals. Statistics & Probability Letters, 69(2):189–
198, Aug. 2004. ISSN 0167-7152. doi: 10.1016/j.spl.
2004.06.025.

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and
J. M. Siskind. Automatic Differentiation in Machine
Learning: A Survey. Journal of Machine Learning
Research, 18(153):1–43, 2018. URL http://www.
jmlr.org/papers/v18/17-468.html.

M. Betancourt. The Convergence of Markov chain
Monte Carlo Methods: From the Metropolis method
to Hamiltonian Monte Carlo. arXiv:1706.01520, June
2017. URL http://arxiv.org/abs/1706.01520.

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee,
B. Goodrich, M. Betancourt, M. Brubaker, J. Guo,
P. Li, and A. Riddell. Stan: A probabilistic program-
ming language. Journal of Statistical Software, 76(1),
2017. ISSN 1548-7660. doi: 10.18637/jss.v076.i01.

J. P. Curley. Engsoccerdata: English Soccer Data
1871-2015, 2016. URL https://cran.r-project.
org/web/packages/engsoccerdata/README.html.

M. F. Cusumano-Towner and V. K. Mans-
inghka. Using probabilistic programs as proposals.
arXiv:1801.03612, Jan. 2018. URL http://arxiv.
org/abs/1801.03612.

N. Goodman, V. Mansinghka, D. M. Roy, K. Bon-
awitz, and J. B. Tenenbaum. Church: A language
for generative models. In Proceedings of the 24th
Conference in Uncertainty in Artificial Intelligence,
pages 220–229, 2008. URL https://arxiv.org/
abs/1206.3255.

P. J. Green. Reversible jump Markov chain Monte
Carlo computation and Bayesian model determina-
tion. Biometrika, 82(4):711–732, Dec. 1995. ISSN
0006-3444. doi: 10.1093/biomet/82.4.711.

P. J. Green and D. I. Hastie. Reversible
jump MCMC. Technical report, June 2009.
URL https://people.maths.bris.ac.uk/~mapjg/
papers/rjmcmc_20090613.pdf.

O. Kiselyov. Implementing explicit and finding impli-
cit sharing in embedded DSLs. Electronic Proceedings
in Theoretical Computer Science, 66:210–225, 2011.
ISSN 2075-2180. doi: 10.4204/EPTCS.66.11.

O. Kiselyov and C.-c. Shan. Embedded probabil-
istic programming. In Domain-Specific Languages,
pages 360–384. Springer, 2009. doi: 10.1007/
978-3-642-03034-5_17.

D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook
of Monte Carlo Methods. Wiley Series in Probability
and Statistics. John Wiley and Sons, New York, New
York, 2011. ISBN 978-0-470-17793-8.

P. Narayanan and C.-c. Shan. More support for sym-
bolic disintegration, 2018. URL https://pps2018.
sice.indiana.edu/files/2017/12/abstract.pdf.

NIMBLE Development Team. Writing re-
versible jump MCMC in NIMBLE, Feb.
2017. URL https://r-nimble.org/
writing-reversible-jump-mcmc-in-nimble.

R. Ranca and Z. Ghahramani. Slice Sampling for
Probabilistic Programming. arXiv:1501.04684, Jan.
2015. URL http://arxiv.org/abs/1501.04684.

D. Roy. Probabilistic programming, 2018. URL
http://probabilistic-programming.org/.

J. Salvatier, T. V. Wiecki, and C. Fonnesbeck.
Probabilistic programming in Python using PyMC3.
PeerJ Computer Science, 2:e55, Apr. 2016. ISSN
2376-5992. doi: 10.7717/peerj-cs.55.

A. Ścibior, Z. Ghahramani, and A. D. Gordon. Prac-
tical probabilistic programming with monads. In Pro-
ceedings of the 2015 ACM SIGPLAN Symposium on
Haskell, pages 165–176. ACM Press, 2015. ISBN 978-
1-4503-3808-0. doi: 10.1145/2804302.2804317.

Stan Development Team. Stan modeling language
users guide and reference manual, 2017. URL http:
//mc-stan.org. Version 2.17.0.

Theano Development Team. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv:1605.02688, May 2016. URL http:
//arxiv.org/abs/1605.02688.

N. Toronto, J. McCarthy, and D. Van Horn. Running
Probabilistic Programs Backwards. In Programming
Languages and Systems, pages 53–79. Springer, 2015.
doi: 10.1007/978-3-662-46669-8_3.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
http://www.jmlr.org/papers/v18/17-468.html
http://www.jmlr.org/papers/v18/17-468.html
http://arxiv.org/abs/1706.01520
https://cran.r-project.org/web/packages/engsoccerdata/README.html
https://cran.r-project.org/web/packages/engsoccerdata/README.html
http://arxiv.org/abs/1801.03612
http://arxiv.org/abs/1801.03612
https://arxiv.org/abs/1206.3255
https://arxiv.org/abs/1206.3255
https://people.maths.bris.ac.uk/~mapjg/papers/rjmcmc_20090613.pdf
https://people.maths.bris.ac.uk/~mapjg/papers/rjmcmc_20090613.pdf
https://pps2018.sice.indiana.edu/files/2017/12/abstract.pdf
https://pps2018.sice.indiana.edu/files/2017/12/abstract.pdf
https://r-nimble.org/writing-reversible-jump-mcmc-in-nimble
https://r-nimble.org/writing-reversible-jump-mcmc-in-nimble
http://arxiv.org/abs/1501.04684
http://probabilistic-programming.org/
http://mc-stan.org
http://mc-stan.org
http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688

Reversible Jump Probabilistic Programming

D. Tran, M. D. Hoffman, R. A. Saurous, E. Brevdo,
K. Murphy, and D. M. Blei. Deep Probabilistic
Programming. arXiv:1701.03757, Jan. 2017. URL
http://arxiv.org/abs/1701.03757.

D. Wingate, A. Stuhlmueller, and N. D. Good-
man. Lightweight implementations of probabilistic
programming languages via transformational com-
pilation. In Proceedings of the Fourteenth Interna-
tional Conference on Artificial Intelligence and Stat-
istics, pages 770–778, 2011. URL http://jmlr.org/
proceedings/papers/v15/wingate11a.html.

http://arxiv.org/abs/1701.03757
http://jmlr.org/proceedings/papers/v15/wingate11a.html
http://jmlr.org/proceedings/papers/v15/wingate11a.html

