
Active Probabilistic Inference on Matrices
for Pre-Conditioning in Stochastic Optimization

Filip de Roos Philipp Hennig
Max Planck-Institute for Intelligent Systems and University of Tübingen, Germany
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Abstract

Pre-conditioning is a well-known concept that
can significantly improve the convergence of
optimization algorithms. For noise-free prob-
lems, where good pre-conditioners are not
known a priori, iterative linear algebra meth-
ods offer one way to efficiently construct
them. For the stochastic optimization prob-
lems that dominate contemporary machine
learning, however, this approach is not read-
ily available. We propose an iterative al-
gorithm inspired by classic iterative linear
solvers that uses a probabilistic model to
actively infer a pre-conditioner in situations
where Hessian-projections can only be con-
structed with strong Gaussian noise. The
algorithm is empirically demonstrated to effi-
ciently construct effective pre-conditioners for
stochastic gradient descent and its variants.
Experiments on problems of comparably low
dimensionality show improved convergence.
In very high-dimensional problems, such as
those encountered in deep learning, the pre-
conditioner effectively becomes an automatic
learning-rate adaptation scheme, which we
also empirically show to work well.

1 INTRODUCTION

Contemporary machine learning heavily features em-
pirical risk minimization, on loss functions of the form

L(w) = 1

|D|

|D|�

i∈D
li(w), (1)
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where D is a data-set and w are parameters of the
optimization problem (e.g. the weights of a neural
network). Data sub-sampling in such problems gives
rise to stochastic optimization problems: If gradients
are computed over a randomly sampled batch B ⊂ D
of data-points, they give rise to a stochastic gradient

∇L̃(w) = 1

|B|

|B|�

i∈B
∇li(w). (2)

If D is large and B is sampled iid., then ∇L̃ is an
unbiased estimator and, by the multivariate Central
Limit Theorem, is approximately Gaussian distributed
(assuming |B| � |D|) around the full-data gradient as
(e.g. Balles et al., 2017; van der Vaart, 1998, §2.18)

p
�
∇L̃(w)

��∇L
�
= N

�
∇L̃(w);∇L(w), |B|−1 cov(∇L)

�

(3)
where cov(∇L) is the empirical covariance over D. For
problems of large scale in both data and parameter-
space, stochastic optimization using stochastic gradi-
ent descent (Robbins & Monro, 1951) and its by now
many variants (e.g., momentum (Polyak, 1964), Adam
(Kingma & Ba, 2014), etc.) are standards.

For (non-stochastic) gradient descent, it is a classic re-
sult that convergence depends on the condition-number
of the objective’s Hessian B(w) := ∇∇�L(w). For
example, Thm. 3.4 in Nocedal & Wright (Nocedal
& Wright, 2006) states that the iterates of gradi-
ent descent with optimal local step sizes on a twice-
differentiable objective L(w) : RN �R converge to a
local optimum w∗ such that, for sufficiently large i,

L(wi+1)− L(w∗) ≤ r2(L(wi)− L(w∗)),

with r ∈
�
λN − λ1

λN + λ1
, 1

�
, (4)

where λN and λ1 are the largest and smallest eigen-
value of the Hessian B(w), respectively. In noise-free
optimization, it is thus common practice to try and
reduce the condition number κ := λN/λ1 of the Hes-
sian, by a linear re-scaling w̄ = P �w of the input space
using a pre-conditioner P ∈ RN×N .
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For ill-conditioned problems (κ � 1), effective
pre-conditioning can drastically improve the conver-
gence. Choosing a good pre-conditioner is a problem-
dependent art. A good pre-conditioner should decrease
the condition number of the problem and be cheap to
apply, either through sparseness or low-rank structure.

Sometimes pre-conditioners can be constructed as
a good ‘a-priori’ guess of the inverse Hessian B−1.
I no such good guess is available, then in the
deterministic/non-stochastic setting, iterative linear-
algebra methods can be used to build a low-rank pre-
conditioner. For example, if P spans the leading eigen-
vectors of the Hessian, the corresponding eigen-values
can be re-scaled to change the spectrum, and by ex-
tension the condition number. Iterative methods such
as those based on the Lanczos process (Golub & C.F
Van Loan, 2012, §10.1) try to consecutively expand
a helpful subspace by choosing B-conjugate vectors,
which can fail in the presence of inexact computations.
Due to these intricate instabilities (Trefethen & Bau
III, 1997, p. 282) such algorithms tend not to work
with the level of stochasticity encountered in practical
machine learning applications.

Below, we propose a framework for the efficient con-
struction of pre-conditioners in settings with noise-
corrupted Hessian-vector products available.Our algo-
rithm consists of three main components: We first
build a probabilistic Gaussian inference model for ma-
trices from noisy matrix-vector products (Section 2.1)
by extending existing work on matrix-variate Gaus-
sian inference. Then we construct an active algorithm
that selects informative vectors aiming to explore the
Hessian’s dominant eigen-directions (Section 2.2). The
structure of this algorithm is inspired by that of the clas-
sic Arnoldi and Lanczos iterations designed for noise-
free problems. Finally (Section 2.3), we provide some
“plumbing” to empirically estimate hyper-parameters
and efficiently construct a low-rank pre-conditioner and
extend the algorithm to the case of high-dimensional
models (Section 2.4). We evaluate the algorithm on
some simple experiments to empirically study its prop-
erties as a way to construct pre-conditioners and test
it on both a low-dimensional1, and a high-dimensional
deep learning problem . While we use pre-conditioning
as the principal setting, the main contribution of our
framework is the ability to construct matrix-valued
estimates in the presence of noise, and to do so at com-
plexity linear in the width and height of the matrix.
It is thus applicable to problems of large scale, also
in domains other than pre-conditioning and optimiza-
tion in general. In contrast to a simple averaging of
random observations, our algorithm actively chooses
projections in an effort to improve the estimate.

1Code repository.

1.1 Related Work

Our approach is related to optimization methods that
try to emulate the behaviour of Newton’s method with-
out incurring its cubic per-step cost. That is, iterative
optimization updates wi+1 = wi − di that try to find a
search direction di that is an approximate solution to
the linear problem

B(wi)di = ∇L(wi). (5)

This includes quasi-Newton methods like BFGS and its
siblings (Dennis & Moré, 1977), and Hessian-free opti-
mization (Pearlmutter, 1994; Martens, 2010). These
methods try to keep track of the Hessian during the
optimization. Pre-conditioning is a simpler approach
that separates the estimation of the (inverse) Hessian
from the on-line phase of optimization and moves it to
an initialization phase. Our algorithm could in princi-
ple be run in every single step of the optimizer, such
as in Hessian-free optimization. However, this would
multiply the incurred cost, which is why we here only
study its use for pre-conditioning.

There are stochastic variants of quasi-Newton methods
and other algorithms originally constructed for noise-
free optimization (e.g. Schraudolph et al., 2007; Byrd
et al., 2016). These are generally based on collecting
independent random (not actively designed) samples of
quasi-Newton updates. Estimates can also be obtained
by regularizing estimates (e.g. Wills & Schön, 2018)
or partly update the stochastic gradient by reusing
elements of a batch (e.g. Bollapragada et al., 2018).
The conceptual difference between these methods and
ours is that we actively try to design informative ob-
servations by explicitly taking evaluation uncertainty
into account.

Our inference scheme is an extension of Gaussian mod-
els for inference on matrix elements, which started with
early work by Dawid (1981) and was recently extended
in the context of probabilistic numerical methods (Hen-
nig & Kiefel, 2013; Hennig, 2015; Wills & Schön, 2018).
Our primary addition to these works is the algebra
required for dealing with structured observation noise.

2 THEORY

Our goal in this work is to construct an active infer-
ence algorithm for low-rank pre-conditioning matrices
that can deal with data in the form of Hessian-vector
multiplications corrupted by significant (not just in-
finitesimal) Gaussian noise. To this end, we will adopt
a probabilistic viewpoint with a Gaussian observation
likelihood, and design an active evaluation policy that
aims to efficiently collect informative, non-redundant
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Hessian-vector products. The algorithm will be de-
signed so that it produces a Gaussian posterior measure
over the Hessian of the objective function, such that
the posterior mean is a low-rank matrix.

2.1 Matrix Inference

Bayesian inference on matrices B ∈ RN×N can be
realised efficiently in a Gaussian framework by re-

arranging the matrix elements into a vector
−→
B ∈

RN2×1, then performing standard Gaussian inference
on this vector (e.g. Dawid, 1981). Although Hessian
matrices are square and symmetric, the following deriva-
tions apply equally well to rectangular matrices. There
are specializations for symmetric matrices (Hennig,
2015), but since they significantly complicate the deriva-
tions below, we use this weaker model.

Assume that we have access to observations Y ∈ RN×m

of matrix-vector products Y = BS along the search
directions S ∈ RN×m. In the vectorized notation,

this amounts to a linear projection of
−→
B through the

Kronecker product matrix (I � S�):

Yab = (I � S�)
−→
B =

�

ij

δaiBijSjb = [BS]ab.

If the observations are exact (noise-free), the likelihood
function is a Dirac distribution,

p(Y |B,S) = δ(
−→
Y − (I � S�)B) =

= lim
β→0

N (Y ; (I � S�)B,βΛ0).
(6)

For conjugate inference, we assign a Gaussian prior
over B, with a prior mean matrix B0 and a covari-
ance consisting of a Kronecker product of 2 symmetric
positive-definite matrices.

N (B,B0, V � W ) =
1

((2π)n2/|V |n|W |n)1/2

· exp
�
−1

2
(
−→
B −−→

B0)
�(V � W )−1(

−→
B −−→

B0)

�
. (7)

This is an equivalent re-formulation of the matrix-
variate Gaussian distribution (Dawid, 1981). For sim-
plicity, and since we are inferring a Hessian matrix
B (which is square and symmetric), we set V = W .
This combination of prior (7) and likelihood (6) has
previously been discussed (detailed derivation, e.g., in
Hennig, 2015). It gives rise to a Gaussian posterior
distribution, whose mean matrix is given by

Bm =B0 + (W � W )(I � S)
−→
X = B0 +WXS�W =

B0 + (Y −B0S)(S
�WS)−1S�W

(8)

where X is found as the solution to the linear system

(W � S�WS� �� �
=:G

)
−→
X =

−−−−−−−→
(Y −B0S)� �� �

=:
−→
Δ

, (9)

using the Kronecker product’s property that (A �
B)−1 = A−1 � B−1 (note that the matrix (S�WS) ∈
Rm×m can be inverted in O(m3)).

2.1.1 Adding Noise

While noise-free observations of Gaussian-distributed
matrices have been studied before, observation noise
beyond the fully iid. case, (cf. Wills & Schön, 2018)
is a challenging complication. A lightweight inference-
scheme for noisy observations is one of the core contri-
butions of this paper. In empirical risk minimization
problems, mini-batching replaces a large or infinite sum
(the population risk, Eq. (1)) into a small sum of indi-
vidual loss functions (Eq. (2)). Analogous to Eq. (3),
the Hessian B̃ of the batch risk L̃ is thus corrupted
relative to the true Hessian by B a Gaussian likelihood:

B̃(w) = B(w) + Γ with Γ ∼ N (0,Σ)

and Σ = cov(∇∇�L)/|B|. (10)

If we now compute matrix-vector products of this batch
Hessian with vectors S ∈ RN×m, even under the sim-
plifying assumption of Kronecker structure Σ = Λ � Λ
in the covariance, the observation likelihood becomes

p(Y |B,S) = N (
−→
Y ;

−→
BS,Λ � (S�ΛS)ii� �� �

=:R

). (11)

The subscript ii in Eq. (11) is there to highlight the
diagonal structure of the right matrix due to the inde-
pendent batches we use to calculate the Hessian-vector
products. Relative to Eq (9), this changes the Gram
matrix to be inverted from G to (G+R).

To get the posterior of B in the noisy setting after m
observations, instead of Eq. (9), we now have to solve
the linear problem

(G+R)� �� �
Rnm×nm

−→
X =

−→
Δ . (12)

This is a more challenging computation, since the sum
of Kronecker products does not generally have an ana-
lytic inverse. However, Eq. (12) is a so-called matrix
pencil problem, which can be efficiently addressed us-
ing a generalized eigen-decomposition (e.g. Golub &
C.F Van Loan, 2012, §7.7). That is, by a matrix U and
diagonal matrix D = diag(λ) such that

GV = DRV with V �RV = I. (13)
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Eigen-decompositions distribute over a Kronecker prod-
uct (C.F. Van Loan, 2000). And this property is in-
herited by the generalized eigen-decomposition, which
offers a convenient way to rewrite a matrix in terms
of the other. Eq. (12) can thus be solved with two
generalized eigen-decompositions. The left and right
parts of the Kronecker products of Eq. (12) are written
with separate generalized eigen-decompositions as

WU =ΛUD, U�ΛU = I

(S�WS)V =(S�ΛS)iiV Ω, V �(S�ΛS)iiV = I.

U,D contain the generalized eigen-vectors and eigen-
values from the left Kronecker term and V,Ω are anal-
ogous for the right Kronecker term.

−→
Δ = (W � S�WS + Λ � (S�ΛS)ii)

−→
X

= (ΛU � (S�ΛS)iiV )(D � Ω+ I � I)(U−1 � V −1)
−→
X

= (U−T � V −T )(D � Ω+ I � I)(U−1 � V −1)
−→
X

In the first step above, the left matrix is expressed
in terms of the right matrix in both terms by means
of the generalized eigen-decomposition. In remaining
step, the conjugacy property in Eq. (13) is used to
simplify the expression to the inversion of a diagonal
matrix and the Kronecker product of the generalized
eigen-vectors. The solution now becomes

−→
X = (U � V ) (D � Ω+ I � I)−1−−−−→U�ΔV� �� �

1
(DjjΩii+1)

�U�ΔV=Ψji

= (U � V )
−→
Ψ = UΨV �

(14)

where � refers to the Hadamard product of the two
matrices. Using this form, we can represent the pos-
terior mean estimate for B with Eq. (8) where X is
replaced with the solution from Eq. (14).

Bm = B0 + WX����
RN×m

S�W� �� �
Rm×N

This matrix can generally not be written in a simpler
analytic form. If the prior mean B0 is chosen as a
simple matrix (e.g. a scaled identity), then Bm would
admit fast O(Nm) multiplication and inversion (using
the matrix inversion lemma) due to its low-rank outer-
product structure.

2.2 Active Inference

The preceding section constructed an inference algo-
rithm that turns noisy projections of a matrix into a
low-rank estimate for the latent matrix. The second
ingredient of our proposed algorithm, outlined in this
section, is an active policy that chooses non-redundant

projection directions to efficiently improve the posterior
mean. Algorithm 1 summarizes as pseudo-code.

The structure of this algorithm is motivated, albeit
not exactly matched to, that of stationary iterative
linear solvers and eigen-solvers such as GMRES (Saad
& Schultz, 1986) and Conjugate gradients (Hestenes
& Stiefel, 1952) (and the corresponding eigen-value-
iterations, the Arnoldi process and the Lanczos process.
Cf. (Golub & C.F Van Loan, 2012, §10) and (Trefethen
& Bau III, 1997, §VI)). These algorithms can be inter-
preted as optimization methods that iteratively expand
a low-rank approximation to (e.g. in the case of Conju-
gate gradients / Lanczos) the Hessian of a quadratic
problem, then solve the quadratic problem within the
span of this approximation. In our algorithm, the exact
low-rank approximation is replaced by the posterior
mean estimate arising from the Bayesian inference rou-
tine described in Section 2.1. This leads the algorithm
to suppress search directions that are co-linear with
those collected in previous iterations, focussing instead
on the efficient collection of new information.

Readers familiar with linear solvers like conjugate gra-
dients will be able to recognise the structural similarity
of Algorithm 1 to linear solvers, with two differing as-
pects. Each iteration constructs a projection direction
si, collects one matrix-vector multiplication, yi = B̃si
and rescales them by a step size βi (here set to 1 and
omitted). A linear solver would update the solution
xi and residual ri using si, yi and βi but we let the
algorithm stay at x0 and sample new search directions
and projections. The core difference to a solver is in
line 7: Where the classic solvers would perform a Gram-
Schmidt step, we instead explicitly perform Gaussian
inference on the Hessian B. In the noise-free limit the
proposed method would choose the same search direc-
tions as projection methods, a superclass of iterative
solvers containing algorithms such as GMRES and CG
(Hennig, 2015).

2.3 Algorithmic Details

Like all numerical methods, our algorithm requires the
tuning of some internal parameters and some imple-
mentational engineering. We set all free parameters in
an empirical fashion, via cheap pre-computations, and
use standard linear-algebra tools for the internals.

2.3.1 Estimating Parameters

The Gaussian prior (7) and likelihood (11) (also used
as parameters of Alg. 1) have several parameters. For
simplicity and to limit computational cost, we set all
these to scaled identity matrices: prior mean B0 = b0I,
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variance W = w0I and noise covariance Λ = λ0I. We
set these parameters empirically: Before the method
tries to estimate the Hessian, it gathers gradients and
Hessian-gradient products locally, from a small number
of initial batches. Then we set the parameters of the
prior over B as the empirical estimates

1/b0 =

�
s�Bs

s�BBs
and w0 =

s�Bs

s�s
. (15)

The noise variance for the likelihood set by an empirical
esimate

λ0 = (E[g2]− (E[g]����
ḡ

)2)/
√
s�s.

Since batch elements can vary quite extremely, however,
we use a more robust choice, by setting it to the median
of the variance estimates. The mean gradient (ḡ) from
the initial sampling is used for the first iteration of
the Hessian-inference scheme, line 2. A new search
direction along which a Hessian-vector product is to be
computed, is obtained by applying the inverse of the
current estimated Hessian to a stochastic gradient:

si+1 = −B̂−1
i ∇L̃(w). (16)

The estimated Hessian is updated by first solving
Eq. (12) and using the result in Eq. (8) to get the
posterior mean: It is a sum of the prior mean and a
low-rank outer product of two N ×m matrices, with
N the number of parameters and m the number of
observations/iterations. A diagonal prior mean offers
efficient inversion of the estimated Hessian by the ma-
trix inversion lemma, and subsequent multiplication in
Eq. (16).

In the experiments below, the algorithm is used to
construct a pre-conditioner for stochastic optimizers.
In this application, it runs at the beginning of an opti-
mization process, collecting several batches “in-place”,
each time computing a noisy matrix-Hessian product.
To find the dominant k eigen-directions, especially if
noise is significant, the solver usually requires a number
m > k of iterations, producing a posterior estimate Bm

of rank m. To reduce the computational cost and mem-
ory requirements in the subsequent actual optimization
run, we reduce the rank of this approximation down to
k using a standard fast singular value decomposition
and obtain the singular values Σ and the left singu-
lar vectors U and estimate the Hessian B ≈ UΣU�.
This is equivalent to taking the symmetric part of
a polar decomposition which yields the closest sym-
metric approximation to a matrix in Frobenius norm
(Higham, 1988). For an N -dimensional problem and
a pre-conditioner of rank k, this method requires the
storage of O(Nk) numbers and has a computational
overhead of O(Nk) additional FLOPS compared to
a standard sgd update. Such overhead is negligible

for batch-sizes |B| > k, the typical case in machine
learning.

Algorithm 1 Active probabilistic solver for linear
problems of the form Bx = b, where multiplications
with the matrix B can only be performed corrupted by
noise. When used in optimization, the target vector b
is set to the (noisy) gradient ∇L̃ (which amounts to
searching for the Newton direction).

1 procedure InfHess(x0,B(·), b, p(B), p(Y |S,B))
2 r0 = Btrue · x0 − b � initial noisy gradient

3 for i = 1, . . . do
4 si = −B−1

i−1ri−1 � step direction

5 yi = Btrue · si � observe

6 ri = Btrue ·x0 − b � new noisy gradient at x0

7 Bi = Infer(B |Yi, Si, p(B), p(Y |S,B))
7 � estimate B, using results from Section 2.1

8 end for
9 end procedure

2.3.2 Pre-conditioning

A pre-conditioner P is constructed to rescale the
stochastic gradients in the direction of the singular
vectors.

P = α(I + U [βIk/
√
Σ− Ik]U

�) (17)

By rescaling the gradients with P 2, the linear sys-
tem in Eq. (5) is transformed into P �B̃(wi)PP−1di =
P �∇L̃(wi). The goal, as outlined above, is to re-
duce the condition number of the transformed Hessian
P �B(wi)P . If the estimated vectors U,Σ are indeed
the real eigen-vectors and eigen-values, this approach
would rescale these directions to have length β. Theo-
retically β = 1 would be ideal if the real eigen-pairs are
used. When instead an approximation of the subspace
is used with poor approximations of the eigen-values
λ̃i, it is possible to scale a direction too much so the
eigen-vectors corresponding to the largest eigen-values
become the new smallest eigen-values. In our experi-
ments this rarely happened because the Hessian con-
tained many eigen-values λi � 1 and so β = 1 could
be used. The improved condition number allows usage
of a larger step-size. We scale up by the empirical
improvement of the condition number, i.e. the fixed
step-size of sgd η is multiplied with α2 = Σ1/Σk (in
Eq. (17)), the ratio between largest and the smallest
estimated eigen-value. Using the current notation we
can write the pre-conditioned sgd update as

wi+1 = wi − ηP 2∇L̃(wi).
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Figure 1: Comparison of sgd and pre-conditioned sgd on the linear test problem, along with other baselines.
Details in text. The plots show data for four different choices of batch size |B| (and thus varying observation
noise). For fairness to sgd, the abscissa is scaled in the number of data points loaded from disk (as opposed to
the number of steps). Due to the noisy setting, vanilla CG is unstable and diverges in the first few steps.
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Figure 2: Progress of pre-conditioned and standard sgd
on the MNIST logistic regression problem (details in
text). Top plot shows progress on the raw optimization
objective (train loss), the bottom plot shows general-
ization in terms of test accuracy. Two lines are shown
for sgd. The solid one uses a step-size αopt optimized
for good performance. This directly induces a step-
size αprec. for the pre-conditioner. For comparison, we
also show progress of sgd when directly using this step
size—it makes sgd unstable.

2.4 High-Dimensional Modification

Deep learning has become the benchmark for stochastic
optimizers and it imposes many new constraints on the
optimizers. Due to the large number of parameters,
even if we would have access to the fraction of eigen-
directions which make the Hessian ill-conditioned it
would likely be inefficient to use because each vector
has the same size as the network, and the approach
would only work if a few of the eigen-values of the

Hessian have a clear separation in magnitude. This
changes the functionality we can expect from a pre-
conditioner to keeping the parameter updates relevant
with respect to the current condition number rather
than finding all directions with problematic curvature.

Some simplifications are required in order to adapt
the algorithm for deep learning. The most important
change is that we approximate the Hessian as a layer-
wise block matrix, effectively treating each layer of
a deep net as an independent task. Hessian-vector
products are calculated using automatic differentiation
(Pearlmutter, 1994). Good estimates of the eigen-values
for the algorithm proved difficult to get because of
large deviations, likely due to the noisy Hessian-vector
products. To alleviate this problem we changed the
multiplicative update of the step-size presented in sec-
tion 2.3.2 to redefining the step-length. Each time the
algorithm is used to build a pre-conditioner, a new
step-length is set to the scalar prior mean in Eq. (15).
The last modification is how the empirical parameters
of the prior (section 2.3.1) are set. 1/b0 is used as the
new step-length and gave better results when a smaller
step-size of s�Bs/s�BBs was used and λ0 is estimated
to λ0 =

�
(
�

[g�g]− ĝ�ĝ)/n, with ĝ =
�

g(B). All the
parameters of the prior and likelihood (b0, w0 and λ0)
are shared among the layers. No clear improvement
was visible when treating the parameters separately for
each layer.

3 RESULTS

We analyze and compare the performance of the pro-
posed algorithm on a simple test problem along with
two standard applications in machine learning.
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3.1 Regression

Figure 1 shows results from a conceptual test setup
designed to showcase the algorithm’s potential: An ill-
conditioned linear problem of a scale chosen such that
the analytical solution can still be found for comparison.
We used linear parametric least-squares regression on
the SARCOS data-set (Vijayakumar & Schaal, 2000)
as a test setup. The data-set contains |D| = 44, 484
observations of a uni-variate2 response function yi =
f(xi) in a 21-dimensional space xi ∈ R21. We used the
polynomial feature functions φ(x) = A[x, vec(xx�)] ∈
R253, with a linear mapping, A, manually designed to
make the problem ill-conditioned. The model f(x) =
φ(x)�w with a quadratic loss function then yields a
quadratic optimization problem,

w∗ = arg min
w

α�w�2 + 1

|D|�Φ
�w − y�2 =

α�w�2 + 1

|D|

|D|�

i=1

(φ(xi)
�w − yi)

2, (18)

where Φ ∈ R253×44,484 is the map from weights to data.
The exact solution of this problem is given by the
regularized least-squares estimate w∗ = (ΦΦ�/|D| +
αI)−1Φy/|D|. For this problem size, this solution
can be computed easily, providing an oracle baseline
for our experiments. But if the number of features
were higher (e.g. � 104), then exact solutions would
not be tractable. One could instead compute, as in
deep learning, batch gradients from Eq. (18), and also
produce a noisy approximation of the Hessian B =
(ΦΦ�/|D|+ αI) as the low rank matrix

B̃ = αI +
1

|B|
�

b∈B
φ(xb)φ(xb)

� (19)

where B is a batch. Clearly, multiplying an arbitrary
vector with this low-rank matrix has cost O(|B|), thus
providing the functionality required for our noisy solver.
Figure 1 compares the progress of vanilla sgd with
that of pre-conditioned sgd if the pre-conditioner is
constructed with our algorithm. In each case, the
construction of the pre-conditioner was performed in
16 iterations of the inference algorithm. Even in the
largest case of B = 256, this amounts to 4096 data
read, and thus only a minuscule fraction of the overall
runtime.

An alternative approach would be to compute the in-
verse of B̃ separately for each batch, then average over
the batch-least-squares estimate w̃ = B̃−1Φy/|B|. In
our toy setup, this can again be done directly in the

2The data-set contains 7 such univariate target variables.
Following convention, we used the first one.

feature space. In an application with larger feature
space, this is still feasible using the matrix-inversion
lemma on Eq. (19), instead inverting a dense matrix of
size |B| × |B|. The Figure also shows the progression
of this stochastic estimate (labelled as avg-inv, always
using |B| = 256 since smaller batch-sizes did not work
at all). It performs much worse unless the batch-size
is increased, which highlights the advantage of the ac-
tive selection of projection directions for identifying
appropriate eigen-vectors. A third option is to use an
iterative solver with noise-corrupted observations to
approach the optimum. In figure 1 a barely visible line
labelled CG can be seen which used the method of con-
jugate gradients with a batch-size of 256. This method
required a batch-size |B| > 10000 to show reasonable
convergence on the training objective but would still
perform poorly on the test set.

3.2 Logistic Regression

Figure 2 shows an analogous experiment on a more
realistic, and non-linear problem: Classic linear logis-
tic regression on the digits 3 and 5 from the MNIST
data-set (i.e. using linear features φ(x) = x, and
p(y |x) = σ(φ(x)�w)). Here we used the model pro-
posed in Rasmussen & Williams (2005, §3.4), which de-
fines a convex, non-linear regularized empirical risk min-
imization problem that again allows the construction
of stochastic gradients, and associated noisy Hessian-
vector products. Analogous to Figure 1, Figure 2 shows
progress of sgd and pre-conditioned sgd. As before,
this problem is actually just small enough to com-
pute an exact solution by Newton optimization (gray
baseline in plot). And as before, computation of the
pre-conditioner takes up a small fraction of the opti-
mization runtime.

3.3 Deep Learning

For a high-dimensional test bed, we used a deep net
consisting of convolutional and fully-connected layers
(see appendix A for details) to classify the CIFAR-10
data-set (Krizhevsky, 2009). The proposed algorithm
was implemented in PyTorch (Paszke et al., 2017),
using the modifications listed in section 2.4.

To stabilize the algorithm, a predetermined fixed
learning-rate was used for the first epoch of the pre-
conditioned sgd. Figure 3 and 4 compare the con-
vergence for the proposed algorithm against sgd for
training loss and test loss respectively on CIFAR-10.
In both figures we see that the pre-conditioned sgd has
similar performance to a well-tuned sgd regardless of
the initial learning rate. To keep the cost of computa-
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Figure 3: Training loss for sgd (left) and pre-conditioned sgd (right) on the CIFAR-10 data-set for different
learning rates and batch-size of 32 over 250 epochs. Both graphs share y-axis and colors to facilitate comparison
between the optimizers. The solid lines represent the mean of several individual runs plotted as translucent.

0 50 100 150 200 250

0.5

1

1.5

2

Epoch

Test Loss sgd

0 50 100 150 200 250

0.5

1

1.5

2

Epoch

Test Loss p-sgd

α0 = 0.1

α0 = 0.05

α0 = 0.01

Figure 4: Test loss for sgd (left) and pre-conditioned sgd (right) on the CIFAR-10 data-set for different learning
rates and batch-size of 32 over 250 epochs. Both graphs share y-axis and colors to facilitate comparison between
the optimizers. These graphs were collected at the same runs as the results in Fig. 3.
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Figure 5: Evolution of the estimated learning rate α
over 250 epochs for different initial values.

tions and storage low we used a rank 2 approximation
of the Hessian that was recalculated at the beginning
of every epoch. The cost of building the rank 2 approx-
imation was 2–5% of the total computational cost per
epoch.

The improved convergence of pre-conditioned sgd over
normal sgd is mainly attributed the adaptive step-
size, which seems to capture the general scale of the
curvature to efficiently make progress. This approach
offers a more rigorous way to update the step-length
over popular empirical approaches using exponentially
decaying learning-rates or division upon plateauing. By
studying the scale of the found learning rate, see Fig. 5,
we see that regardless of the initial value, all α follow
the same trajectory although spanning values across
four orders of magnitude.

4 CONCLUSION

We have proposed an active probabilistic inference
algorithm to efficiently construct pre-conditioners in
stochastic optimization problems. It consists of three
conceptual ingredients: First, a matrix-valued Gaussian
inference scheme that can deal with structured Gaus-
sian noise in observed matrix-vector products. Second,
an active evaluation scheme aiming to collect infor-
mative, non-redundant projections. Third, additional
statistical and linear algebra machinery to empirically
estimate hyper-parameters and arrive at a low-rank
pre-conditioner. The resulting algorithm was shown
to significantly improve the behaviour of sgd in imper-
fectly conditioned problems, even in the case of severe
observation noise typical for contemporary machine
learning problems. It scales from low- to medium- and
high-dimensional problems, where its behaviour quali-
tatively adapts from full and stable pre-conditioning to
low-rank pre-conditioning and, eventually, scalar adap-
tation of the learning rate of sgd-type optimization.
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