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APPENDIX: Orthogonal Estimation of Wasserstein Distances

7 Proofs of results in Section 3

Proposition 3.3. Projected Wasserstein distance PWp is a metric on the space P(M)(Rd) =

{ 1
M

∑M
m=1 δxm |xm ∈ Rd for all m ∈ [M ]} ⊂P(Rd).

Proof. Symmetry and non-negativity are immediate. We thus turn our attention to proving: (i) PWp(η, µ) = 0
iff η = µ; and (ii) the triangle inequality.

For (i), first let η = 1
M

∑M
m=1 δxm and µ = 1

M

∑M
m=1 δym be distinct. Then for any bijective map σ : [M ]→ [M ],

we have
∑M
m=1 ‖xm − yσ(m)‖p2 > 0, and hence immediately we have PW(η, µ) > 0. The converse direction is

clear.

For (ii), let η = 1
M

∑M
m=1 δxm , µ = 1

M

∑M
m=1 δym , and ζ = 1

M

∑M
m=1 δzm . Fix v ∈ Sd−1, and without loss of

generality, assume that the points (xm)Mm=1, (ym)Mm=1, (zm)Mm=1 are indexed so that

〈v,x1〉 ≤ 〈v,x2〉 ≤ · · · ≤ 〈v,xM 〉 , 〈v,y1〉 ≤ 〈v,y2〉 ≤ · · · ≤ 〈v,yM 〉 , 〈v, z1〉 ≤ 〈v, z2〉 ≤ · · · ≤ 〈v, zM 〉 . (12)

Now observe that with this indexing notation, the value of the integrand in the definition of projected Wasserstein
distances PWp(η, µ), PWp(η, ζ), and PWp(µ, ζ) (Equation (8)) for this particular projection vector v are

1

M

M∑
m=1

‖xm − ym‖p2 ,
1

M

M∑
m=1

‖xm − zm‖p2 ,
1

M

M∑
m=1

‖ym − zm‖p2 , (13)

respectively. Thus, the full projected Wasserstein distances may be expressed as follows:

PWp(η, µ) =

 ∑
(σ,τ,π)∈S3

M

q(σ, τ, π)

M∑
m=1

‖xσ(m) − yτ(m)‖p2

1/p

, (14)

PWp(η, ζ) =

 ∑
(σ,τ,π)∈S3

M

q(σ, τ, π)

M∑
m=1

‖xσ(m) − zπ(m)‖p2

1/p

, (15)

PWp(µ, ζ) =

 ∑
(σ,τ,π)∈S3

M

q(σ, τ, π)

M∑
m=1

‖yτ(m) − zπ(m)‖p2

1/p

, (16)

where σ, τ, π ∈ SM are the permutations needed to re-index (xm)Mm=1, (ym)Mm=1, and (zm)Mm=1, respectively, so
that Equation (12) holds, and q(σ, τ, π) is the probability that permutations σ, τ, π are required, given that v
is drawn from Unif(Sd−1). With these alternative expressions established, the triangle inequality for PWp now
follows from the standard Minkowski inequality.

Proposition 3.4. We have the following inequalities

SWp(η, µ) ≤Wp(η, µ) ≤ PWp(η, µ) , (9)

for all η, µ ∈P(M)(Rd), for all p ≥ 1.

Proof. The inequality between sliced Wasserstein and Wasserstein distances is well-known, and a short proof is
given by e.g. Bonnotte (2013). For the inequality between Wasserstein and projected Wasserstein distances,
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write η = 1
M

∑M
m=1 δxm and µ = 1

M

∑M
m=1 δym . Now note that

PWp
p(η, µ) = Ev∼Unif(Sd−1)

[
1

M

M∑
m=1

‖xm − yσv(m)‖p2

]
(17)

≥ Ev∼Unif(Sd−1)

[
min
σ∈SM

1

M

M∑
m=1

‖xm − yσ(m)‖p2

]
(18)

= min
σ∈SM

1

M

M∑
m=1

‖xm − yσ(m)‖p2 (19)

= Wp
p(η, µ) , (20)

where SM is the symmetric group, i.e. the space of bijective mappings from [M ] to itself.

8 Additional material relating to Section 4

8.1 Orthogonal projected Wasserstein estimation

We present the full algorithm applying orthogonal projection directions to estimation of the projected Wasserstein
distance in Algorithm 4

Algorithm 4 Projected Wasserstein estimation

Require: η = 1
M

∑M
m=1 δxm , µ = 1

M

∑M
m=1 δym

1: Sample (vn)Nn=1 ∼ UnifOrt(Sd−1;N)
2: for n = 1 to N do
3: Compute projected distributions:
4: (Πvn)#η = 1

M

∑M
m=1 δ〈vn,xm〉

5: (Πvn)#µ = 1
M

∑M
m=1 δ〈vn,ym〉

6: Compute optimal matching for projected distributions:
7: σvn ← argsort((〈vn,xm〉)Mm=1, (〈vn,ym〉)Mm=1)
8: Compute contribution from coupling:
9: 1

M

∑M
m=1 ‖xm − yσvn (m)‖p

10: end for
11: return P̂W

p

p(η, µ) = 1
N

∑N
n=1

1
M

∑M
m=1 ‖xm − yσvn (m)‖p

8.2 Sampling from UnifOrt(Sd−1;N)

As described in Definition 4.1, the primary task in sampling from UnifOrt(Sd−1;N) is sampling an orthogonal
matrix from Haar measure on the orthogonal group O(d). This is a well-studied problem (see e.g. Genz
(1999)), and we briefly review a method for exact simulation. Algorithm 5 generates such matrices, and can be
understood as follows. Initially, the rows of A are independent with uniformly random directions. Normalising
and performing Gram-Schmidt orthogonalisation results in an ordered set of unit vectors that are uniformly
distributed on the Steifel manifold, and hence the matrix obtained by taking these vectors as rows is distributed
according to Haar measure on the orthogonal group O(d).

Algorithm 5 Gram-Schmidt orthogonal matrix generation

1: Sample (Aij)
d
i,j=1

i.i.d.∼ N(0, 1)
2: Normalise the norms of the rows of A to 1.
3: Perform Gram-Schmidt orthogonalisation on the rows of A to obtain Ã
4: return Ã
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8.3 Approximate sampling from UnifOrt(Sd−1;N)

The Gram-Schmidt subroutine described in Section 8.2 has computational cost O(d3). Whilst in general, this
cost would be dominated by the cost of computing a full Wasserstein distance between point clouds (costing
O(M5/2 logM) in the special case of matching, and at least O(M4) more generally), it is desirable to reduce
the cost of sampling from UnifOrt(Sd−1;N) further, to make projected/sliced Wasserstein estimation more
computationally efficient. A variety of methods for approximately sampling from UnifOrt(Sd−1;N) at a cost of
O(d2 log d) exist (see for example (Genz, 1999; Choromanski et al., 2017; Andoni et al., 2015)), reducing the cost
to approximately that of sampling independent projection directions (i.e. O(d2)). In our experiments, we use
Hadamard-Rademacher random matrices to this end; further details are given in Section 9.5.

8.4 Proofs

Theorem 4.3. The MSE of any stratified estimator is lower or equal to that of an i.i.d. estimator. A stratified
estimator for which the inequality is strict exists whenever ∃ k, l ∈ [K] such that E[f(X) |X ∈ Ak] 6= E[f(X) |X ∈
Al] and P(X ∈ Ak) > 0, P(X ∈ Al) > 0.

Proof. Recalling the notation of Definition 4.2, the MSE of any unbiased estimator is equal to its variance

V(θ̂N ) =
V(f(X))

N
+

1

N2

N∑
i=1

∑
j 6=i

E[f(Xi)f(Xj)]− {E[f(X)]}2 .

The latter term on the r.h.s. of the above equation is equal to zero for the i.i.d. estimator and thus MSE
can only be improved if it is negative. By Definition 4.2, E[f(Xi)f(Xj) |Xi ∈ Ak, Xj ∈ Al] = E[f(X) |X ∈
Ak]E[f(X) |X ∈ Al] whenever i 6= j. We can thus rewrite the cross covariance as

E[f(Xi)f(Xj)]− {E[f(X)]}2 =

K∑
k=1

K∑
l=1

(p
(i,j)
k,l − pkpl)sksl ,

where p
(i,j)
k,l := P(Xi ∈ Ak, Xj ∈ Al), pk = P(X ∈ Ak), and sk := E[f(X) |X ∈ Ak]. Defining the matrix

[P(i,j)]k,l := p
(i,j)
k,l and the vector [p]k := pk we have that the cross-covariance is non-positive for all integrable f

iff P(i,j)−pp> is negative semi-definite. Observing that the constraints on bivariate marginals in Definition 4.2
ensure that each P(i,j) is a diagonally dominant Hermitian matrix with non-positive entries on the main diagonal,
implying negative semi-definiteness.

To prove existence of a stratified estimator which strictly improves upon i.i.d., consider the matrix P(1,2) and
let k, l ∈ [K] be the indices for which E[f(X) |X ∈ Ak] 6= E[f(X) |X ∈ Al] and P(X ∈ Ak) > 0, P(X ∈ Al) > 0.

Equate P(1,2) = pp> except for setting P
(1,2)
k,k = pkpk − ε, P

(1,2)
l,l = plpl − ε, and P

(1,2)
k,l = P

(1,2)
k,l = pkpl + ε, for

some ε > 0 which preserves non-negativity of the entries of P(1,2). If X1, X2 are sampled independently given
{Ak}Kk=1, and X3, . . . , XN i.i.d. Unif(Sd−1) (if N > 2), then E[f(Xi)f(Xj)]− {E[f(X)]}2 < 0.

Proposition 4.5. Let M = 2 and d = 2. Then orthogonally coupled estimator of projected Wasserstein distance
satisfies Definition 4.2. For the sliced Wasserstein distance, neither i.i.d. nor orthogonal estimation dominates
the other in terms of MSE.

Proof. We begin by observing that for d = 2, v ∈ Sd−1 can be parametrised by single parameter φ ∈ [0, 2π) as
v = [cos(φ), sin(φ)]> ∈ R2. Denoting {σA, σB} = S2 with σA(i) = i, i = 1, 2 and σB(1) = 2, σB(2) = 1, we can

characterise the sets ẼA = {φ ∈ R |σA ∈ Σv} and ẼB = {φ ∈ R |σB ∈ Σv} as follows: a matching is optimal iff
it agrees with the ordering of 〈v,x1〉, 〈v,x2〉 and 〈v,y1〉, 〈v,y2〉; therefore we can define

H+
x = {φ ∈ R | 〈v,x1 − x2〉 ≥ 0} , H−x = {φ ∈ R | 〈v,x1 − x2〉 ≤ 0} ,

H+
y = {φ ∈ R | 〈v,y1 − y2〉 ≥ 0} , H−y = {φ ∈ R | 〈v,y1 − y2〉 ≤ 0} ,

(21)

and observe ẼA := (H+
x ∩ H+

y ) ∪ (H−x ∩ H−y ) and ẼB := (H+
x ∩ H−y ) ∪ (H−x ∩ H+

y ) As argued in the main
text, {φ ∈ R | 〈v,x1 − x2〉 = 0} ∩ [0, 2π) and {φ ∈ R | 〈v,y1 − y2〉 = 0} ∩ [0, 2π) are null events except for
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the degenerate case when x1 = x2 or y1 = y2 for which both couplings are equivalent in terms of transportation
cost, and thus we can safely treat {ẼA ∩ [0, 2π), ẼB ∩ [0, 2π)} as a disjoint partition of [0, 2π), selecting a single
coupling deterministically if both are optimal.

Observe that |〈v,xi−yj〉| = |〈−v,xi−yj〉| and thus v and −v always induce the same optimal couplings. This
means that orthogonal coupling of v1 = [cos(φ1), sin(φ1)]> and v2 = [cos(φ2), sin(φ2)]> is equivalent to setting
φ2 = φ1 ± π

2 , which means both of the orthogonal vectors induce the same set of optimal couplings. Therefore

P((φ1, φ2) ∈ Ẽk × Ẽl ∩ [0, 2π)2) = 1
2P(φ1 ∈ Ẽk ∩ {Ẽl + π

2 } ∩ [0, 2π)) + 1
2P(φ1 ∈ Ẽk ∩ {Ẽl − π

2 } ∩ [0, 2π))

= P(φ1 ∈ Ẽk ∩ {Ẽl + π
2 } ∩ [0, 2π)) ,

as Ẽk∩{Ẽl+ π
2 } = Ẽk∩{Ẽl− π

2 }, for any k, l ∈ {A,B}. Because v ∼ Unif(S1) is equivalent to φ ∼ Unif([0, 2π)),

P(φ ∈ ẼA ∩ {ẼA + π
2 } ∩ [0, 2π)) = 2[(p− 1

2 ) ∨ 0] ,

P(φ ∈ ẼB ∩ {ẼB + π
2 } ∩ [0, 2π)) = 2[(1

2 − p) ∨ 0] ,

P(φ ∈ ẼA ∩ {ẼB + π
2 } ∩ [0, 2π)) = P(φ ∈ ẼB ∩ {ẼA + π

2 } ∩ [0, 2π)) = 1
2 − |

1
2 − p| ,

with p := P(φ ∈ ẼA). The above equations combined with the definition of orthogonal sampling and the piecewise
constant character of f(v) in the case of the orthogonal estimation of the projected Wasserstein distance implies
that all conditions of Definition 4.2 are satisfied, proving the first part of our proposition.

Turning to estimation of the sliced Wasserstein distance, we will reduce the computation of the MSE for both
the i.i.d. and the orthogonal case to analytically solvable integrals, and use those to find examples of datasets
for which either i.i.d. or orthogonal estimation is superior to the other. First, the expectation

E[Wp
p((Πv)#η, (Πv)#µ)] =

1

2

∑
k∈{A,B}

P(v ∈ Ek)E[|〈v,x1 − yσk(1)〉|p + |〈v,x2 − yσk(2)〉|p |v ∈ Ek] ,

can be solved by using the harmonic addition identity 〈v, z〉 = ‖z‖ cos(φ − ρ) with ρ the angle between z and
the x-axis [1, 0]> ∈ R2, for v = [cos(φ), sin(φ)]> and any z ∈ R2. Evaluation of the above expectation then
reduces to computation of a weighted sum of integrals of the form

∫
Ẽk∩[0,2π)

|cos(φ− ρ)|pdφ which can be solved

using basic identities. The approach is analogous for the second moment, with the only difference being that
the integrals will be of the form

∫
Ẽk∩[0,2π)

|cos(φ − ρ)|p|cos(φ − γ)|pdφ, where ρ and γ are the relevant angles

between xi − yj and the x-axis. Finally, the expression

E[Wp
p((Πv1)#η, (Πv1)#µ)Wp

p((Πv2)#η, (Πv2)#µ)]

=
1

22

∑
k,l∈{A,B}

2∑
m,n

P((v1v2) ∈ Ek × El)E[|〈v,xm − yσk(m)〉|p|〈v,xn − yσl(n)〉|p | (v1v2) ∈ Ek × El] ,

can be computed in fashion similar to that of the second moment, with the integrals now being∫
Ẽk∩{Ẽl+

π
2 }∩[0,2π)

|cos(φ− ρ)|p|cos(φ− γ)|pdφ.

Putting all these together, an example of a dataset for which i.i.d. estimation of the 1-sliced Wasserstein
distance strictly dominates orthogonal is x1 = [1.23,−2.17]>, x2 = [−2,−0.65]>, y1 = [−0.14,−0.93]>,
y2 = [−0.82, 0.43]>, where the MSEs of the i.i.d. and orthogonal estimators for N = 2 are respectively ≈ 0.011900
and ≈ 0.017085, and the distance itself equals ≈ 1.082029. A dataset for which the orthogonal coupling dom-
inates is x1 = [1, 1]>, x2 = [0, 0]>, y1 = [0,− 1

2 ]>, y2 = [1,−1]>, where the MSEs of the i.i.d. and orthogonal
estimators for N = 2 are respectively ≈ 0.073996 and ≈ 0.006047, and the distance itself equals ≈ 0.795774.
Neither i.i.d. nor orthogonal estimation thus strictly dominates the other in terms of MSE across all p-sliced
Wasserstein distances.

9 Appendix on Experiments

9.1 Generative Modelling: Auto-encoders

We consider sliced Wasserstein Auto-encoders (AE) (Kolouri et al., 2018) on MNIST dataset. MNIST dataset
contains 50000 training gray images each with dimension 28× 28. To facilitate HD projection, we augment the
images to 32× 32 by padding zeros. Hence in our case the observations have dimension x ∈ R32×32.
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Figure 5: Training AEs using two sets of distance measure (left: sliced Wasserstein distance, right: projected
Wasserstein distance): We show hidden codes pθ(z) generated by the encoder after training. Though both
distributions generally match the prior distribution p(z), the distribution trained with projected Wasserstein
distance tends to collapse to the center.

Implementation Details. The AEs have the same architecture as introduced in Kolouri et al. (2018). The
hidden code z has dimension h = 128. The prior distribution p(z) is chosen to be a uniform distribution inside
[−1, 1]h. For each iteration, we take a full sweep over the dataset in a random order. All implementations are in
Tensorflow (Abadi et al., 2016) and Keras (Chollet et al., 2015), we also heavily refer to the code of the original
authors of (Kolouri et al., 2018) 1.

9.2 Generative Modelling: sliced Wasserstein vs. projected Wasserstein

Background. Here we present the comparison between training AE using sliced Wasserstein distance vs.
projected Wasserstein distance. Recall that the training objective of the AE is in general

Lae(θ, φ)=Ex∼P (X)[‖gφ(fθ(x))− x‖]+D(pθ(z), p(z)),

where D(·, ·) can be some proper discrepancy measure between two distributions. In practice, D(·, ·) can be
KL-divergence (Kingma and Welling, 2013), sliced Wasserstein distance (Kolouri et al., 2018) or projected
Wasserstein distance (this work). All the aforementioned alternates allow for fast optimization using gradient
descent on the discrepancy measures.

Implementation Details. The AEs have the same architecture as introduced in Kolouri et al. (2018). The
hidden code z has dimension h = 2. The prior distribution p(z) is chosen to be a uniform distribution on the
interior of the 2D circle with radius 1. The other implementation details are the same as above.

Results. We compare the posterior hidden codes z ∼ pθ(z) generated by the trained encoders under sliced
Wasserstein distance (left) vs. projected Wasserstein distance (right) in Figure 5. Though both hidden code
distributions largely match that of the prior distribution p(z), the hidden codes trained by sliced Wasserstein
distance tend to collapse to the center (the distribution has a slightly smaller effective support). This observation
is compatible with our observations in the generator network experiments presented in the next section.

1https://github.com/skolouri/swae

https://github.com/skolouri/swae
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9.3 Generative Modelling: Generator Networks

Background. A generator network Gθ takes as input a noise sample ε ∼ ρ0(·) from an elementary distribution
ρ0 (e.g. Gaussian) and output a sample in the target domain X (e.g. images), i.e. X = Gθ(ε) ∈ X . Let Pθ(X)
be the implicit distribution induced by the network Gθ and noise source ρ0 over samples X. We also have a
target distribution P̂ (X) (usually an empirical distribution constructed using samples) that we aim to model.
The objective of generative modeling is to find parameters θ such that Pθ(X) ≈ P̂ (X) by minimizing certain
discrepancies

D(Pθ(X), P̂ (X)), (22)

for some discrepancy measure D(·, ·). When D(·, ·) is taken to be the Jenson-Shannon divergence, we recover
the objective of Generative Adversarial Networks (GAN) (Goodfellow et al., 2014). Recently, Wu et al. (2017);
Deshpande et al. (2018) propose to take D(·, ·) to be the sliced Wasserstein distance, so as to bypass the potential
instability due to min-max optimization formulation with GAN. Similarly, D(·, ·) can be projected Wasserstein
distance. Here, we show the empirical differences of these two generative models (sliced Wasserstein generative
network vs. projected Wasserstein generative network) with an illustrating example.

Setup. We take X = R2 and P̂ (X) to be the empirical distribution formed by samples drawn from a mixture
of Gaussians. The mixture contains 16 components with centers evenly spaced on the 2-D grid with horizon-
tal/vertical distance between neighboring centers to be 0.3. Each Gaussian is factorized wit diagonal variance
0.12. The samples are illustrated as the red points in Figure 6 below.

Implementation Details. The generators are parameterized as neural networks which take 2−dimensional
noise (drawn from a standard factorized Gaussian) as input and output samples in X = R2. The networks
have two hidden layers each with 256 units, with relu nonlinear function activation in between. The final
output layer has tanh nonlinear activation. We train all models with Adam Optimizer and learning rate 10−4

until convergence. All implementations are in Tensorflow (Abadi et al., 2016), we also heavily refer to a set of
wonderful open source projects 2 3.

Results. The results for generative modelling are in Figure 6 (left for sliced Wasserstein distance, right for
project Wasserstein distance). Red samples are those generated from the target distribution. Blue samples are
those generated from the generator network after training until convergence. We observe that samples generated
from these two models exhibit distinct features: under sliced Wasserstein distance, the samples tend to be more
widespread and in this case capture the modes on the perimeter of the Gaussian mixtures. On the other hand,
under projected Wasserstein distance, the samples tend to collapse to the center of the target distribution and
only capture modes in the middle.

9.4 Reinforcement Learning

Background. Vanilla policy gradient updates θnew ← θold + α∇θoldJ(πθold) suffer from occasionally large
step sizes, which lead the policy to collect bad samples from which one could never recover (Schulman et al.,
2015). Trust region policy optimization (TRPO) (Schulman et al., 2015) propose to constrain the update using
KL divergence KL[πθold ||πθnew ] ≤ ε for some ε > 0, which can be shown to optimize a lower bound of the
original objective and significantly stabilize learning in practice. Recently, Zhang et al. (2018) interpret policy
optimization as discretizing the differential equation of the Wasserstein gradient flows, and propose to construct
trust regions using Wasserstein distance. In general, trust region constraints are enforced by D(πθold , πθnew) ≤ ε
for some ε, where Schulman et al. (2015) use KL divergence while Zhang et al. (2018) use Wasserstein distance.

Instead of constructing the constraints explicitly, one can adopt a penalty formulation of the trust region and
apply (Schulman et al., 2017; Zhang et al., 2018)

θnew ← θold + α∇θold(J(πθold)− λD(πθold , πθnew)),

where λ > 0 is a trade-off constant. The above updates encourage the new policy πθnew to achieve higher rewards
but also stay close to the old policy for stable updates.

2https://github.com/kvfrans/generative-adversial
3https://github.com/ishansd/swg

https://github.com/kvfrans/generative-adversial
https://github.com/ishansd/swg
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Figure 6: Training generators using two sets of distance measure (left: sliced Wasserstein distance, right: pro-
jected Wasserstein distance): Red samples are form the target distributions, which are drawn from a mixture of
Gaussians with 16 mixtures. Blue samples are those generated from the generator network after convergence.
Under sliced Wasserstein distance the samples tend to spread out and capture modes at the perimeter of the
mixtures, while under projected Wasserstein distance the samples tend to cluster in the center and capture modes
in the middle.

Due to the close connections between various Wasserstein distance measures, we propose to set D(·, ·) as either
sliced Wasserstein distance or projected Wasserstein distance. Since projected Wasserstein distance corrects for
the implicit ”bias” in the sliced Wasserstein distance, we expect the corresponding trust region to be more robust
and can better stabilize on-policy updates.

Implementation Details. The policy πθ is parameterized as feed-forward neural networks with two hidden
layers, each with h = 64 units with tanh non-linear activations. The value function baseline is a neural network
with similar architecture. To implement vanilla policy optimization, we use PPO with very large clipping rate
ε = 10.0, which is equivalent to no clipping. We set the learning rate to be α = 3 ·10−5 and the trade-off constant
to be λ = 0.001 for the trust region. All implementations are based on OpenAI baseline (Dhariwal et al., 2017)
and benchmark tasks are from OpenAI gym (Brockman et al., 2016).

9.5 Hadamard-Rademacher random matrices

Here, we give brief details around Hadamard-Rademacher random matrices, which are studied in Section 5.2 as
an approximate alternative to using random orthogonal matrices drawn from UnifOrt(Sd−1; d). These random
matrices have been used as computationally cheap alternatives to exact sampling from UnifOrt(Sd−1; d) in a
variety of applications recently; see e.g. (Choromanski et al., 2017; Andoni et al., 2015). A 1-block Hadamard-
Rademacher matrix is simulated by taking H to be a normalised Hadamard matrix in Rd×d, and D to be
a random diagonal matrix, with independent Rademacher (Unif({±1})) random variables along the diagonal.
The Hadamard-Rademacher matrix is then given by the product HD. Multi-block Hadamard-Rademacher
random matrices are given by taking the product of several independent 1-block Hadamard-Rademacher random
matrices.


