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A Appendix: Proofs

A.1 Uniformity of rank

Throughout this appendix, let T be a non-empty finite
or countably infinite set, let ≺ be a total order on T (of
any order type), and let p and q each be a probability
distribution on T . For n ∈ N, let [n] denote the set
{0, 1, 2, . . . , n− 1}.
Given a positive integer m, define the following random
variables:

X0 ∼ q (13)

U0 ∼ Uniform(0, 1) (14)

X1, X2, . . . , Xm ∼iid p (15)

U1, U2, . . . , Um ∼iid Uniform(0, 1) (16)

R =
∑m
j=1 I [Xj ≺ X0] + I [Xj = X0, Uj < U0] . (17)

Our first main result is the following, which establishes
necessary and sufficient conditions for uniformity of
the rank statistic.

Theorem A.1 (Theorem 3.1 in the main text). We
have p = q if and only if for all m≥ 1, the rank statistic
R is uniformly distributed on [m+ 1] := {0, 1, . . . ,m}.

Before proving Theorem A.1, we state and prove several
lemmas. We begin by showing that an i.i.d. sequence
yields a uniform rank distribution.

Lemma A.2. Let T0, T1, . . . , Tm be an i.i.d. sequence
of random variables. If Pr {Ti = Tj} = 0 for all distinct
i and j, then the rank statistics Si :=

∑m
j=0 I[Tj ≺ Ti]

for 0 ≤ i ≤ m are each uniformly distributed on [m+1].

Proof. Since T0, T1, . . . , Tm is i.i.d., it is a finitely
exchangeable sequence, and so the rank statistics
S0, . . . , Sm are identically (but not independently) dis-
tributed.

Fix an arbitrary k ∈ [m + 1]. Then Pr {Si = k} =
Pr {Sj = k} for all i, j ∈ [m + 1]. By hypothesis,
Pr {Ti = Tj} = 0 for distinct i and j. Therefore
the rank statistics are almost surely distinct, and the
events {Si = j} (for 0 ≤ i ≤ m) are mutually exclu-
sive and exhaustive. Since these events partition the
outcome space, their probabilities sum to 1, and so
Pr {Si = k} = 1/(m+ 1) for all i ∈ [m+ 1].

Because k was arbitrary, Si is uniformly distributed on
[m+ 1] for all i ∈ [m+ 1].

We will also use the following result about convergence
of discrete uniform variables to a continuous uniform
random variable.

Lemma A.3. Let (Vm)m≥1 be a sequence of discrete
random variables such that Vm is uniformly distributed
on {0, 1/m, 2/m, . . . , 1}, and let U be a continuous ran-
dom variable uniformly distributed on the interval [0, 1].
Then (Vm)m≥1 converges in distribution to U , i.e.,

lim
m→∞

Pr {Vm < u} = Pr {U < u} = u. (18)

for all u ∈ [0, 1].

Furthermore, the convergence (18) is uniform in u.

Proof. Let ε > 0. The distribution function Fm of Vm
is given by

Fm(u) =



1/(m+ 1) u ∈ [0, 1/m)

2/(m+ 1) u ∈ [1/m, 2/m)

· · ·
(a+ 1)/(m+ 1) u ∈ [a/m, (a+ 1)/m)

· · ·
m/(m+ 1) u ∈ [(m− 1)/m, 1)

1 u = 1.

Observe that for 0 ≤ a < m, the value Fm(u) lies
in the interval [a/m, (a + 1)/m) since we have that
(a/m) < (a+ 1)/(m+ 1) < (a+ 1)/m. Since u is also
in this interval, |Fm(u)− u| ≤ (a + 1)/m − a/m =
1/m < ε whenever m > 1/ε, for all u.

The following intermediate value lemma for step func-
tions on the rationals is straightforward. It makes use
of sums defined over subsets of the rationals, which are
well-defined, as we discuss in the next remark.

Lemma A.4. Let p : (Q∩ [0, 1])→ [0, 1] be a function
satisfying p(0) = 0 and

∑
x∈Q∩[0,1] p(x) = 1. Then for

each δ ∈ (0, 1), there is some w ∈ Q ∩ [0, 1] such that∑
x∈Q∩(0,w)

p(x) ≤ δ ≤
∑

x∈Q∩(0,w]

p(x).

Remark A.5. The infinite sums in Lemma A.4 taken
over a subset of the rationals can be formally de-
fined as follows: Consider an arbitrary enumeration
{q1, q2, . . . , qn, . . .} of Q∩ [0, 1], and define the summa-
tion over the integer-valued index n ≥ 1. Since the
series consists of positive terms, it converges absolutely,
and so all rearrangements of the enumeration converge
to the same sum (see, e.g., [27, Theorem 3.55]).

One can show that the Cauchy criterion holds in this
setting. Namely, suppose that a sum

∑
a<x<c p(x) of

non-negative terms converges. Then for all ε > 0 there
is some rational b ∈ (a, c) such that

∑
a<x≤b p(x) < ε.

We now prove both directions of Theorem A.1.
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Proof of Theorem A.1. Because T is countable, by a
standard back-and-forth argument the total order
(T ,≺) is isomorphic to (B,<) for some subset B ⊆
Q∩ (0, 1). Without loss of generality, we may therefore
take T to be Q∩[0, 1] and assume that p(0) = p(1) = 0.

Consider the unit square [0, 1]2 equipped with the dic-
tionary order Cd. This is a total order with the least
upper bound property. For each i ∈ [m + 1], define
Ti := (Xi, Ui), which takes values in [0, 1]2, and observe
that the rank R in Eq. (6) of Theorem A.1 is equivalent
to the rank

∑m
i=0 I[Ti Cd T0] of T0 taken according to

the dictionary order.

(Necessity) Suppose p = q. Then T0, . . . , Tm
are independent and identically distributed. Since
U0, . . . , Um are continuous random variables, we have
Pr {Ti = Tj} = 0 for all i 6= j. Apply Lemma A.2.

(Sufficiency) Suppose that for all m > 0, we
have that the rank R is uniformly distributed on
{0, 1, 2, . . . ,m}. We begin the proof by first construct-
ing a distribution function Fp on the unit square and
then establishing several of its properties. First let
p̃ : [0, 1]→ [0, 1] be the “left-closed right-open” cumu-
lative distribution function of p, defined by

p̃(x) :=
∑

y∈Q∩[0,x)

p(y)

for x ∈ [0, 1]. Define p′ to be the probability measure
on [0, 1] that is equal to p on subsets of Q ∩ [0, 1] and
is null elsewhere, and define the distribution function
Fp : [0, 1]2 → [0, 1] on S by

Fp(x, u) := p̃(x) + up′(x)

for (x, u) ∈ [0, 1]2. To establish that Fp is a valid
distribution function, we show that its range is [0, 1]; it
is monotonically non-decreasing in each of its variables;
and it is right-continuous in each of its variables.

It is immediate that Fp(0, 0) = 0 and Fp(1, 1) = 1.
Furthermore, To establish that Fp is monotonically
non-decreasing, put x < y and u < v and observe that

Fp(x, u) = p̃(x) + up′(x)

≤ p̃(x) + p′(x)

≤∑z∈Q∩[0,y) p′(z)

= p̃(y)

≤ Fp(y, u)

and

Fp(x, u) = p̃(x) + up′(x)

≤ p̃(x) + vp′(x)

= Fp(x, v).

We now establish right-continuity. For fixed x, Fp(x, u)
is a linear function of u and so continuity is imme-
diate. For fixed u, we have shown that Fp(x, u) is
non-decreasing so it is sufficient to show that for any x
and for any ε > 0 there exists x′ > x such that

ε > F (x′, u)− F (x, u)

= p̃(x′) + up′(x′)− p̃(x)− up(x)

= p̃(x′) + up′(x′)− p̃(x)− up(x)

=
∑

y∈Q∩[x,x′]

p(y),

which is immediate from the Cauchy criterion.

Finally, we note that Lemma A.4 and the continuity of
Fp in u together imply that Fp obtains all intermediate
values, i.e., for any δ ∈ [0, 1] there is some (x, u) such
that F (x, u) = δ.

Next define the inverse F−1
p : [0, 1]→ [0, 1]2 by

F−1
p (s) := inf {(x, u) | Fp(x, u) = s} (19)

for s ∈ [0, 1], where the infimum is taken with the
respect to the dictionary order Cd. The set in Eq (19)
is non-empty since Fp obtains all values in [0, 1]. More-
over, F−1

p (s) ∈ [0, 1]2 since Cd has the least upper
bound property. (This “generalized” inverse is used
since Fp is one-to-one only under the stronger assump-
tion that p(x) > 0 for all x ∈ Q ∩ (0, 1).) Analogously
define Fq in terms of q.

Now define the rank function

r(a0, {a1, . . . , am}) :=

m∑
i=0

I[ai < a0]

and note that R ≡ r(T0, {T1, . . . , Tm}). By the hypoth-
esis, r(T0, {T1, . . . , Tm})/m is uniformly distributed
on {0, 1/m, 2/m, . . . , 1} for all m > 0. Applying
Lemma A.3 gives

lim
m→∞

Pr

{
1

m
r̃(T0, {T1, . . . , Tm}) < s

}
= Pr {U0 < s}
= s. (20)

for s ∈ [0, 1].

For any t ∈ [0, 1] and m ≥ 1, the random variable
F̂mp (t) := r̃(t, {T1, . . . , Tm})/m is the empirical distri-
bution of Fp. Therefore, by the Glivenko–Cantelli
theorem for empirical distribution functions on k-
dimensional Euclidean space [9, Corollary of Theo-
rem 4], the sequence of random variables (F̂mp (t))m≥1

converges a.s. to the real number Fp(t) uniformly in t,

Hence the sequence (F̂mp (T0))m≥1 converges a.s. to the
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random variable F̂p(T0), so that for any s ∈ [0, 1],

lim
m→∞

Pr

{
1

m
r̃(T0, {T1, . . . , Tm}) < s

}
= lim

m→∞
Pr
{
F̂mp (T0) < s

}
(21)

= Pr {Fp(T0) < s} (22)

= Pr
{
T0 Cd F

−1
p (s)

}
(23)

= Fq(F−1
p (s)). (24)

The interchange of the limit and the probability in
Eq. (22) follows from the bounded convergence theorem,
since F̂mp (T0)→ Fp(T0) a.s. and for all m ≥ 1 we have

|F̂mp (T0)| ≤ 1 a.s.

Combining Eq. (20) and Eq. (24), we see that

Fq(F−1
p (s)) = s =⇒ F−1

p (s) = F−1
q (s),

for s ∈ [0, 1]. Since 0 ≤ Fp(x, u) ≤ 1, for each (x, u) ∈
[0, 1]2 we have

F−1
q (Fp(x, u)) = F−1

p (Fp(x, u))

= F−1
q (Fq(x, u))

= (x, u).

It follows that Fp(x, u) = Fq(x, u) for all (x, u) ∈ [0, 1]2.
Fixing u = 0, we obtain

p̃(x) = Fp(x, 0) = Fq(x, 0) = q̃(x) (25)

for x ∈ [0, 1].

Assume, towards a contradiction, that p 6= q. Let a
be any rational such that p(a) 6= q(a), and suppose
without loss of generality that q(a) < p(a). By the
Cauchy criterion (Remark A.4), there exists some b > a
such that ∑

a<x<b

q(x) < p(a)− q(a).

Then we have

q̃(b) = q̃(a) + q(a) +
∑

x∈Q∩(a,b)

q(x)

= p̃(a) + q(a) +
∑

x∈Q∩(a,b)

q(x)

< p̃(a) + q(a) + (p(a)− q(a))

= p̃(a) + p(a)

≤ p̃(b),

and so p̃ 6= q̃, contradicting Eq. (25).

The following corollary is an immediate consequence.

Corollary A.6 (Corollary 3.3 in the main text). If
p 6= q, then there is some m such that R is not uni-
formly distributed on [m+ 1].

The next theorem strengthens Corollary A.6 by showing
that R is non-uniform for all but finitely many m.

Theorem A.7 (Theorem 3.4 in the main text). If
p 6= q, then there is some M ≥ 1 such that for all
m ≥ M , the rank R is not uniformly distributed on
[m+ 1].

Before proving Theorem A.7, we show the following
lemma.

Lemma A.8. Suppose Z1, . . . , Zm+1 is a finitely ex-
changeable sequence of Bernoulli random variables. If

Sm :=

m∑
i=1

Zi

is not uniformly distributed on [m+ 1], then

Sm+1 :=

m+1∑
i=1

Zi

is not uniformly distributed on [m+ 2].

Proof. By finite exchangeability, there is some r ∈ [0, 1]
such that the distribution of every Zi is Bernoulli(r).
There are two cases.

Case 1: r 6= 1/2. For any ` ≥ 1, we have

E [S`] = E

[∑̀
i=1

Zi

]
=
∑̀
i=1

E [Zi] = `r 6= r/2 = E [U`] ,

and so S` is not uniformly distributed on [` + 1]. In
particular, this holds for ` equal to either m or m+ 1,
and so both the hypothesis and conclusion are true.

Case 2: r = 1/2. We prove the contrapositive. Sup-
pose that Sm+1 is uniformly distributed on [m+1].

Assume Sm+1 is uniform and fix k ∈ [m+ 1]. By total
probability, we have

Pr {Sm = k} = Pr {Sm = k and Zm+1 = 0}
+ Pr {Sm = k and Zm+1 = 1} . (26)

We consider the two events on the right-hand side of
Eq. (26) separately.

First, the event {Sm = k} ∩ {Zm+1 = 0} is the union
over all

(
m
k

)
assignments of (Z1, . . . , Zm) that have

exactly k ones and Zm+1 = 0. All such assignments
are disjoint events. Define the event

A := {Z1 = · · · = Zk = 1

and Zk+1 = · · · = Zm = Zm+1 = 0}.
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By finite exchangeability, each assignment has proba-
bility Pr {A}, and so

Pr {Sm = k and Zm+1 = 0} =

(
m

k

)
Pr {A} . (27)

Now, observe that the event {Sm+1 = k} is the union
of all

(
m+1
k

)
assignments of (Z1, . . . , Zm+1) that have

exactly k ones. All the assignments are disjoint events
and each has probability Pr {A}, and so

Pr {Sm+1 = k} =

(
m+ 1

k

)
Pr {A}

=
1

m+ 2
.

(28)

Second, the event {Sm = k} ∩ {Zm+1 = 1} is the union
over all

(
m
k

)
assignments of (Z1, . . . , Zm) that have

exactly k ones and also Zm+1 = 1. All such assignments
are disjoint events. Define the event

B := {Z1 = · · · = Zk = Zm+1 = 1

and Zk+1 = · · · = Zm = 0}.

Again by finite exchangeability, each assignment has
probability Pr {B}, and so

Pr {Sm = k and Zm+1 = 1} =

(
m

k

)
Pr {B} . (29)

Likewise, observe that the event {Sm+1 = k + 1} is the
union of all

(
m+1
k+1

)
assignments of (Z1, . . . , Zm+1) that

have exactly k+1 ones. All the assignments are disjoint
events and each has probability Pr {B}, and so

Pr {Sm+1 = k + 1} =

(
m+ 1

k + 1

)
Pr {B}

=
1

m+ 2
.

(30)

We now take Eq. (26), divide by 1/(m+2), and replace
terms using Eqs. (27), (28), (29), and (30):

Pr {Sm = k}
1/(m+ 2)

=
Pr {Sm = k and Zm+1 = 0}

1/(m+ 2)

+
Pr {Sm = k and Zm+1 = 1}

1/(m+ 2)

=

(
m
k

)
Pr {A}(

m+1
k

)
Pr {A}

+

(
m
k

)
Pr {B}(

m+1
k+1

)
Pr {B}

=
m!

k!(m− k)!

k!(m+ 1− k)!

(m+ 1)!

+
m!

k!(m− k)!

(k + 1)!(m+ 1− (k + 1))!

(m+ 1)!

=
m+ 1− k
m+ 1

+
k + 1

m+ 1

=
m+ 2

m+ 1

=
1/(m+ 1)

1/(m+ 2)
,

and so we conclude that Pr {Sm = k} = 1/(m+1).

We are now ready to prove Theorem A.7.

Proof of Theorem A.7. Suppose p 6= q. By Corol-
lary A.6, there is some M ≥ 1 such that the rank
statistic R =

∑M
i=1 I [Ti ≺ T0] for m = M is non-

uniform over [M + 1]. Observe that the rank statistic

for m = M + 1 is given by
∑M+1
i=1 I [Ti ≺ T0].

Now, each indicator Zi := I [Ti ≺ T0] is a Bernoulli
random variable, and they are identically distributed
since (T1, . . . , TM+1) is an i.i.d. sequence. Fur-
thermore the sequence (Z1, . . . , ZM+1) is finitely ex-
changeable since the Zi are conditionally indepen-
dent given T0. Then the sequence of indicators
(I [T1 ≺ T0] , I [T2 ≺ T0] , . . . , I [TM+1 ≺ T0]) satisfy the
hypothesis of Lemma A.8, and so the rank statistic for
M + 1 is non-uniform. By induction, the rank statistic
is non-uniform for all m ≥M .

In fact, unless p and q satisfy an adversarial symmetry
relationship under the selected ordering ≺, the rank is
non-uniform for any choice of m ≥ 1. Let C denote
the lexicographic order on T × [0, 1] induced by (T ,≺)
and ([0, 1], <).

Corollary A.9 (Corollary 3.5 in the main text). Sup-
pose Pr {(X,U1) C (Y, U0)} 6= 1/2 for Y ∼ q, X ∼ p,
and U0, U1 ∼iid Uniform(0, 1). Then for all m ≥ 1, the
rank R is not uniformly distributed on [m+ 1].

Proof. If Pr {(X,U1) C (Y, U0)} 6= 1/2 then R is non-
uniform for m = 1. The conclusion follows by Theo-
rem A.7.

A.2 An ordering that witnesses p 6= q for
m = 1

We now describe an ordering ≺ for which, when m = 1,
we have Pr {R = 0} > 1/2.

Define

A := {x ∈ T | q(x) > p(x)}

to be the set of all elements of T that have a greater
probability according to q than according to p, and
let Ac denote its complement. Let hp,q be the signed
measure given by the difference hp,q(x) := q(x)−p(x)
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between q and p; for the rest of this subsection, we
denote this simply by h. Let ≺ be any total order on
T satisfying

• if h(x) > h(x′) then x ≺ x′; and

• if h(x) < h(x′) then x � x′.

The linear ordering ≺ may be defined arbitrarily for
all pairs x and x′ which satisfy h(x) = h(x′). As
an immediate consequence, x ≺ x′ whenever x ∈ A
and x′ ∈ Ac. Intuitively, the ordering is designed
to ensure that elements x ∈ A are “small”, and are
ordered by decreasing value of q(x)− p(x) (with ties
broken arbitrarily); elements x ∈ Ac are “large” and
are ordered by increasing value of p(x)− q(x) (again,
with ties broken arbitrarily). The smallest element in
T maximizes q(x)−p(x) and the largest element in T
maximizes p(x)− q(x).

We first establish some easy lemmas.

Lemma A.10. A = ∅ if and only if p = q.

Proof. Immediate.

Lemma A.11.∑
x∈A

[q(x)− p(x)] =
∑
x∈Ac

[p(x)− q(x)].

Proof. We have∑
x∈A

[q(x)− p(x)]−
∑
x∈Ac

[p(x)− q(x)]

=
∑
x∈T

q(x)−
∑
x∈T

p(x) = 0,

as desired.

Given a probability distribution r, define its cumulative
distribution function r̃ by r̃(x) :=

∑
y≺x r(y).

Lemma A.12. q̃(x) > p̃(x) for all x ∈ T .

Proof. Let Tx := {y ∈ T | y ≺ x}. If x ∈ A then Tx ⊆
A, and so

q̃(x)− p̃(x) =
∑
y∈Tx

[q(y)− p(y)] > 0,

since all terms in the sum are positive.

Otherwise, y ∈ A for all y ≺ x, and so A ⊆ Tx. Let
Acx := {y ∈ Ac | y ≺ x}. Then

q̃(x)− p̃(x)

=
∑
y≺x

[q(y)− p(y)]

=
∑
y∈A

[q(y)− p(y)] +
∑
y∈Acx

[q(y)− p(y)]

=
∑
y∈Ax

[q(y)− p(y)]−
∑
y∈Acx

[p(y)− q(y)]

>
∑
y∈Ax

[q(y)− p(y)]−
∑
y∈Ac

[p(y)− q(y)]

= 0,

establishing the lemma.

We now analyze Pr {R = 0} in the case where m = 1.
In this case, we may drop some subscripts and write
Y in place of X1, so that our setting reduces to the
following random variables:

Xp ∼ p

Yq ∼ q

Rp,q | Xp, Yq ∼


0 if Xp � Yq,
1 if Xp ≺ Yq,
Bernoulli(1/2) if Xp = Yq.

(We have indicated p and q in the subscripts, for use
in the next subsection.)

In other words, the procedure samples Xp ∼ p and
Yq ∼ q independently. Given these values, it then sets
Rp,q to be 0 if Xp � Yq, to be 1 if Xp ≺ Yq, and the
outcome of an independent fair coin flip otherwise.

For the rest of this subsection, we will refer to these
random variables simply as X, Y , and R, though later
on we will need them for several choices of distributions
p and q (and accordingly will retain the subscripts).

We now prove the following theorem.

Theorem A.13 (Theorem 3.6 in the main text). If
p 6= q, then for m = 1 and the ordering ≺ defined
above, we have Pr {R = 0} > 1/2.

Proof. From total probability and independence of X
and Y , we have

Pr {R = 0}
=
∑
x,y∈T

Pr {R=0 |X=x, Y=y}Pr {Y = y}Pr {X = x}

=
∑
x,y∈T

Pr {R=0 |X=x, Y=y}q(y)p(x)

=
∑
x∈T

Pr {R=0 |X=x, Y=x}q(x)p(x)

+
∑

y≺x∈T
Pr {R=0 |X=x, Y=y}q(y)p(x)
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+
∑

x≺y∈T
Pr {R=0 |X=x, Y=y}q(y)p(x)

=
1

2

∑
x∈T

q(x)p(x) + 1
∑

y≺x∈T
q(y)p(x)

+ 0
∑

x≺y∈T
q(y)p(x)

=
1

2

∑
x∈T

p(x)q(x) +
∑
x∈T

q̃(x)p(x).

An identical argument establishes that

Pr {R=1} =
1

2

∑
x∈T

p(x)q(x) +
∑
x∈T

p̃(x)q(x).

Since Pr {R=0}+ Pr {R = 1} = 1, it suffices to estab-
lish that Pr {R = 0} > Pr {R = 1}. We have

Pr {R = 0} − Pr {R = 1}
=
∑
x∈T

q̃(x)p(x)−
∑
x∈T

p̃(x)q(x)

>
∑
x∈T

p̃(x)p(x)−
∑
x∈T

p̃(x)q(x)

=
∑
x∈T

p̃(x)[p(x)− q(x)]

=
∑
x∈Ac

p̃(x)[p(x)− q(x)]−
∑
x∈A

p̃(x)[q(x)− p(x)]

≥
∑
x∈Ac

(
max
y∈A

p̃(y)
)
[p(x)− q(x)]

−
∑
x∈A

p̃(x)[q(x)− p(x)]

=
∑
x∈A

(
max
y∈A

p̃(y)
)
[q(x)− p(x)]

−
∑
x∈A

p̃(x)[q(x)− p(x)]

=
∑
x∈A

(
max
y∈A

p̃(y)− p̃(x)
)
[q(x)− p(x)]

> 0.

The first inequality follows from Lemma A.12; the
second inequality follows from monotonicity of p̃; the
second-to-last equality follows from Lemma A.11; and
the final inequality follows from the fact that all terms
in the sum are positive.

A.3 A tighter bound in terms of L∞(p,q)

We have just exhibited an ordering such that when
p 6= q and m = 1, we have Pr {R = 0} > 1/2. We are
now interested in obtaining a tighter lower bound on
this probability in terms of the L∞ distance between
p and q.

In this subsection and the following one, we assume
that T is finite. We first note the following immediate
lemma.

Lemma A.14. Let B,C ⊆ T . For all p,q and all
δ > 0 there is an ε > 0 such that for all distributions
p′ on T with supx∈T |p(x)− p′(x)| < ε, we have∣∣Pr(Rp,q = 0 |Xp ∈ B, Yq ∈ C)

− Pr(Rp′,q = 0 |Xp′ ∈ B, Yq ∈ C)
∣∣ < δ.

Definition A.15. We say that p is ε-discrete (with
respect to q) if for all a, b ∈ T we have∣∣hp,q(a)− hp,q(b)

∣∣ ≥ ε.
From Lemma A.14 we immediately obtain the follow-
ing.

Lemma A.16. For all p,q and all δ > 0 there is an
ε > 0 and an ε-discrete distribution pε on T such that
for all B,C ⊆ T ,∣∣Pr(Rp,q = 0 |Xp ∈ B, Yq ∈ C)

− Pr(Rpε,q = 0 |Xpε ∈ B, Yq ∈ C)
∣∣ < δ.

The next lemma will be crucial for proving our bound.

Lemma A.17. Let p0 and p1 be probability measures
on T , and let C be a total order on T such that if
hp0,q(x) > hp0,q(x′) then x C x′ and if hp0,q(x) <
hp0,q(x′) then x B x′. Suppose that if hp0,p1(x) > 0
and hp0,p1

(y) ≤ 0, then x C y. Then Pr(Rp0,q = 0) ≥
Pr(Rp1,q = 0).

Proof. Note that

Pr(Rp1,q = 0 |Yq = y)

=
∑
xBy

p1(x) +
1

2
p1(y)

=
∑
xBy

p0(x) + hp0,p1
(x) +

1

2
[p0(y) + hp0,p1

(y)]

= Pr(Rp0,q = 0 |Yq = y) +
∑
xBy

hp0,p1
(x) +

1

2
hp0,p1

(y)

= Pr(Rp0,q = 0 |Yq = y)−
∑
xCy

hp0,p1(x)− 1

2
hp0,p1(y),

where the last equality holds because∑
x∈T hp0,p1

(x) = 0. But by our assumption, we know
that

∑
xCy hp0,p1

(x) + 1
2hp0,p1

(y) is non-negative and
so Pr(Rp1,q = 0 |Yq = y) ≤ Pr(Rp0,q = 0 |Yq = y),
from which the result follows.

We will now provide a lower bound on Pr(Rp,q = 0).
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Proposition A.18.

Pr(Rp,q = 0) ≥ 1

2
+

1

2
max
x∈T

hp,q(x)2. (31)

Proof. Recall that A := {x ∈ T | q(x) > p(x)}. First
note that by Lemma A.14, we may assume without
loss of generality that |A| = |T \ A|, by adding ele-
ments of mass arbitrarily close to 0. Let k := |A|.
Further, by Lemma A.16 we may assume without
loss of generality that p,q are an ε-discrete pair (for
some fixed but small ε) with |T | · ε < L∞(p,q). Let
(x+

0 , . . . , x
+
k−1) be the collection A listed in ≺-increasing

order. Let (x−0 , . . . , x
−
k−1) be the collection T \A listed

in ≺-increasing order.

Let p∗ be any probability measure such that

p∗(x) =


p(x)− e(`) (x = x−` ; e(`) ≥ 0),

q(x)− (k − `) · ε (x = x+
` ; 0 ≤ ` < k − 1),

p(x) (x = x+
0 ).

Note that for all x, y ∈ T , we have y ≺ x if and only if
hp∗,q(x) < hp∗,q(y).

Now, for every ` < k − 1 we have hp,q(x+
` ) ≥ ` · ε (as

p,q are an ε-discrete pair), and so we can always find
such a p∗. In particular the following are immediate.

(a) x ≺ y if and only if hp∗,q(x) > hp∗,q(y),

(b) hp,q(x+
0 ) = hp∗,q(x+

0 ),

(c) if hp,q∗(x) > 0 and hp,p∗(y) ≤ 0 then x ≺ y, and

(d) (p,q∗) is an ε-discrete pair.

Note that Pr(Rp,q = 0) ≥ Pr(Rp∗,q = 0), by
Lemma A.17 and (c). For simplicity, let A0 := {x+

0 },
A1 := {x+

i }1≤i≤k−1 and D := T \A.

We now condition on the value of Yq, in order to cal-
culate Pr(Rp∗,q = 0).

Case 1: Yq = x−i . We have

Pr(Rp∗,q = 0 |Yq =x−i ) =
∑
i<`<k

p∗(x−` ) +
1

2
p∗(x−i ).

Case 2: Yq ∈ A1. We have

Pr(Rp∗,q = 0 |Yq ∈A1) = p∗(D) +
1

2
p∗(A1) + f0(ε),

where f0 is a function satisfying limε→0 f0(ε) = 0.

Case 3: Yq ∈ A0. We have

Pr(Rp∗,q = 0 |Yq ∈A0) = p∗(A1) + p∗(D) +
1

2
p∗(A0).

We may calculate these terms as follows:

p∗(D) = q(D) + hp,q(x+
0 ) + (k(k − 1)/2)ε,

p∗(A1) = q(A1)− (k(k − 1)/2)ε,

p∗(A0) = q(A0)− hp,q(x+
0 ).

Putting all of this together, we obtain

Pr(Rp∗,q = 0)

=
∑
i<k

∑
i<`<k

q(x−i )p∗(x−` ) +
1

2

∑
i<k

q(x−i )p∗(x−i )

+ q(A1)p∗(D) +
1

2
q(A1)p∗(A1) + q(A1)f0(ε)

+ q(A0)p∗(A1) + q(A0)p∗(D) +
1

2
q(A0)p∗(A0)

=
∑
i<k

∑
i<`<k

q(x−i )[q(x−` )− hp∗,q(x−` )]

+
1

2

∑
i<k

q(x−i )[q(x−i )− hp∗,q(x−i )]

+ q(A1)[q(D) + hp,q(x+
0 )] +

1

2
q(A1)q(A1)

+ q(A0)q(A1) + q(A0)[q(D) + hp,q(x+
0 )]

+
1

2
q(A0)[q(A0)− hp,q(x+

0 )] + f1(ε)

=
∑
i<k

∑
i<`<k

q(x−i )q(x−` ) +
1

2

∑
i<k

q(x−i )q(x−i )

+ q(A1)q(D) +
1

2
q(A1)q(A1) + q(A0)q(A1)

+ q(A0)q(D) +
1

2
q(A0)q(A0)

−
∑
i<k

∑
i<`<k

q(x−i )hp∗,q(x−` )

− 1

2

∑
i<k

q(x−i )hp∗,q(x−i ) + q(A1)hp,q(x+
0 )

+ q(A0)hp,q(x+
0 )− 1

2
q(A0)hp,q(x+

0 ) + f1(ε)

=
∑
i<k

∑
i<`<k

q(x−i )q(x−` ) +
1

2

∑
i<k

q(x−i )q(x−i )

+ q(A1)q(D) +
1

2
q(A1)q(A1) + q(A0)q(A1)

+ q(A0)q(D) +
1

2
q(A0)q(A0)

−
∑
i<k

∑
i<`<k

q(x−i )hp∗,q(x−` )

− 1

2

∑
i<k

q(x−i )hp∗,q(x−i ) + q(A1)hp,q(x+
0 )

+
1

2
q(A0)hp,q(x+

0 ) + f1(ε),
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where f1 is a function satisfying limε→0 f1(ε) = 0.

We also have
1

2
= Pr(Rq,q = 0)

=
∑
i<k

∑
i<`<k

q(x−i )q(x−` ) +
1

2

∑
i<k

q(x−i )q(x−i )

+ q(A1)q(D) +
1

2
q(A1)q(A1)

+ q(A0)q(A1) + q(A0)q(D) +
1

2
q(A0)q(A0).

Putting these two equations together, we obtain

Pr(Rp∗,q = 0)− 1

2
= Pr(Rp∗,q = 0)− Pr(Rq,q = 0)

= −
∑
i<k

∑
i<`<k

q(x−i )hp∗,q(x−` )

− 1

2

∑
i<k

q(x−i )hp∗,q(x−i ) + q(A1)hp,q(x+
0 )

+
1

2
q(A0)hp,q(x+

0 ) + f1(ε)

≥ 1

2
q(A0)hp,q(x+

0 ) + f1(ε),

as hp∗,q(x−` ) ≤ 0 for all ` < k and hp,q(x+
0 ) ≤ 0.

But we know that

q(A0) = q(x+
0 ) = p∗(x+

0 ) + hp,q(x+
0 ) ≥ hp,q(x+

0 ).

Therefore, as hp,q(x+
0 ) is the maximal value of hp,q,

by taking the limit as ε→ 0 we obtain

Pr(Rp∗,q = 0) ≥ 1

2
+

1

2
max
x∈T

hp,q(x)2,

as desired.

Finally, we arrive at the following theorem.

Theorem A.19. Given probability measure p,q on T
there is a linear ordering @ of T such that if Xp and
Yq are sampled independently from p and q respectively
then

Pr(Xq @ Yp) ≥ 1

2
+

1

2
L∞(p,q)2. (32)

Proof. Note that

L∞(p,q) = max{max
x∈T

hp,q(x), max
x∈T

hq,p(x)}.

If L∞(p,q) = maxx∈T hp,q(x), then the theorem fol-
lows from Proposition A.18 using the ordering x @ y if
and only if hp,q(x) > hp,q(y).

If, however, L∞(p,q) = maxx∈T hq,p(x), then the
theorem follows from Proposition A.18 by interchanging
p and q, i.e., by using the ordering x @ y if and only
if hq,p(x) > hq,p(y).

A.4 Sample complexity

We now show how to amplify this result by repeated
trials to obtain a bound on the sample complexity of
the main algorithm for determining whether p = q.

Let @ be the linear ordering defined in Theorem A.19.

Theorem A.20 (Theorem 3.7 in the main text).
Given significance level α = 2Φ(−c) for c > 0, the
proposed test with ordering @ and m = 1 achieves
power β ≥ 1− Φ(−c) using

n ≈ 4c2/L∞(p,q)4 (33)

samples from q, where Φ is the cumulative distribution
function of a standard normal.

Proof. Assume without loss of generality that the
order @ from Theorem A.19 is such that L∞ =
maxs∈T (q(x) − p(x)). Let (Y1, . . . , Yn) ∼iid q be the
n samples from q. With m = 1, the testing procedure
generates n samples (X1, . . . , Xn) ∼iid p, and 2n uni-
form random variables (UY1 , . . . , U

Y
n , U

X
1 , . . . , U

X
n ) ∼iid

Uniform(0, 1) to break ties. Let C denote the lexi-
cographic order on T × [0, 1] induced by (T ,C) and
([0, 1], <). Define Wi := I

[
(Yi, U

Y
i ) C (Xi, U

X
i )
]
, for

1 ≤ i ≤ n, to be the rank of the i-th observation from
q.

Under the null hypothesis H0, each rank Wi has dis-
tribution Bernoulli(1/2) by Lemma A.2. Testing for
uniformity of the ranks on {0, 1} is equivalent to test-
ing whether a coin is unbiased given the i.i.d. flips
{W1, . . . ,Wn}. Let B̂ :=

∑n
i=1(1−Wi)/n denote the

empirical proportion of zeros. By the central limit
theorem, for sufficiently large n, we have that B̂ is ap-
proximately normally distributed with mean 1/2 and
standard deviation 1/(2

√
n). For the given significance

level α = 2Φ(−c), we form the two-sided reject re-
gion F = (−∞, γ) ∪ (γ,∞), where the critical value γ
satisfies

c =
γ − 1/2

1/(2
√
n)

= 2
√
n(γ − 1/2). (34)

Replacing n in Eq. (7), we obtain

γ = 1/2 + c/(2
√
n)

= 1/2 + c/(2(2c/L∞(p,q)2))

= 1/2 + L∞(p,q)2/4. (35)

This construction ensures that Pr {reject | H0} = α.

We now show that the test with this rejection region
has power β ≥ Pr {reject | H1} = 1 − Φ(−c). Under
the alternative hypothesis H1, each Wi has (in the
worst case) distribution Bernoulli(1/2 + L∞(p,q)2/2)
by Theorem A.19, so that the empirical proportion
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B̂ is approximately normally distributed with mean
at least 1/2 + L∞(p,q)2/2 and standard deviation at
most 1/(2

√
n). Under the alternative distribution of

B̂, the standard score c′ of the critical value γ is

c′ =
γ − (1/2 + L∞(p,q)2/2)

1/(2
√
n)

= 2
√
n((1/2 + L∞(p,q)2/4)− (1/2 + L∞(p,q)2/2))

= −2
√
n(L∞(p,q)2/4)

= −√nL∞(p,q)2/2

= −c, (36)

where the second equality follows from Eq. (35). Ob-
serve that the not reject region F c = [−γ, γ] ⊂ (−∞, γ],
and so the probability that B̂ falls in F c is at most the
probability that B̂ < γ, which by Eq. (36) is equal to
Φ(−c). It is then immediate that β ≥ 1− Φ(−c).

The following corollary follows directly from Theo-
rem 3.7.

Corollary A.21. As the significance level α varies,
the proposed test with ordering @ and m = 1 achieves
an overall error (α + (1 − β))/2 ≤ 3Φ(−c)/2 using
n = 4c2/L∞(p,q)4 samples.

A.5 Distribution of the test statistic under
the alternative hypothesis

In this subsection we derive the distribution of R under
the alternative hypothesis p 6= q. As before, write
p̃(x) :=

∑
x′<x p(x).

Theorem A.22. The distribution of R is given by

Pr {R = r} =
∑
x∈T

H(x,m, r) q(x) (37)

for 0 ≤ r ≤ m, where H(x,m, r) :=

(
r

m

)
[p̃(x)]

r
[1− p̃(x)]

m−r
(p(x) = 0)

1

m+ 1
(p(x) = 1)

m∑
e=0

{[
e∑
j=0

(
m− e
r − j

)[
p̃(x)

1− p(x)

]r−j
[
1− p̃(x)

1− p(x)

](m−e)−(r−j)(
1

e+ 1

)]
(
m

e

)
[p(x)]

m
[1− p(x)]

e−m

}
(0 < p(x) < 1)

Proof. Define the following random variables:

L :=

m∑
i=1

I [Xi ≺ X0] , (38)

E :=

m∑
i=1

I [Xi = X0] , (39)

G :=

m∑
i=1

I [Xi � X0] . (40)

We refer to L, E, and G as “bins”, where L is the “less
than” bin, E is the “equal to” bin, and G is the “greater
than” bin (all with respect to X0). Total probability
gives

Pr {R = r} =
∑
x∈T

Pr {R = r,X0 = x}

=
∑
x∈T

q(x)>0

Pr {R = r |X0 = x}q(x).

Fix x ∈ T such that q(x) > 0. Consider
Pr {R = r |X0 = s}. The counts in bins L, E, and
G are binomial random variables with m trials, where
the bin L has success probability p̃(x), the bin E has
success probability p(x), and the bin G has success
probability 1− (p̃(x) + p(x)). We now consider three
cases.

Case 1: p(x) = 0. The event {E = 0} occurs with
probability one since each Xi, for 1 ≤ i ≤ m, can-
not possibly be equal to x. Therefore, conditioned
on {X0 = x}, the event {R = r} occurs if and only if
{L = r}. Since L is binomially distributed,

Pr {R = r |X0 = x} = Pr {L = r |X0 = x}

=

(
m

r

)
[p̃(x)]

r
[1− p̃(x)]

m−r
.

Case 2: p(x) = 1. Then the event {E = m} occurs
with probability one since each Xi, for 1 ≤ i ≤ m, can
only equal s. The uniform numbers U0, . . . , Um used to
break the ties will determine the rank R of X0. Let B
be the rank of U0 among the m other uniform random
variables U1, . . . , Um. The event {R = r} occurs if and
only if {B = r}. Since the Ui are i.i.d., B is uniformly
distributed over {0, 1, 2, . . . ,m} by Lemma A.2. Hence

Pr {R = r |X0 = x} = Pr {B = r |X0 = x} =
1

m+ 1
.

Case 3: 0 < p(x) < 1. By total probability,

Pr {R = r |X0 = x}

=

m∑
e=0

Pr {R = r |X0 = x,E = e}Pr {E = e |X0 = x} .

Since E is binomially distributed,

Pr {E = e |X0 = x} =

(
m

e

)
[p(x)]

e
[1− p(x)]

m−e
.
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We now tackle the event {R = r |X0 = x,E = e}. The
uniform numbers U0, . . . , Um used to break the ties will
determine the rank R of X0. Define B to be the rank
of U0 among the e other uniform random variables
assigned to bin E, i.e., those Ui for 1 ≤ i ≤ m such
that Xi = s. The random variable B is independent
of all the Xi, but is dependent on E. Given {E = e},
B is uniformly distributed on {0, 1, . . . , e}. By total
probability,

Pr {R = r |X0 = x,E = e}

=

e∑
b=0

[
Pr {R = r |X0 = x,E = e,B = b}

Pr {B = b |E = e}
]

=

e∑
b=0

Pr {R = r |X0 = x,E = e,B = b} 1

e+ 1
.

Conditioned on {E = e} and {B = 0}, the event
{R = r} occurs if and only if {L = r}, since exactly
0 random variables in bin E “are less” than X0, so
exactly r random variables in bin L are needed to en-
sure that the rank of X0 is r. By the same reasoning,
for 0 ≤ b ≤ e, conditioned on {E = e,B = b} we have
{R = r} if and only if {L = r − b}.
Now, conditioned on {E = e}, there are m− e remain-
ing assignments to be split among bins L and G. Let
i be such that Xi 6= x. Then the relative probability
that Xi is assigned to bin L is p̃(x) and to bin G is
1− (p̃(x) + p(x)). Renormalizing these probabilities,
we conclude that L is conditionally (given {E = e}) a
binomial random variable with m − e trials and suc-
cess probability p̃(x)/(p̃(x) + (1− (p̃(x) + p(x)))) =
p̃(x)/(1− p(x)). Hence

Pr {R = r |X0 = x,E = e,B = b}
= Pr {L = r − b |X0 = x,E = e}

=

(
m− e
r − j

)[
p̃(x)

1−p(x)

]r−j [
1− p̃(x)

1−p(x)

](m−e)−(r−j)

,

completing the proof.

Remark A.23. The sum in Eq. (37) of Theorem A.22
converges since H(x,m, r) ≤ 1.

Remark A.24. Theorem A.22 shows that it is not the
case that we must have p = q whenever there exists
some m for which the rank R is uniform on [m + 1].
For example, let m = 1, let T := {0, 1, 2, 3}, let ≺ be
the usual order < on T , and let p := 1

2δ0 + 1
2δ3 and

q := 1
2δ1 + 1

2δ2. Let X ∼ p and Y ∼ q. Then we have
Pr {R = 0} = Pr {X > Y } = 1/2 = Pr {Y < X} =
Pr {R = 1}.

Rather, Theorem A.1 tells us merely if R is not uniform
on {0, . . . ,m} for some m, then p 6= q. In the example
given above, m = 2 (and so by Theorem A.7 all m ≥ 2)
provides such a witness.


