Appendices

A COST-BENEFIT GREEDY

Algorithm 1 Cost-benefit greedy

1: $U \leftarrow [d], S \leftarrow \emptyset$ 2: while $U \neq \emptyset$ do 3: $j \leftarrow \operatorname{argmax}_{j' \in U} \frac{F(j'|S)}{G(j'|S)}$ 4: if $G(S \cup \{j\}) \leq c$ then 5: $S \leftarrow S \cup \{j\}$ 6: $U \leftarrow U \setminus \{j\}$ 7: return S

We prove the approximation guarantee of the CBG algorithm (Algorithm 1) for the following problem:

 $\underset{\mathsf{S}\subseteq [d]}{\text{maximize }} F(\mathsf{S}) \quad \text{subject to } G(\mathsf{S}) \leq c.$

To obtain the main theorem, we use the following definitions and lemmas.

Let S^{*} be any subset of [d] such that $G(S^*) \leq c^*$ and $|S^*| = k^*$. As in the theorem of the main paper, we assume that $\min\{c, c^*\} \geq \rho$ holds. We suppose that t + 1 elements are added when $G(S) > c - \rho$ occurs in the loops of Algorithm 1 for the first time. We let j_i be the *i*-th element added to S for $i \in [t+1]$. We define $S_i \coloneqq \{j_1, \ldots, j_i\}$ for $i \in [t+1]$ and $S_0 \coloneqq \emptyset$. Thanks to the monotonicity of $G(\cdot)$, the definition of ρ , and $G(S_t) \leq c - \rho$, we have

$$G(S_i) = G(S_{i-1}) + G(j_i \mid S_{i-1}) \le G(S_t) + G(j_i \mid S_{i-1}) \le c - \rho + \rho = c$$

for $i \in [t+1]$; in particular, we have $c - \rho \leq G(S_{t+1}) \leq c$. Namely, $G(S_1), \ldots, G(S_{t+1})$ do not exceed the budget value, which means that j_i $(i \in [t+1])$ is the element added in the *i*-th iteration of the algorithm. Moreover, the output, S, satisfies $S_{t+1} \subseteq S$.

Lemma 1. For i = 1, ..., t + 1, we have

$$F(\mathsf{S}_i) - F(\mathsf{S}_{i-1}) \ge \theta \beta_{k^*} \gamma_{\mathsf{S}_t, k^*} \cdot \frac{G(j_i \mid \mathsf{S}_{i-1})}{c^*} (F(\mathsf{S}^*) - F(\mathsf{S}_{i-1})).$$

Proof. Thanks to the weak submodularity of $F(\cdot)$, we have

$$\sum_{j \in \mathsf{S}^* \backslash \mathsf{S}_{i-1}} F(j \mid \mathsf{S}_{i-1}) \ge \gamma_{\mathsf{S}_{i-1},k^*} F(\mathsf{S}^* \backslash \mathsf{S}_{i-1} \mid \mathsf{S}_{i-1})$$
$$= \gamma_{\mathsf{S}_{i-1},k^*} F(\mathsf{S}^* \mid \mathsf{S}_{i-1}) \ge \gamma_{\mathsf{S}_t,k^*} F(\mathsf{S}^* \mid \mathsf{S}_{i-1})$$

Since j_i is chosen greedily, $j_i = \operatorname{argmax}_{j \notin \mathsf{S}_{i-1}} \frac{F(j|\mathsf{S}_{i-1})}{G(j|\mathsf{S}_{i-1})}$ holds, and hence $\frac{F(j_i|\mathsf{S}_{i-1})}{G(j_i|\mathsf{S}_{i-1})} \ge \frac{F(j|\mathsf{S}_{i-1})}{G(j|\mathsf{S}_{i-1})}$ for any $j \in \mathsf{S}^* \setminus \mathsf{S}_{i-1}$. Using this fact and the above inequality, we obtain

$$F(j_i \mid \mathsf{S}_{i-1}) \sum_{j \in \mathsf{S}^* \setminus \mathsf{S}_{i-1}} G(j \mid \mathsf{S}_{i-1}) \ge G(j_i \mid \mathsf{S}_{i-1}) \sum_{j \in \mathsf{S}^* \setminus \mathsf{S}_{i-1}} F(j \mid \mathsf{S}_{i-1}) \\ \ge G(j_i \mid \mathsf{S}_{i-1}) \times \gamma_{\mathsf{S}_t, k^*} F(\mathsf{S}^* \mid \mathsf{S}_{i-1}).$$

We consider bounding from above $\sum_{j \in S^* \setminus S_{i-1}} G(j \mid S_{i-1})$ in LHS. By using the definition of restricted inverse curvature and superadditivity ratio of $G(\cdot)$, we obtain

$$\sum_{j \in \mathsf{S}^* \backslash \mathsf{S}_{i-1}} G(j \mid \mathsf{S}_{i-1}) \le \frac{1}{\theta} \sum_{j \in \mathsf{S}^* \backslash \mathsf{S}_{i-1}} G(j) \le \frac{1}{\theta \beta_{k^*}} G(\mathsf{S}^* \backslash \mathsf{S}_{i-1}) \le \frac{c^*}{\theta \beta_{k^*}}$$

where the last inequality comes from $G(S^* \setminus S_{i-1}) \leq G(S^*) \leq c^*$. Hence we obtain

$$\frac{c^*}{\theta\beta_{k^*}}(F(\mathsf{S}_i) - F(\mathsf{S}_{i-1})) = \frac{c^*}{\theta\beta_{k^*}}F(j_i \mid \mathsf{S}_{i-1}) \ge G(j_i \mid \mathsf{S}_{i-1}) \times \gamma_{\mathsf{S}_t,k^*}F(\mathsf{S}^* \mid \mathsf{S}_{i-1}).$$

The lemma is obtained by using $F(S^* | S_{i-1}) = F(S^* \cup S_{i-1}) - F(S_{i-1}) \ge F(S^*) - F(S_{i-1})$ and rearranging terms.

Lemma 2. For i = 1, ..., t + 1, we have

$$F(\mathsf{S}_i) \ge \left(1 - \prod_{i'=1}^{i} \left(1 - \theta \beta_{k^*} \gamma_{\mathsf{S}_t, k^*} \cdot \frac{G(j_{i'} \mid \mathsf{S}_{i'-1})}{c^*}\right)\right) F(\mathsf{S}^*).$$

Proof. We prove the lemma by induction on i = 1, ..., t + 1. First, if i = 1, the target inequality holds thanks to Lemma 1. We then assume that the target inequality holds for $S_1, ..., S_{i-1}$ and prove it for S_i . Combining Lemma 1 and the assumption, we obtain

$$\begin{split} F(\mathsf{S}_{i}) &= F(\mathsf{S}_{i-1}) + (F(\mathsf{S}_{i}) - F(\mathsf{S}_{i-1})) \\ &\geq F(\mathsf{S}_{i-1}) + \theta \beta_{k^{*}} \gamma_{\mathsf{S}_{t},k^{*}} \cdot \frac{G(j_{i} \mid \mathsf{S}_{i-1})}{c^{*}} (F(\mathsf{S}^{*}) - F(\mathsf{S}_{i-1})) \\ &= \left(1 - \theta \beta_{k^{*}} \gamma_{\mathsf{S}_{t},k^{*}} \cdot \frac{G(j_{i} \mid \mathsf{S}_{i-1})}{c^{*}}\right) F(\mathsf{S}_{i-1}) + \theta \beta_{k^{*}} \gamma_{\mathsf{S}_{t},k^{*}} \cdot \frac{G(j_{i} \mid \mathsf{S}_{i-1})}{c^{*}} F(\mathsf{S}^{*}) \\ &\geq \left(1 - \prod_{i'=1}^{i} \left(1 - \theta \beta_{k^{*}} \gamma_{\mathsf{S}_{t},k^{*}} \cdot \frac{G(j_{i'} \mid \mathsf{S}_{i'-1})}{c^{*}}\right)\right) F(\mathsf{S}^{*}). \end{split}$$

Thus the lemma holds by induction.

Theorem 1. Let S be the output of CBG and S^{*} be any subset that satisfies $G(S^*) \leq c^*$ and $|S^*| = k^*$. If $F(\cdot)$ has submodularity ratio γ_{S,k^*} , $G(\cdot)$ has superadditivity ratio β_{k^*} and restricted inverse curvature θ , and $\min\{c,c^*\} \geq \rho$ holds, then we have

$$F(\mathsf{S}) \ge \left(1 - \exp\left(-\theta\beta_{k^*}\gamma_{\mathsf{S},k^*} \cdot \frac{c-\rho}{c^*}\right)\right)F(\mathsf{S}^*).$$

Proof. We define $x := \theta \beta_{k^*} \gamma_{\mathsf{S}_t,k^*} \cdot \frac{c-\rho}{c^*}$ and $y_i := \frac{G(j_i|\mathsf{S}_{i-1})}{G(\mathsf{S}_{t+1})}$ for $i \in [t+1]$. Thanks to $G(\mathsf{S}_{t+1}) \ge c - \rho$, $G(j_i | \mathsf{S}_{i-1}) \le \rho \le c^*$, and $\theta \beta_{k^*} \gamma_{\mathsf{S}_t,k^*} \le 1$, we obtain

$$xy_i = \theta \beta_{k^*} \gamma_{\mathsf{S}_t,k^*} \cdot \frac{c-\rho}{c^*} \cdot y_i \le \theta \beta_{k^*} \gamma_{\mathsf{S}_t,k^*} \cdot \frac{G(\mathsf{S}_{t+1})}{G(j_i \mid \mathsf{S}_{i-1})} \cdot y_i = \theta \beta_{k^*} \gamma_{\mathsf{S}_t,k^*} \le 1.$$

Hence $1 - xy_i \ge 0$. Since $\sum_{i=1}^{t+1} y_i = \sum_{i=1}^{t+1} \frac{G(j_i|\mathsf{S}_{i-1})}{G(\mathsf{S}_{t+1})} = 1$ holds, $\prod_{i=1}^{t+1} (1 - xy_i)$ attains its maximum value when we have $y_1 = \cdots = y_{t+1} = \frac{1}{t+1}$. Thus we obtain

$$\prod_{i=1}^{t+1} \left(1 - \theta \beta_{k^*} \gamma_{\mathsf{S}_t, k^*} \cdot \frac{c - \rho}{c^*} \cdot \frac{G(j_i \mid \mathsf{S}_{i-1})}{G(\mathsf{S}_{t+1})} \right) \le \left(1 - \theta \beta_{k^*} \gamma_{\mathsf{S}_t, k^*} \cdot \frac{c - \rho}{c^*} \cdot \frac{1}{t+1} \right)^{t+1}.$$
(A1)

By using Lemma 2, inequality (A1), and $G(S_{t+1}) \ge c - \rho$, we obtain

$$F(\mathsf{S}_{t+1}) \ge \left(1 - \prod_{i=1}^{t+1} \left(1 - \theta \beta_{k^*} \gamma_{\mathsf{S}_t,k^*} \cdot \frac{G(j_i \mid \mathsf{S}_{i-1})}{c^*}\right)\right) F(\mathsf{S}^*) \qquad \because \text{ Lemma 2}$$

$$= \left(1 - \prod_{i=1}^{t+1} \left(1 - \theta \beta_{k^*} \gamma_{\mathsf{S}_t,k^*} \cdot \frac{c - \rho}{c^*} \cdot \frac{G(j_i \mid \mathsf{S}_{i-1})}{c - \rho}\right)\right) F(\mathsf{S}^*)$$

$$\ge \left(1 - \prod_{i=1}^{t+1} \left(1 - \theta \beta_{k^*} \gamma_{\mathsf{S}_t,k^*} \cdot \frac{c - \rho}{c^*} \cdot \frac{G(j_i \mid \mathsf{S}_{i-1})}{G(\mathsf{S}_{t+1})}\right)\right) F(\mathsf{S}^*) \qquad \because G(\mathsf{S}_{t+1}) \ge c - \rho$$

$$\ge \left(1 - \left(1 - \theta \beta_{k^*} \gamma_{\mathsf{S}_t,k^*} \cdot \frac{c - \rho}{c^*} \cdot \frac{1}{t + 1}\right)^{t+1}\right) F(\mathsf{S}^*) \qquad \because \text{ inequality (A1)}$$

$$\ge \left(1 - \exp\left(-\theta \beta_{k^*} \gamma_{\mathsf{S}_t,k^*} \cdot \frac{c - \rho}{c^*}\right)\right) F(\mathsf{S}^*).$$

Since we have $S_t \subseteq S_{t+1} \subseteq S$, we obtain

$$F(\mathsf{S}) \ge F(\mathsf{S}_{t+1}) \ge \left(1 - \exp\left(-\theta\beta_{k^*}\gamma_{\mathsf{S},k^*} \cdot \frac{c-\rho}{c^*}\right)\right)F(\mathsf{S}^*).$$

B IHT WITH CBG PROJECTION

Algorithm 2 IHT with CBG projection 1: Initialize $\mathbf{x}_0 \in \mathbb{R}^{[d]}$ 2: for $t = 0, 1, \dots, T - 1$ do 3: $\mathbf{g}_t \leftarrow \mathbf{x}_t - \eta \nabla l(\mathbf{x}_t)$ 4: $\mathbf{x}_{t+1} \leftarrow \mathcal{P}_c(\mathbf{g}_t)$ 5: return \mathbf{x}_T

We prove the theorem that guarantees the performance of Algorithm 2 for the following problem:

$$\underset{\mathbf{x} \in \mathbb{R}^d}{\text{minimize}} \ l(\mathbf{x}) \quad \text{subject to} \ G(\text{supp}(\mathbf{x})) \leq c.$$

We first explain the CBG projection (Step 4) in detail. Given any $\mathbf{z} \in \mathbb{R}^{[d]}$, $\hat{\mathbf{z}} = \mathcal{P}_c(\mathbf{z})$ is obtained as follows: We perform Algorithm 1 with objective function $F(S) := \|\mathbf{z}_S\|_2^2 = \sum_{j \in S} |\mathbf{z}_j|^2$, cost function G(S), and budget value c; the resulting solution, S, satisfies $c - \rho \leq G(S) \leq c$. We set $\hat{\mathbf{z}}_j$ to \mathbf{z}_j if $j \in S$ and 0 otherwise. Note that $F(\cdot)$ is monotone and modular, which implies that its submodularity ratio is equal to 1. We first prove a key lemma that guarantees the performance of the CBG projection.

Lemma 3. Assume $c^* \ge \rho$ and let S^* be an arbitrary subset such that $G(S^*) \le c^*$ and $|S^*| = k^*$. Given any $\mathbf{z} \in \mathbb{R}^{[d]}$, we let $S \coloneqq \supp(\mathcal{P}_c(\mathbf{z}))$. If $G(\cdot)$ has superadditivity ratio β_{k^*} and restricted inverse curvature θ , then the following inequality holds for any $\tilde{c} \ge \frac{c^*}{\theta \beta_{k^*}} \log(\|\mathbf{z}_{S^*}\|_2^2/\epsilon) + \rho$ and $c > \tilde{c} + \rho$:

$$\frac{\|\mathbf{z}_{\mathsf{S}^*\backslash\mathsf{S}}\|_2^2}{c^*} \le \frac{\|\mathbf{z}_{\mathsf{S}\backslash\mathsf{S}^*}\|_2^2 + \epsilon}{\theta\beta_{k^*}(c - \tilde{c} - \rho)}.$$

Proof. We define \tilde{S} as the first subset, S, in the loops of Algorithm 1 that satisfy $G(S) > \tilde{c} - \rho$; note that $\tilde{c} - \rho < G(\tilde{S}) \leq \tilde{c}$ holds. As in the proof of Theorem 1, we have

$$F(\tilde{\mathsf{S}}) \ge \left(1 - \exp\left(-\theta \beta_{k^*} \cdot \frac{\tilde{c} - \rho}{c^*}\right)\right) F(\mathsf{S}^*).$$

Therefore, from $\tilde{c} \geq \frac{c^*}{\theta \beta_{k^*}} \log(\|\mathbf{z}_{\mathsf{S}^*}\|_2^2/\epsilon) + \rho = \frac{c^*}{\theta \beta_{k^*}} \log(F(\mathsf{S}^*)/\epsilon) + \rho$, we obtain

$$F(\tilde{\mathsf{S}}) \ge F(\mathsf{S}^*) - \epsilon. \tag{A2}$$

We then suppose that t + 1 elements are added to \tilde{S} in the loops of Algorithm 1 when $G(S) > c - \rho$ occurs for the first time. We let j_i be the *i*-th element added to \tilde{S} . We define $\hat{S}_i := \{j_1, \ldots, j_i\}$ for $i \in [t+1]$ and $\hat{S}_0 := \emptyset$. As discussed in the proof of Theorem 1, we have

$$\tilde{c} - \rho \le G(\hat{\mathsf{S}}_0 \cup \tilde{\mathsf{S}}) \le \dots \le G(\hat{\mathsf{S}}_{t+1} \cup \tilde{\mathsf{S}}) = G(\hat{\mathsf{S}}_t \cup \tilde{\mathsf{S}}) + G(j_{t+1} \mid \hat{\mathsf{S}}_t \cup \tilde{\mathsf{S}}) \le c - \rho + \rho = c.$$

This inequality means that the budget constraint is not violated for $i \in [t+1]$, and thus j_i is added in the $(|\tilde{S}|+i)$ -th iteration of Algorithm 1. In particular, we have $c - \rho \leq G(\hat{S}_{t+1} \cup \tilde{S}) \leq c$. Furthermore, the output, S, satisfies $\hat{S}_i \cup \tilde{S} \subseteq S$ for $i = 0, \ldots, t+1$. Since j_i is chosen greedily w.r.t. the cost-benefit ratio, we have $\frac{F(j_i|\hat{S}_{i-1}\cup\tilde{S})}{G(j_i|\hat{S}_{i-1}\cup\tilde{S})} \geq \frac{F(j|\hat{S}_{i-1}\cup\tilde{S})}{G(j|\hat{S}_{i-1}\cup\tilde{S})}$ for any $j \in S^* \setminus \{\hat{S}_{i-1} \cup \tilde{S}\}$. Therefore, we obtain

$$F(j_i \mid \hat{\mathsf{S}}_{i-1} \cup \tilde{\mathsf{S}}) \sum_{j \in \mathsf{S}^* \setminus \{\hat{\mathsf{S}}_{i-1} \cup \tilde{\mathsf{S}}\}} G(j \mid \hat{\mathsf{S}}_{i-1} \cup \tilde{\mathsf{S}}) \ge G(j_i \mid \hat{\mathsf{S}}_{i-1} \cup \tilde{\mathsf{S}}) \sum_{j \in \mathsf{S}^* \setminus \{\hat{\mathsf{S}}_{i-1} \cup \tilde{\mathsf{S}}\}} F(j \mid \hat{\mathsf{S}}_{i-1} \cup \tilde{\mathsf{S}}).$$
(A3)

We can bound from below $\sum_{j \in S^* \setminus \{\hat{S}_{i-1} \cup \tilde{S}\}} F(j \mid \hat{S}_{i-1} \cup \tilde{S})$ in RHS as follows

$$\sum_{\mathbf{z} \in \mathsf{S}^* \setminus \{\hat{\mathsf{S}}_{i-1} \cup \tilde{\mathsf{S}}\}} F(j \mid \hat{\mathsf{S}}_{i-1} \cup \tilde{\mathsf{S}}) = \sum_{j \in \mathsf{S}^* \setminus \{\hat{\mathsf{S}}_{i-1} \cup \tilde{\mathsf{S}}\}} |\mathbf{z}_j|^2 \ge \|\mathbf{z}_{\mathsf{S}^* \setminus \mathsf{S}}\|_2^2$$

On the other hand, $\sum_{j \in S^* \setminus \{\hat{S}_{i-1} \cup \tilde{S}\}} G(j \mid \hat{S}_{i-1} \cup \tilde{S})$ in LHS of (A3) can be bounded from above as follows:

$$\begin{split} &\sum_{j \in \mathsf{S}^* \setminus \{\hat{\mathsf{S}}_{i-1} \cup \tilde{\mathsf{S}}\}} G(j \mid \hat{\mathsf{S}}_{i-1} \cup \tilde{\mathsf{S}}) \\ &\leq \frac{1}{\theta} \sum_{j \in \mathsf{S}^* \setminus \{\hat{\mathsf{S}}_{i-1} \cup \tilde{\mathsf{S}}\}} G(j) & \because \text{ definition of restricted inverse curvature} \\ &\leq \frac{1}{\theta \beta_{k^*}} G(\mathsf{S}^* \setminus \{\hat{\mathsf{S}}_{i-1} \cup \tilde{\mathsf{S}}\}) & \because \text{ definition of superadditivity ratio} \\ &\leq \frac{c^*}{\theta \beta_{k^*}}. & \because G(\mathsf{S}^* \setminus \{\hat{\mathsf{S}}_{i-1} \cup \tilde{\mathsf{S}}\}) \leq c^* \end{split}$$

Consequently, we have

$$F(\hat{\mathsf{S}}_{i}\cup\tilde{\mathsf{S}}) - F(\hat{\mathsf{S}}_{i-1}\cup\tilde{\mathsf{S}}) = F(j_{i}\mid\hat{\mathsf{S}}_{i-1}\cup\tilde{\mathsf{S}})$$

$$\geq \theta\beta_{k^{*}} \cdot \frac{G(j_{i}\mid\hat{\mathsf{S}}_{i-1}\cup\tilde{\mathsf{S}})}{c^{*}} \|\mathbf{z}_{\mathsf{S}^{*}\backslash\mathsf{S}}\|_{2}^{2} = \theta\beta_{k^{*}} \cdot \frac{G(\hat{\mathsf{S}}_{i}\cup\tilde{\mathsf{S}}) - G(\hat{\mathsf{S}}_{i-1}\cup\tilde{\mathsf{S}})}{c^{*}} \|\mathbf{z}_{\mathsf{S}^{*}\backslash\mathsf{S}}\|_{2}^{2}.$$

Taking the summation of both sides for i = 1, ..., t+1, and using $G(\hat{S}_{t+1} \cup \tilde{S}) - G(\tilde{S}) \ge (c-\rho) - \tilde{c}$ and $\hat{S}_{t+1} \cup \tilde{S} \subseteq S$, we obtain

$$F(\mathbf{S}) - F(\tilde{\mathbf{S}}) \ge F(\hat{\mathbf{S}}_{t+1} \cup \tilde{\mathbf{S}}) - F(\tilde{\mathbf{S}})$$
$$\ge \theta \beta_{k^*} \cdot \frac{G(\hat{\mathbf{S}}_{t+1} \cup \tilde{\mathbf{S}}) - G(\tilde{\mathbf{S}})}{c^*} \|\mathbf{z}_{\mathbf{S}^* \setminus \mathbf{S}}\|_2^2 \ge \theta \beta_{k^*} \cdot \frac{c - \tilde{c} - \rho}{c^*} \|\mathbf{z}_{\mathbf{S}^* \setminus \mathbf{S}}\|_2^2.$$
(A4)

Combining inequalities (A2) and (A4), we obtain the target inequality as follows:

$$\frac{\|\mathbf{z}_{\mathsf{S}^*\backslash\mathsf{S}}\|_2^2}{c^*} \le \frac{F(\mathsf{S}) - F(\tilde{\mathsf{S}})}{\theta\beta_{k^*}(c - \tilde{c} - \rho)} \le \frac{F(\mathsf{S}) - F(\mathsf{S}^*) + \epsilon}{\theta\beta_{k^*}(c - \tilde{c} - \rho)} \le \frac{\|\mathbf{z}_{\mathsf{S}\backslash\mathsf{S}^*}\|_2^2 + \epsilon}{\theta\beta_{k^*}(c - \tilde{c} - \rho)},$$

where the last inequality comes from $F(\mathsf{S}) - F(\mathsf{S}^*) \le F(\mathsf{S} \cup \mathsf{S}^*) - F(\mathsf{S}^*) = \|\mathbf{z}_{\mathsf{S} \setminus \mathsf{S}^*}\|_2^2$.

Using the above lemma, we obtain the main theorem:

Theorem 2. Let $k \coloneqq \max_{t:0 \le t \le T} \|\mathbf{x}_t\|_0$ and $\omega \coloneqq \max_{t:0 \le t \le T} \|\mathbf{g}_t\|_2$. Assume that $l(\cdot)$ is continuously twice differentiable, μ_{2k+k^*} -RSC, and ν_{2k+k^*} -RSM, and that $G(\cdot)$ has superadditivity ratio β_{k^*} and restricted inverse curvature θ . Set $\eta = \frac{1}{\nu_{2k+k^*}}$. If $c^* \ge \rho$ and $c \ge \frac{4c^*}{\theta\beta_{k^*}} \left(\frac{\nu_{2k+k^*}}{\mu_{2k+k^*}}\right)^2 + \frac{2c^*}{\theta\beta_{k^*}} \log\left(\frac{\omega}{2\epsilon}\right) + 2\rho$ hold, then we have

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*\|_2 \le \left(1 - \frac{1}{2} \cdot \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}}\right) \|\mathbf{x}_t - \mathbf{x}^*\|_2 + \zeta + \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}} \cdot \epsilon,$$

where $\zeta \coloneqq \frac{1}{\nu_{2k+k^*}} \left(1 + \frac{1}{2} \cdot \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}} \right) \max_{\mathsf{S} \in \mathcal{F}} \|\nabla l(\mathbf{x}^*)_{\mathsf{S}}\|_2$. Specifically, after

$$T \ge 2 \cdot \frac{\nu_{2k+k^*}}{\mu_{2k+k^*}} \log \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2}{\epsilon}$$

steps, we have

$$\|\mathbf{x}_T - \mathbf{x}^*\|_2 \le 3\epsilon + 2\zeta \cdot \frac{\nu_{2k+k^*}}{\mu_{2k+k^*}}$$

Proof. Let $S^* \coloneqq \operatorname{supp}(\mathbf{x}^*)$, $S_t \coloneqq \operatorname{supp}(\mathbf{x}_t)$, $S_{t+1} \coloneqq \operatorname{supp}(\mathbf{x}_{t+1})$, and $U \coloneqq S_{t+1} \cup S^*$. In what follows, given any $A, B \subseteq [d]$, if the inequality of RSC holds with $\Omega = \{(\mathbf{x}, \mathbf{y}) \mid \operatorname{supp}(\mathbf{x}) \subseteq A, \operatorname{supp}(\mathbf{y}) \subseteq B\}$, then we say $l(\cdot)$ is $\mu_{A,B}$ -RSC.

We first prove an inequality for later use. Note that $l(\cdot)$ is assumed to be twice differentiable. We let $\mathbf{H}(\mathbf{x})$ denote the Hessian of $l(\cdot)$ evaluated at \mathbf{x} . Given $\mathsf{A}, \mathsf{B} \subseteq [d]$ such that $\mathsf{A} \subseteq \mathsf{B}$, if $l(\cdot)$ is $\mu_{\mathsf{A},\mathsf{B}}$ -RSC, then the inequality of RSC implies that function $l(\mathbf{x}) - \frac{\mu_{\mathsf{A},\mathsf{B}}}{2} \|\mathbf{x}\|_2^2$ is convex at \mathbf{x} w.r.t. direction \mathbf{d} , where $\operatorname{supp}(\mathbf{x}) \subseteq \mathsf{A}$ and $\operatorname{supp}(\mathbf{d}) \subseteq \mathsf{B}$; i.e., $\mathbf{H}(\mathbf{x})_{\mathsf{B},\mathsf{B}} \succeq \mu_{\mathsf{A},\mathsf{B}}\mathbf{I}_{\mathsf{B},\mathsf{B}}$ holds. This fact means that, for any $\mathbf{y} \in \mathbb{R}^{[d]}$ such that $\operatorname{supp}(\mathbf{y}) \subseteq \mathsf{S}^* \cup \mathsf{S}_t$, the spectral norm of $(\mathbf{I} - \eta \mathbf{H}(\mathbf{y}))_{(\mathsf{U}\cup\mathsf{S}_t),(\mathsf{U}\cup\mathsf{S}_t)}$ is bounded from above by $1 - \eta \mu_{(\mathsf{S}^*\cup\mathsf{S}_t),(\mathsf{U}\cup\mathsf{S}_t)}$. Therefore, by using the mean value inequality, we obtain

$$\begin{aligned} \|(\mathbf{x}^{*} - \mathbf{x}_{t} - \eta(\nabla l(\mathbf{x}^{*}) - \nabla l(\mathbf{x}_{t})))_{\mathsf{U}}\|_{2} &\leq \|(\mathbf{x}^{*} - \mathbf{x}_{t} - \eta(\nabla l(\mathbf{x}^{*}) - \nabla l(\mathbf{x}_{t})))_{\mathsf{U}\cup\mathsf{S}_{t}}\|_{2} \\ &\leq (1 - \eta\mu_{(\mathsf{S}^{*}\cup\mathsf{S}_{t}),(\mathsf{U}\cup\mathsf{S}_{t})})\|(\mathbf{x}_{t} - \mathbf{x}^{*})\|_{2} \\ &\leq (1 - \eta\mu_{2k+k^{*}})\|(\mathbf{x}_{t} - \mathbf{x}^{*})\|_{2} \\ &= \left(1 - \frac{\mu_{2k+k^{*}}}{\nu_{2k+k^{*}}}\right)\|(\mathbf{x}_{t} - \mathbf{x}^{*})\|_{2}. \end{aligned}$$
(A5)

We then evaluate the performance of the CBG projection by bounding $\|(\mathbf{x}_{t+1} - \mathbf{g}_t)_{\mathsf{U}}\|_2^2$ from above. Since $\mathbf{x}_{t+1} = \mathcal{P}_c(\mathbf{g}_t)$, we have $\|(\mathbf{x}_{t+1} - \mathbf{g}_t)_{\mathsf{U}}\|_2^2 = \|(\mathbf{g}_t)_{\mathsf{S}^*\setminus\mathsf{S}_{t+1}}\|_2^2$. From Lemma 3 with $\mathbf{z} = \mathbf{g}_t$, $\mathsf{S}^* = \operatorname{supp}(\mathbf{x}^*)$, $\mathsf{S} = \mathsf{S}_{t+1}$, and $\tilde{c} = \frac{2c^*}{\theta\beta_{k^*}} \log\left(\frac{\omega}{2\epsilon}\right) + \rho \ge \frac{c^*}{\theta\beta_{k^*}} \log\left(\|\mathbf{g}_t\|_2^2/(4\epsilon^2)\right) + \rho$, the following inequality holds for $c > \tilde{c} + \rho$:

$$\|(\mathbf{x}_{t+1} - \mathbf{g}_{t})_{\mathsf{U}}\|_{2}^{2} = \|(\mathbf{g}_{t})_{\mathsf{S}^{*}\backslash\mathsf{S}_{t+1}}\|_{2}^{2} \leq \frac{c^{*}}{\theta\beta_{k^{*}}(c - \tilde{c} - \rho)} \|(\mathbf{g}_{t})_{\mathsf{S}_{t+1}\backslash\mathsf{S}^{*}}\|_{2}^{2} + \frac{4c^{*}\epsilon^{2}}{\theta\beta_{k^{*}}(c - \tilde{c} - \rho)} \\ \leq \frac{c^{*}}{\theta\beta_{k^{*}}(c - \tilde{c} - \rho)} (\|(\mathbf{g}_{t})_{\mathsf{S}_{t+1}\backslash\mathsf{S}^{*}}\|_{2}^{2} + \|(\mathbf{x}^{*} - \mathbf{g}_{t})_{\mathsf{S}^{*}}\|_{2}^{2}) + \frac{4c^{*}\epsilon^{2}}{\theta\beta_{k^{*}}(c - \tilde{c} - \rho)} \\ = \frac{c^{*}}{\theta\beta_{k^{*}}(c - \tilde{c} - \rho)} \|(\mathbf{x}^{*} - \mathbf{g}_{t})_{\mathsf{U}}\|_{2}^{2} + \frac{4c^{*}\epsilon^{2}}{\theta\beta_{k^{*}}(c - \tilde{c} - \rho)}.$$
(A6)

Setting $c \geq \frac{4c^*}{\theta\beta_{k^*}} \left(\frac{\nu_{2k+k^*}}{\mu_{2k+k^*}}\right)^2 + \frac{2c^*}{\theta\beta_{k^*}} \log\left(\frac{\omega}{2\epsilon}\right) + 2\rho = \frac{4c^*}{\theta\beta_{k^*}} \left(\frac{\nu_{2k+k^*}}{\mu_{2k+k^*}}\right)^2 + \tilde{c} + \rho$, we obtain the target inequality as

follows:

$$\begin{aligned} \|\mathbf{x}_{t+1} - \mathbf{x}^*\|_2 \\ &= \|(\mathbf{x}_{t+1} - \mathbf{x}^*)_U\|_2 \\ &\leq \|(\mathbf{x}_{t+1} - \mathbf{g}_t)_U\|_2 + \|(\mathbf{x}^* - \mathbf{g}_t)_U\|_2 \\ &\leq \left(1 + \sqrt{\frac{c^*}{\theta\beta_{k^*}(c - \tilde{c} - \rho)}}\right) \|(\mathbf{x}^* - \mathbf{g}_t)_U\|_2 + 2\epsilon \sqrt{\frac{c^*}{\theta\beta_{k^*}(c - \tilde{c} - \rho)}} \\ & (A6) \text{ and } \sqrt{x^2 + y^2} \leq |x| + |y| \\ &\leq \left(1 + \frac{1}{2} \cdot \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}}\right) \|(\mathbf{x}^* - \mathbf{x}_t + \eta \nabla l(\mathbf{x}_t))_U\|_2 + \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}} \cdot \epsilon \\ & (A6) \text{ and } \sqrt{x^2 + y^2} \leq |x| + |y| \\ &\leq \left(1 + \frac{1}{2} \cdot \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}}\right) \|(\mathbf{x}^* - \mathbf{x}_t - \eta(\nabla l(\mathbf{x}^*) - \nabla l(\mathbf{x}_t)))_U\|_2 \\ & + \eta \left(1 + \frac{1}{2} \cdot \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}}\right) \|(\mathbf{x}^* - \mathbf{x}_t - \eta(\nabla l(\mathbf{x}^*) - \nabla l(\mathbf{x}_t)))_U\|_2 \\ & + \eta \left(1 + \frac{1}{2} \cdot \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}}\right) \|(\mathbf{x}^* - \mathbf{x}_t - \eta(\nabla l(\mathbf{x}^*) - \nabla l(\mathbf{x}_t)))_U\|_2 \\ &+ \left(1 + \frac{1}{2} \cdot \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}}\right) \|(\mathbf{x}^* - \mathbf{x}_t - \eta(\nabla l(\mathbf{x}^*) - \nabla l(\mathbf{x}_t)))_U\|_2 + \zeta + \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}} \cdot \epsilon \\ & (definition of \zeta \\ &\leq \left(1 + \frac{1}{2} \cdot \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}}\right) \left(1 - \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}}\right) \|\mathbf{x}_t - \mathbf{x}^*\|_2 + \zeta + \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}} \cdot \epsilon \\ & (A5) \\ &\leq \left(1 - \frac{1}{2} \cdot \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}}\right) \|\mathbf{x}_t - \mathbf{x}^*\|_2 + \zeta + \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}} \cdot \epsilon. \\ & (1 + \frac{a}{2}) (1 - a) \leq 1 - \frac{a}{2} \text{ for } a \geq 0 \end{aligned}$$

We turn to the inequality obtained after T steps. Using the inequality proved above, we obtain

$$\begin{aligned} \|\mathbf{x}_{T} - \mathbf{x}^{*}\|_{2} \\ &\leq \left(1 - \frac{1}{2} \cdot \frac{\mu_{2k+k^{*}}}{\nu_{2k+k^{*}}}\right)^{T} \|\mathbf{x}_{0} - \mathbf{x}^{*}\|_{2} + \left(\zeta + \frac{\mu_{2k+k^{*}}}{\nu_{2k+k^{*}}} \cdot \epsilon\right) \sum_{t=0}^{T-1} \left(1 - \frac{1}{2} \cdot \frac{\mu_{2k+k^{*}}}{\nu_{2k+k^{*}}}\right)^{t} \\ &\leq \left(1 - \frac{1}{2} \cdot \frac{\mu_{2k+k^{*}}}{\nu_{2k+k^{*}}}\right)^{T} \|\mathbf{x}_{0} - \mathbf{x}^{*}\|_{2} + 2\zeta \cdot \frac{\nu_{2k+k^{*}}}{\mu_{2k+k^{*}}} + 2\epsilon. \end{aligned}$$

Setting $T \ge 2 \cdot \frac{\nu_{2k+k^*}}{\mu_{2k+k^*}} \log \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2}{\epsilon} \ge \log \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2}{\epsilon} / \log \left(1 - \frac{1}{2} \cdot \frac{\mu_{2k+k^*}}{\nu_{2k+k^*}}\right)^{-1}$, we obtain $\|\mathbf{x}_T - \mathbf{x}^*\|_2 \le 3\epsilon + 2\zeta \cdot \frac{\nu_{2k+k^*}}{\mu_{2k+k^*}}.$

r		
L		
L		