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Abstract

Motivated by the widespread adoption of
large-scale A/B testing in industry, we pro-
pose a new experimentation framework for
the setting where potential experiments are
abundant (i.e., many hypotheses are avail-
able to test), and observations are costly; we
refer to this as the experiment-rich regime.
Such scenarios require the experimenter to
internalize the opportunity cost of assigning
a sample to a particular experiment. We fully
characterize the optimal policy and give an
algorithm to compute it. Furthermore, we
develop a simple heuristic that also provides
intuition for the optimal policy. We use sim-
ulations based on real data to compare both
the optimal algorithm and the heuristic to
other natural alternative experimental design
frameworks. In particular, we discuss the
paradox of power: high-powered “classical”
tests can lead to highly inefficient sampling
in the experiment-rich regime.

1 INTRODUCTION

In modern A /B testing (e.g., for web applications), it is
not uncommon to find organizations that run hundreds
or even thousands of experiments at a time (Kaufman
et al., 2017; Tang et al.,|2010a; Kohavi et all [2009; |Bak{
shy et al., [2014]). Increased computational power and
the ubiquity of software have made it easier to generate
hypotheses and deploy experiments. Organizations typ-
ically continuously experiment using A /B testing. In
particular, the space of potential experiments of inter-
est (i.e., hypotheses being tested) is vast; e.g., testing
the size, shape, font, etc., of page elements, testing
different feature designs and user flows, testing differ-
ent messages, etc. Artificial intelligence techniques are
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being deployed to help automate the design of such
tests, further increasing the pace at which new experi-
ments are designed (e.g., Sensei, Adobe’s A/B testing
product, is being used in Adobe Target)E]

This abundance of potential experiments has led to
an interesting phenomenon: despite the large num-
bers of visitors arriving per day at most online web
applications, organizations need to constantly consider
the most efficient way to allocate these visitors to ex-
periments. For many experiments, baseline rates may
be small (e.g., a low conversion rate), or more gener-
ally effect sizes may be quite small even relative to
large sample sizes. For example, large organizations
may be seeking relative changes in a conversion rate
of 0.5% or less, potentially necessitating millions of
users allocated to a single experiment to discover a
true effect. (See Tang et al.| (2010alb); [Deng et al.
(2013) and |Azevedo et al.| (2018), where these issues
are discussed extensively.) Since organizations have
a plethora of hypotheses of interest to test, there is
a significant opportunity cost: they must constantly
trade off allocation of a visitor to a current experiment
against the potential allocation of this visitor to a new
experiment.

In this paper, we study a benchmark model with the
feature that experiments are abundant relative to the
arrival rate of data; we refer to this as the experiment-
rich regime. A key feature of our analysis is the impact
of the opportunity cost described above: whereas much
of optimal experiment design takes place in the set-
ting of a single experiment, the experiment-rich regime
fundamentally requires us to trade off the potential
for discoveries across multiple experiments. Our main
contribution is a complete description of an optimal
discovery algorithm for our setting; the development
of an effective heuristic; and an extensive data-driven
simulation analysis of its performance against more
classical techniques commonly applied in industrial
A/B testing.

We present our model in Section [2} The formal setting
we consider mimics the setting of most industrial A/B

"https://www.adobe.com/marketing-cloud/target.
html
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testing contexts. The experimenter receives a stream of
observational units and can assign them to an infinite
number of possible experiments, or alternatives, of
varying quality (effect size). We consider a Bayesian
setting where there is a prior over the effect size of
each alternative, which is natural in a setting with an
infinite number of experiments.

We focus on the objective of finding an alternative
that is at least as good as a given threshold s as fast
as possible. In particular, we call an alternative a
discovery if the posterior probability that the effect
is greater than s is at least 1 — «a, and the goal is to
minimize the expected time per discovery. This is a
natural criterion: good performance requires finding
an alternative that is actually delivering practically
significant effects (as measured by s). Adjusting s and
« allows the experimenter to trade off the quality and
quantity of discoveries made. Note that under this
criterion any optimal policy is naturally incentivized
to find the “best” experiments, because the discovery
criterion is easiest to be met for those alternatives.

In Section [3| we present an optimal policy for alloca-
tion of observations to experiments. Since observations
arrive sequentially, the problem can be equivalently
formulated as minimizing the cumulative number of
observations until until a discovery is made. We char-
acterize a dynamic programming approximation of this
problem, and show this method converges to the opti-
mal policy in an appropriate sense. We also develop a
simple heuristic that approximates and provides insight
into the optimal policy.

In Section [4] we use data on baseball players’ batting
averages as input data for a simulation analysis of
our approach. Our simulations demonstrate that our
approach delivers fast discovery while controlling the
rate of false discoveries; and that our heuristic ap-
proximates the optimal policy well. We also use the
simulation setup to compare our method to “classical”
techniques for discovery in experiments (e.g., hypothe-
sis testing). This comparison reveals the ways in which
classical methods can be inefficient in the experiment-
rich regime. In particular, there is a paradoz of power:
efficient discovery can often lead to low power in a clas-
sical sense, and conversely high-powered classical tests
can be highly inefficient in maximizing the discovery
rate.

Due to space constraints, all proofs are given in the

appendix.

1.1 Related work

The literature on sequential testing goes back many
decades. Originally, Wald and Wolfowitz| (1948) pro-
pose an optimal test, the sequential probability ratio

test, or SPRT for short, for testing a simple hypoth-
esis. See also (1959). For a more thorough
overview of sequential testing, we refer the interested
reader to Siegmund| (2013), Wetherill and Glazebrook|
(1986), [Shiryayev| (1978) and |Lai (1997)). None of these
approaches consider the opportunity cost associated
with having multiple experiments.

Recently, there has been an increased interest in sequen-
tial testing due to the rise in popularity of A/B testing
(Deng et al., [2017; Kaufman et al., 2017} [Kharitonov|
let al. |2015; (Goldberg and Johndrow, [2017), and the
ubiquity of peeking (Johari et al., 2017; Balsubramani|
[and Ramdas)| 2016} [Deng et al., 2016). A recent paper
by |Azevedo et al.| (2018) discusses how the tails of the
effect distribution affect the assignment strategy of ob-
servations to experiments and complements this work
nicely.

There is also a strong connection to the multi-armed
bandit literature (Gittins et al.,2011; Bubeck and Cesa,
Bianchil, [2012), especially the pure exploration problem
(Bubeck et al., 2009; |Jamieson et al., 2014; Russo, 2016)),
where the goal is to find the best arm. The case with
infinitely many arms is studied by |Carpentier and Valko
(2015)); |Chaudhuri and Kalyanakrishnan! (2017); |Aziz
let al.| (2018). [Locatelli et al.| (2016) studies the setting
of finding the set of arms (out of finitely many) above
a given threshold in a fixed time horizon.
(2017)) consider a setting that combines the multi-armed
bandit problems with sequential tests.

Methods to control of the false discovery rate in the
sequential hypothesis setting are discussed by
[and Stine| (2007), |Javanmard and Montanari (2016])
and Ramdas et al| (2017)). The connection between
with multi-armed bandits is made by [Yang et al. (2017).
However, the Bayesian framework we propose does not
require multiple testing corrections. These works take
the results of the tests as given and provide methods to
adjust for multiple comparisons in a sequential manner,
rather than helping the experimenter to decide what
experiments to run.

The heavy-coin problem (Chandrasekaran and Karpl
[2012} Malloy et al. 2012} [Jamieson et al., [2016;
et al.L 2011)) is another closely related research area.
Here, a fraction of coins in a bag is considered heavy,
while most are light. The goal is to find a heavy coin as
quickly as possible. These approaches rely on likelihood
ratios, as there are only two alternatives, and there is a
connection to the CUSUM procedure . Re-
cently, these ideas have been adapted to crowdfunding
applications [Jain and Jamieson| (2018).

Optimal stopping rules have been studied extensively,
often under the umbrella of the secretary problem
[man| [1983; [Samuels|, [1991). There, the focus is on
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comparing across alternatives.

2 MODEL AND OBJECTIVE

In this section we describe the model we study and the
objective of the experimenter.

Experiments. We consider a model with an infinite
number of experiments, or alternatives, indexed by
i € {1,2,...}. Each experiment is associated with a
parameter u; € M C R drawn independently from a
common (known) prior 7 that completely characterizes
the distribution of outcomes corresponding to that
experiment. Throughout our analysis, the experimenter
is interested in experiments with higher values of ;.

Actions and outcomes. At times ¢t = 1,2,..., the
experimenter selects an alternative I; and observes an
independent outcome X; drawn from a distribution
F(ur,). Note, in particular, that opportunities for ob-
servations arrive in a sequential, streaming fashion. We
also assume that observations are independent across
experiments.

We assume that F'(u;) is described by a single parame-
ter natural exponential family, i.e. the density for an
observation can be written as:

fx(@ | p) =h(@)exp (uS(x) — A(p), (1)

for known functions S, h, and A. Let S! =
> t.1,—i S(Xt) be the canonical sufficient statistic for
experiment 7 at time t. Note that in particular, this
model includes the conjugate normal model with known
variance and the beta-binomial model for binary out-
comes.

Policies. Let F; = o{ X1, 11, Xo, I5, ..., X3, I; } denote
the o-field generated. A policy is a mapping from F;
to experiments.

Discoveries. The experimenter is interested in finding
discoveries, defined as follows.

Definition 1 (Discovery). We say that alternative i
1s a discovery at time t, given s and «, if

P(Mz‘ <s | ]:t) < . (2)

Here s and o are parameters that capture the exper-
imenter’s preferences, i.e., the level of aggressiveness
and risk that she is willing to tolerate. (Note that this
is more stringent than the related false discovery rate
guarantees (Benjamini and Hochberg, [2007)).)

We assume that the prior satisfies P(u; < s | 0) € (o, 1)
to avoid the trivial scenarios that all or none of the
alternatives is a discovery before trials begin.

Objective: Minimize time to discovery. As moti-
vated in the introduction, informally the objective is to

find discoveries as fast as possible. We formalize this
as follows: The goal of the experimenter is to design a
policy (i.e., an algorithm to match observations to ex-
periments) such that the number of observations until
the first discovery is minimized.

In particular, define the time to first discovery 7 as:

T =min{t: F* s.t. Pluy <s|F) <a}. (3)

Then the goal is to minimize E[r] over all policies.
Given this goal, the only decision the experimenter
needs to make at each point in time till the first suc-
cess is whether to reject the current experiment or to
continue with it.

Discussion. We conclude with three remarks regard-
ing our model.

(1) Posterior validity. Note that at the (random) stop-
ping time 7, the posterior is computed based on the
potentially adaptive matching policy used by the ex-
perimenter. The following lemma shows that when
the experimenter computes the posterior and decides
to stop the experiment at time ¢t when the condition
P(u;« < s | Ft) is met, the decision to stop does not
invalidate the discovery.

Lemma 1. The posterior for the discovered experiment

i* at time T satisfies

P« <s|Fr) <a (4)
almost surely.

(2) Flized cost per experiment. In some scenarios, start-
ing a new experiment has a cost; e.g., there may be
a cost to implementing a new variant, or results may
need to be analyzed on a per experiment basis. We
can incorporate such a cost in the objective, and our
results and approach generalize accordingly. Formally,
let ¢ be the cost of starting a new experiment, and
let my = |{i : 3’ < t: Iy = i}| be the cumulative
number of matched experiments up to time . We can
include the per experiment cost by considering instead
the problem of minimizing E[T + cm.].

(3) Fast rejection of experiments. The optimal policy,
described in the next section, tends to reject many
experiments very quickly, sometimes even after a sin-
gle sample. That is not surprising, given that related
CUSUM procedures (Pagel 1954)) share this characteris-
tic. This happens since we are studying an asymptotic
regime where the number of experiments are infinite.
As we will see, the limiting case of the experiment-rich
regime provides a valuable lens that challenges common
perceptions, such as the importance of power.

In practice, an experimenter may wish to avoid such
an aggressive rejection since starting experiments may
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be costly. Including a cost term for each experiment in
our setup can help alleviate the problem, which is easy
to do as described above.

3 OPTIMAL POLICY

In this section, we characterize the structure of the
optimal policy, show that it can be approximated arbi-
trarily well by considering a truncated problem, and
give an algorithm to compute the optimal policy of the
truncated problem. Finally, we present a simple heuris-
tic that approximates the optimal policy remarkably
well.

3.1 Sequential policies

We start with a key structural result that simplifies
the search for an optimal policy. The following lemma
shows that we can focus on policies that only consider
experiments sequentially, in the sense that once a new
experiment is being allocated observations, no previous
experiment will ever again receive observations.

Lemma 2. There exists an optimal policy such that
Iiy1 > I; for all t almost surely.

This result hinges on three aspects of our model: exper-
iments are independent of each other, with identically
distributed effects pu;; there are an infinite number of
experiments available; and observations arrive in an
infinite stream. As a consequence, all experiments are
a priori equally viable, and a posteriori once the exper-
imenter has determined to stop allocating observations
to an experiment, she need never consider it again.

Note in particular that this lemma also reveals that
any optimal policy for the first discovery also straight-
forwardly minimizes the expected time until the k’th
discovery, for any k.

3.2 Reformulating the optimization problem

Based on Lemma [2] we can reformulate and simplify
the optimization problem faced by the experimenter as
a sequential decision problem, where the only choice is
whether or not to continue testing the current experi-
ment.

We abuse notation to describe this new perspective.
Let p denote the effect size of the current experiment.
In particular, let X,, be the n’th observation; let F,,
be the o-field generated by observations of the current
experiment (X1,...,X,). Let S, = >}, S(X}) de-
note the canonical sufficient statistic at state n. The
state of the sequential decision problem is (n,S,), the
number of observations and the sufficient statistic of
the current experiment.

If (n, S,,) has the property that P(1 < s|S,) < «, then
a discovery has been found and so the process stops.
The following lemma shows that this discovery criterion
induces an acceptance region on the sufficient statistic
Sn, 1.e., a sequence of thresholds a,, such the current
experiment is a discovery when S,, > a,.

Lemma 3. There exists a sequence {an}52, such that
P(u < s|Sn) < a if and only if Sy, > ay,.

If S,, < ay, then the experimenter can make one of two
decisions:

1. Continue (i.e., collect one additional observation
on the current experiment); or

2. Reject (i.e., quit the current experiment and collect
the first observation of a new experiment).

If Continue is chosen, the state updates to (n+1, Sp41)-
If Reject is chosen, the state changes to (1,51) (where
S1 is an independent draw of the sufficient statistic
after the first observation); and in either case, the
process continues.

The goal of the experimenter is to minimize the ex-
pected time until the observation process stops, i.e.,
until a discovery is found. Let V(n,S,,) be this mini-
mum, starting from state (n,S,). Then the Bellman
equation for this process is as follows:

V(n,Sn) =0, Sp>ap; (5)
V(n,S,) =1+ min{E[V(n+1,S,+1)|S],
E[V(1,5)]}, 8 < an n>1. (6)

The first line corresponds to the case where .Sy, is in the
acceptance region, i.e., the process stops. In the second
line, we consider two possibilities: continuing incurs a
unit cost for the current observation, plus the expected
cost from the state (n + 1, S,41); rejecting resets the
state with no cost incurred. The optimal choice is
found by minimizing between these alternatives. The
expected number of samples T™* till a discovery satisfies
T =1+4+E[V(1,5)]

3.3 Characterizing the optimal policy

The following theorem shows that an optimal policy
for the dynamic programming problem —@ can be
expressed using a sequence of rejection thresholds on
the sufficient statistic. That is, for each n there is an
ry, such that it is optimal to Continue if S,, > r,, and
to Reject if S, < ry,.

Theorem 4. There exists an optimal policy for —@
described by a sequence of rejection thresholds {r,}32
such that, after n observations, Reject is declared if
Sn < Tn, Continue is declared if r, < S, < an, and
the process stops with a discovery if S, > ay,.
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The remainder of the section is devoted to computing
the optimal sequence of rejection thresholds.

3.4 Approximating the optimal policy via
truncation

In order to compute an optimal policy, we consider a
truncated problem. This problem is identical in every
respect to the problem in Section [3.2] except that we
consider only policies that must choose Reject after
k observations. We refer to this as the k-truncated
problem.

Let Vi(n,S,) denote the minimum expected cumu-
lative time to discovery for the k-truncated prob-
lem, starting from state (n,S,). The Bellman equa-
tion is nearly identical to —@, except that now
Vie(k, Sk) = 1 + E[Vi (1, 51)], Sk < ax, and we add the
additional constraint that n < k to @ We have the
following proposition.

Theorem 5. There exists an optimal policy for the
k-truncated problem described by a sequence of rejec-
tion thresholds {r¥}°%_, such that, after n observations,
Reject is declared if S, < r¥, Continue is declared if
rfl < Sp < an, and Accept is declared is if S, > an,.

Further, let T} = E[Vi(1,51)] + 1 be the optimal ex-
pected number of observations until a discovery is made.
Then for each n, rfj —1p as k — oo; and T — T* as
k — oo.

3.5 Computing the truncated optimal policy

The truncated horizon brings us closer to computing an
optimal policy, but it is still an infinite horizon dynamic
programming problem. In this section we show instead
that we can compute the truncated optimal policy
by iteratively solving a single-experiment truncated
problem with a fixed rejection cost k. Let Wy(n, S, |x)
be the optimal expected cost for this problem starting
from state (n,S,). We have the following Bellman

equation.

Wi(n, Splk) =0, S, > ag; (7)
Wi (k, Sk|k) = K, Sk < ag; (8)
Wi(n, Splk) = 14+ min {E[Wi(n + 1, S,41|k)|Sn], £},

n<k,S, <a. (9)

For any terminal cost x, this dynamic programming
problem is easily solved using backward induction to
find the rejection boundaries. The following theorem
shows how we can use this solution to find an optimal
policy to the truncated problem.

Theorem 6. If x = 1}, then the optimal policy for
—@D with rejection thresholds 7% found by backward

induction satisfies ?’fb =1k for alln < k. Furthermore,

let f(k) = 1+ E[Wk(1, S1|k)] be the optimal cost. Then
if k> Ty, f(k) <K, and if kK < T}, then f(Kk) > K.

Thus, to find approximately optimal rejection thresh-
olds, select k suitably large, and start with an arbitrary
k. Then iteratively compute the corresponding thresh-
olds 7 and the cost f(k), using bisection to converge
on T}, and thus the corresponding optimal thresholds.

We note that the same program we have outlined in
this section can be used to compute an optimal policy
with a per experiment fixed cost ¢, by using rejection
cost k + ¢ instead of k. Empirically, this leads to
only slightly lower rejection thresholds; due to space
constraints, we omit the details.

3.6 HEURISTIC APPROXIMATION

We have seen that the optimal policy is easy to approx-
imate by solving dynamic programs iteratively. How-
ever, this does not give us direct insight into the struc-
ture of the solution, and in certain cases a quick rule-of-
thumb that provides an approximate policy might be
all that is required. In this section, we show that there
exists a simple heuristic that performs remarkably well.

The approximate rejection boundary at time n is found
as follows. Let i be the MAP estimate of 1 for sufficient
statistic Sp+7+ = apyr~. Then reject the current
experiment if S, is not plausible under fi. That is, the
heuristic boundary 7, is, for a suitably chosen (3,

P(Sy < T | p=f) = 5. (10)

Of course, this heuristic is not practical as is, as in
general we do not know 7™ unless we compute the
optimal policy. But often a,4; varies only little in ¢
S0 a reasonable approximate choice T}, is sufficient. In
Figure[I] we plot the discovery and rejection boundaries,
along with the heuristic outlined above (with T}, = T™*),
for the normal and Bernoulli models.

The heuristic and optimal policies clearly exhibit aggres-
sive rejection regions, cf. Figure[ll THe interpretation
is as follows: to continue sampling from the current
experiment, we do not just want its quality to be s,
but substantially better than s, since a,, > s for all n.
If not, it would take too many additional observations
to verify the discovery.

4 CASE STUDY: BASEBALL

We now empirically analyze our testing framework
based on a simulation with baseball data. First, we
demonstrate empirically that the proposed algorithm
leads to fast discoveries, and behaves differently from
traditional testing approaches. Second, we show that
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Figure 1: Acceptance and rejection regions for the conjugate Normal and the Beta-Binomial models. The dashed
blue line gives the heuristic rejection boundary, while the red line corresponds to the optimal rejection thresholds.
Note that the boundaries are shown in terms of the MAP estimate.

the rule-of-thumb heuristic performance is close to that
of the optimal policyE|

Data We use the baseball dataset with pitching and
hitting statistics from 1871 through 2016 from the
Lahman R package. The number of At Bats (AB)
and Hits (H) is collected for each player, and we are
interested in finding players with a high batting average,
defined as b; = Hits; /At Bats;. We consider players
with at least 200 At Bats, which leaves a total of
5721 players, with a mean of about 2300 At Bats.
In the top left of Figure [2] we plot the histogram of
batting averages, along with an approximation by a
beta distribution (fit via method of moments). We note
that these fit the data reasonably well, but not perfectly.
This discrepancy helps us evaluate the robustness to a
misspecified prior.

Simulation setup To construct the testing problem,
we view the batters as alternatives, with empirical
batting average b; of batter ¢ treated as ground truth.
We want to find alternatives with b; > s. We draw a
Bernoulli sample of mean b; to simulate an observation
from alternative . These samples are then used to test
whether b; > s. We set a = 0.05, and vary s between
0.25 and 0.32. For each simulation, we iterate through
each batter and repeat it 1000 times to reduce variance.
This allows us to compare methods fairly, ensuring that
each procedure is run on exactly the same test cases.

4.1 Benchmarks

To assess performance, we compare several testing pro-
cedures. Note that the non-traditional setup of our test-
ing framework does not allow for easy comparison with
other methods, in particular frequentist approaches,
as they give different guarantees. Thus, we restrict

2Code to replicate results will be made publicly available.

attention to Bayesian methods that provide the same
error guarantee. All of the benchmarks use the same
beta prior computed above.

Optimal policy First we study the optimal policy
based on the beta-binomial model, computed using
the bisection and backward induction approach in Sec-
tion where we truncate after £ = 5000 samples.

Heuristic policy Next, we include the heuristic re-
jection thresholds that approximate the optimal policy
for truncation k£ = 5000 samples. The heuristic policy
requires setting two parameters: T}, i.e., how far to
look into the future to find the acceptance boundary,
which is ideally set close to T*; and the rejection region
8. To demonstrate the the insensitivity to T*, we use
T}, = 2000 and B8 = 0.2 for all simulations. (Note that
T* varies dramatically as we change the threshold s.

Fixed sample size test Our next benchmark is a
simple fixed sample size test. For each experiment,
we gather NV observations, and claim a discovery if
P(u; < s|Y;) < a where Y; is the number of Hits of
alternative (batter) i. We focus our attention on using
N = 1000 samples per test, as this seems to perform
best when compared to other sample sizes, but any
differences are immaterial for our conclusions.

Fixed sample size test with early stopping This
benchmark is similar to the fixed sample size test, ex-
cept that we stop the experiment early if the discovery
criterion is met. Thus, we can quantify the gains from
being able to discover early.

Bayesian sequential test Now we consider a se-
quential test that also rejects early. In particular, we
reject the current experiment if P(b; > s | St) < 5. We
also reject an alternative after 4000 samples. This ap-
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proach also requires careful tuning of 8. In particular,
if 8 is too large, say larger than the prior probability
Po(b; > s), then the test is too aggressive and rejects
all alternatives outright. Instead, we found empiri-
cally that setting § = 0.9Py(b; > s) leads to good
performance across all values of s.

4.2 Results

Average time to discovery The average number
of observations until a discovery is shown in the top
right plot of Figure 2l As expected, the fixed sample
test performs worst. Early stopping leads to slightly
better performance, but this method is still not effec-
tive as most of the gains come from early rejection.
The Bayesian sequential test demonstrates this effect
and shows substantial gains over the fixed tests. The
heuristic policy, despite lack of parameter tuning, per-
forms very well, essentially matching the performance
of the optimal algorithm for most thresholds.

False discovery proportion and robustness
Next, we compare the false discovery proportion (FDP)
(Benjamini and Hochberg, 2007)), i.e., the fraction of
discoveries that in fact had true b; < s. If the prior
is correctly specified, the methods we consider satisfy
E(FDP) < aE| Indeed, we observe that the guaran-
tee holds for most thresholds and algorithms in the
bottom left plot of Figure 2] There is some minor
exceedance of the FDP for thresholds around s & 0.28,
which can be explained by the fact that the prior does
not fit the empirical batting averages perfectly. Since
there are few rejections for thresholds beyond s = 0.3,
the FDP estimate has higher variance in that regime.
Across all simulations, the optimal policy has an FDP
of 0.048 < «. Finally, we see that the lack of early
stopping makes the fixed test rather conservative.

The paradox of power Finally, we compare power,
i.e., the fraction of alternatives ¢ with b; > s that are
declared a discovery. Power comparisons across the
algorithms are plotted in the bottom right of Figure [2]
The most surprising insight from the simulations is
the paradox of power. Algorithms that are effective
have very low power. This is counter-intuitive: how
can algorithms that make many discoveries have only
a small chance of picking up true effects? The main
driver of good performance for an algorithm is the abil-
ity to quickly reject unpromising alternatives. Some
unpromising alternatives are “barely winners”: i.e., b;
is only slightly above s. In the experiment-rich regime,
such alternatives should be rejected quickly, because
it takes too many observations to get enough concen-

3However, note that this is different from frequentist
FDR guarantees, which these methods do not provide.

tration around the posterior to claim a discovery. This
effect leads to low power, but fast discoveries.

5 CONCLUSION

We consider an experimentation setting where observa-
tions are costly, and there is an abundance of possible
experiments to run — an increasingly prevalent scenario
as the world is becoming more data-driven. Based on
backward induction, we can compute an approximately
optimal algorithm that allocates observations to exper-
iments such that the time to a discovery is minimized.
Simulations validate the efficacy of our approach, and
also reveal discuss the paradox of power: there is a
tension between high-powered tests, and being efficient
with observations.

Our paradigm has several additional practical benefits.
First, we can leverage knowledge across experiments
through the prior. Second, adaptive matching of obser-
vations to experiments does not preclude valid inference,
and thus outcomes can thus continuously be monitored.
Finally, the framework also provides an easy “user in-
terface”: it directly incorporates the desired effect size,
and leads to guarantees that are easy to explain to
non-experts.
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Figure 2: Top left: histogram of batting averages. Top right: Efficacy of of algorithms. Bottom left: Plot the
false discovery proportion across thresholds. Bottom right: Plot of the empirical power of algorithms. Note the
paradoz of power effect: the most efficient algorithms have low power.
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A PROOFS

A.1 Proofs from Section

Proof of Lemma[dl The result relies on T being a stopping time. Recall that i* indicates the discovered experiment.
Then we find

Pl <s | Fr) =Y Pu; <s|Fn{r=t})P(r =1t)

=1
<a ZP(T =t)=«
t=1
where we use that F' € F, if F'n {7 =t} € F (Williams, [1991)[p.219]. O

Proof of Lemma[3 Note that due to independence we can assume without loss of generality that the index of
the arm corresponds to the order in which alternatives are first considered. Thus the result follows if we show
that for any ¢, action I; < I;_; cannot be strictly better than I; = I;11. Assume to the contrary that I; =y is
optimal (and strictly better than I; = I;_1 + 1 for some y < I;. Counsider the last time alternative y was selected:
t' = max{k <t: I, =y}. At that time it was at least as good to consider a new alternative, and subsequently
the posterior for alternative y has not changed due to independence. Due to the infinite time horizon, it is thus
at least as good to consider a new alternative. O

A.2 Proofs from Section [3

Proof of Lemma[3 Let n > 1. We can rewrite the discovery criterion as

P TT A exp (uS(X) — A(p)) dr(y)
Pl <o 150 =0 =151 () exp (45(X,) — Aw) dn(p) 1D
2 exp (uSn — nA(p)) dr(p)
= % exp (450 — nAGD) dr () 12)

) dr(p
) dm(p

(
(

J2 oo exp (ut — nA(u
(

) )
Joo exp (ut — nA(p) ) (19)

We show that this is decreasing in ¢.

Now take the logarithm and the derivative with respect to ¢ to obtain

d J° o wexp(ut — nA(u))dr(u)
ap 1oB <5 [ S = 1)) = T A ) () (4
o pexp(pt — nA(p))dr (p) (15)

Joo exp(ut — nA(u))dr (1)
— By, (1| 1< 5) — Ep, (1) < 0 (16)
where the expectations in the last line is taken with respect to the distribution with density
exp(pt — nA(p))dm (1)
J7o exp(ut — nA(p))dm (i)
Note that the last inequality holds, because, in general

E(f) =E(@ |0 < s)P(O <s)+E@|0>s)P(0>s)>E@|0<s)P0<s)+sPO>s)>E@B)0<s) (18)

fie(p) =

Now the lemma follows: if P(u < s| S, =t) < a, then P(u < s|S, =t') < afor all > t, and similarly if if
Plu<s|Sp=t)>a,then P(pu<s|S,=1t)>aforal t/ <t. O
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To prove the theorems in Section [3] we use the following lemmas, which are proven at the end of this section.

Lemma 7. The optimal policy for the truncated problem can be characterized by a rejection threshold. That is,
the optimal policy rejects the current experiment if S, < r¥ for a sequence r¥, and collects another observation
for the current experiment otherwise, until a discovery is made.

Write T}, for the expected number of observations required for a discovery for the optimal policy of the truncated
problem. Then we can show that both T and r¥ converge.

Lemma 8. Both Ty, and % converge as k — .

Proof of Theorem[]] Lemma [7]shows that the truncated problem has an optimal policy that has the form of a
threshold. Next, lemma [§ shows that both the thresholds and the optimal cost converge.

Recall T* = limp_,oo T} and 7, = limp_, r . Now we show that limiting policy r, with corresponding cost T™*
is optimal.

Suppose there exists an € > 0 and a policy ¢ with cost T such that T = T* — e. Consider a policy with cost
T < T*. Let 7 be the stopping time of this policy. We consider the truncated version of this policy, and show that
it cannot be much worse. On the other hand, this truncated policy has a cost larger than 7. The k-truncated
policy, denoted by ¢, rejects the current alternative after k samples, but is otherwise identical to ¢. Let 7 and 7
be the stopping times corresponding to ¢ and ¢,,. Trivially, we have T = > re P(7 > k). Because T is finite,
P(7 > k) = O((klogk)™!). Because ¢ and ¢, are identical up to k observations, it follows that if 7 < k, then
Tr < k, and thus we find that

E(7r) =P(F > k)E(Tr | T > k) + E(FI(

T <k))
<P(F > k)(k+E(T)) + EFLT < k

)
Thus, it follows that

N

kP(F > k)

E(7) < . 19
) S T m Y TP S B (19)
Since P(7 > k) = O((klogk)™Y), E(71) — T as k — oc.
However, T* < E(7},) for all k, and thus T* < limy_,o, E(7%) = T, which is a contradiction. O
Proof of Theorem[5 This is a direct consequence of lemmas [7] and [§ O
Proof of Theorem|[6 Let 7, denote the (random) hitting time of the boundary of the first alternative
7 =min{n: S, > a, or S, < r,} (20)

under rejection boundary r = {r,,}*_,. Furthermore, let ¢, = P(S, < r,) denote the rejection probability. Now
note that f(k) = min, E(7,.) + k¢, Note that we can solve this minimization problem using backward induction,
since the time horizon is fixed (k). First, we show that f has a unique fixed point which is equal to T}'.

Note that we have
T, = E(7.) + Trq» (21)

By definition, T}¥ minimizes min, E(7.) + T} g,, thus, it follows immediately that T} is a fixed point of f.
Next, we show that f(k) >  for each k < T} and f(k) < & for each k > T}}.

First, fix k < T}}. Suppose that f(x) < k. Thus, there exists r’ such that E(7,v)+rg, < k. Thus, k > %&‘"I) =T,

where the last equality follows from . This, along with x < T} implies that T;» < T}, a contradiction. Thus,
we must have f(k) > k.

Finally, fix k > T™. We know that
T = E(rp) + T gre < B(7p+) + K@= (22)

Thus, there exists r (equal to r*) such that E[r.] + k¢, < k. Thus, f(r) < k. O
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A.3 Proofs of lemmas
Proof of Lemma[7 Based on Lemmal2] there exists a policy that can be characterized by a sequence of three sets
e Discover if S,, € A,,, the experiment is a discovery

e Continue if S,, € D,,, and
e Reject if S, € R,
Now note that R is a threshold region for n > k by definition. Assume R¥, = (—oo,r¥ ] for all m > n. Further,

from the Bellman equation for the truncated problem, it is clear that the optimal solution rejects the current
experiment at the time n if

E[Vi(n+1,S,41) | Sn] > E[Vi(1,81)] =T — 1. (23)
Note that

E[Vi(n + 1, 8011) | Sp = 2] = / Viln+ L,y)f(Suss = y | S = 2)dy
YyED L 11

+ T]:P(Sn_i_l < Tn41 | S, = 3:) (24)

Then for n we note that E[Vi(n+1,S,4+1) | Sy, = 2] is decreasing in . This follows since Vi (n+1,y) < T} for all
Y € Dpy1 = [rny1, an+1ﬁ as for such y it is better to continue than to reject. Furthermore, arguing along the lines

of the proof of Lemma |3} P(S,41 < 741 | Sn = ) is decreasing in z. This implies we can write R¥ = (—oo, %]
for some 7F. O

Proof of Lemma[8 Due to increased degrees of freedom, it follows that T} is decreasing. Since T} is bounded
below by 0, T} converges. Let T™ = limy, T};.

Next, we show that 7% is decreasing in k: Clearly, rf "' < r¥. Now suppose ri 1] <r%_ |, then ri+1 < vk which

follows from the fact that E[Vi(n +1,Sn41) | Sp = r¥] + 1 =T}, and T} is decreasing in k. It remains to show
that 7 is bounded.

We construct a lower bound on 7%, for large k, as follows. Let & = ﬁ and let 2 be such that P(3m > n s.t. S, >
am | Sp = ) < &, by choosing z sufficiently small. Then we note that the cost for obtaining another sample is at
least 14+ (1 —e)Ty > 1+ (1 —¢)T* =T* + 1/2. However, if the experimenter rejects the current alternative now,
the cost is Tj. Thus, if we can show that there exists a K such that for all k > K, T} <T* +1/2, then z is a
lower bound on 7% for all k> K. But above we have shown that T} — T, hence such K exists. This implies
that 7% converges as k — oo. O
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