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A Proofs

When we say that T is a geometric random variable with parameter, or success probability, p we mean that

P(T ≥ k) = (1− p)k, k ≥ 1.

Proposition 3. Assume limN→∞ ρN =: ρ ∈ (0, 1). Then we have the following central limit theorem for the
average number of coin flips as N →∞

√
N

 1

N

N∑
j=1

Cj,N −
1

ρN

 d→ N
(

0,
1− ρ
ρ2

)
,

where
d→ denotes convergence in distribution.

Proof. The random variables Zi,N = (Ci,N − 1/ρN ) /
√
N form a triangular array

{Zi,N ; i = 1, . . . N,N ∈ N}

of row wise independent random variables. Define s2N =
∑N
i=1 var (Zi,N ) = (1− ρN ) /ρ2N and notice that

s2N → 1 − ρ ∈ (0, 1) as N → ∞. In addition one can easily show that E[|Z1,N |3] are bounded uniformly in N
and therefore

1

s3N

N∑
i=1

E [Zi,N ] =
ρ
3/2
N

(1− ρN )3
N

N3/2
E
[
|Z1,N |3

]
≤ C√

N
→ 0, as N →∞,

that is the Lyapunov condition is satisfied and therefore N →∞

1√
N

N∑
i=1

(
Ci,N −

1

ρN

)
d→ N

(
0, s2

)
,

where s2 = limN→∞ s2N = (1− ρ)/ρ2.

Proposition 4. For N ∈ N let C1,N , . . . , CN,N denote independent samples from a geometric distribution with
success probability ρN , then the minimum variance unbiased estimator for ρN is

ρ̂mvue
N =

N − 1∑N
k=1 Ck,N − 1

. (1)

Proof. This is a straightforward application of the Lehmann-Scheffé Theorem [4, Theorem 7.4.1]. Take the
unbiased estimator 1 {C1,N = 1}, where 1{A} denotes the indicator function of the set A, and condition on the
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complete and sufficient statistic (of the coin flips)
∑N
k=1 Ck,N . A straightforward calculation yields

E

[
1 {C1,N = 1} |

N∑
k=1

Ck,N = n

]
=

P
(
C1 = 1,

∑N
k=2 Ck,N = n− 1

)
P
(∑N

k=1 Ck,N = n
)

=
p
(
n−2
N−2

)
pN−1(1− p)n−N(

n−1
N−1

)
pN (1− p)n−N

=
N − 1

n− 1

and thus

ρ̂mvue
N = E

[
1 {C1,N = 1} |

N∑
k=1

Ck,N

]
=

N − 1∑N
k=1 Ck,N − 1

.

Proposition 5. For N ∈ N let C1,N , C2,N , . . . denote independent samples from a Geometric distribution with
success probability ρN , then √

N (ρ̂mvue
N − ρN )

d→ N
(
0, (1− ρ) ρ2

)
.

Proof. By Proposition 3 we have convergence

√
N

(
1

N

N∑
i=1

Ci,N −
1

ρN

)
d→ N

(
0,

1− ρ
ρ2

)
.

In addition, ∣∣∣∣∣√N
(∑N

i=1 Ci,N − 1

N − 1
− 1

ρN

)
−
√
N

(
1

N

N∑
i=1

Ci,N −
1

ρN

)∣∣∣∣∣→ 0

almost surely, so

√
N

(∑N
i=1 Ci,N − 1

N − 1
− 1

ρN

)
d→ N

(
0,

1− ρ
ρ2

)
.

By the δ-Method with g(x) = 1/x, |g′(x)| = 1/x2 we obtain

√
N

(
g

(∑N
i=1 Ci,N − 1

N − 1

)
− g

(
1

ρN

))
=
√
N

(
N − 1∑
Ci,N − 1

− ρN
)

d→ N
(

0,
1− ρ
ρ2
· ρ4
)

= N
(
0, (1− ρ) ρ2

)
.

Theorem 6. The estimator

ρ̂N,T =

T∏
t=1

1

N

N∑
k=1

ckt ·
N − 1∑N

k=1 Ck,N − 1
.

is unbiased for p(y1:T ), i.e.
E [ρ̂N,T ] = p(y1:T ).
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Proof. The main argument is that the standard proof for unbiasedness using backward induction can be adapted
to include our estimator using the geometric random variables C1,N , . . . , CN,N . Denote by X,X the random
variables before and after resampling respectively. Then we have

E

[
1

N

N∑
i=1

wkT | X1:N
T−1

]

= E

[
1

N

N∑
i=1

g(yT | Xi
T ) | X1:N

T−1

]

=
1

N

N∑
i=1

∫
g(yT | xiT )p(xiT | X1:N

T−1)dxiT

=
1

N

N∑
i=1

∫
g(yT | xiT )

N∑
j=1

f(xiT | X
j
T−1)

g(yT−1 | Xj
T−1)∑N

k=1 g(yT−1 | Xk
T−1)

dxiT

=
1

N

N∑
i=1

N∑
j=1

∫
g(yT | xiT )f(xiT | X

j
T−1)

g(yT−1 | Xj
T−1)∑N

k=1 g(yT−1 | Xk
T−1)

dxiT

=
1

N

N∑
i=1

N∑
j=1

p(yT | Xj
T−1)

g(yT−1 | Xj
T−1)∑N

k=1 g(yT−1 | Xk
T−1)

=

∑N
j=1 p(yT−1:T | X

j
T−1)∑N

k=1 g(yT−1 | Xk
T−1)

.

Now, considering the case where we estimate the weights using the geometric random variables, we have

E

[
1

N

N∑
k=1

ckT ·
N − 1∑N

k=1 Ck,N,T − 1
| X1:N

T−1

]

= E

[
1

N

N∑
k=1

ckTE

{
N − 1∑N

k=1 Ck,N,T − 1
| X1:N

T , X
1:N

T−1

}
| X1:N

T−1

]

= E

[
1

N

N∑
k=1

ckT

∑N
k=1 w

k
T∑N

k=1 c
k
T

| X1:N
T−1

]

= E

[
1

N

N∑
k=1

wkT | X1:N
T−1

]

=

∑N
k=1 p(yT−1:T | xkT−1)∑N
k=1 g(yT−1 | xkT−1)
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and

E

 1

N

N∑
j=1

cjT−1 ·
N − 1∑N

k=1 Ck,N,T−1 − 1

 ·
 1

N

N∑
j=1

cjT ·
N − 1∑N

k=1 Ck,N,T − 1

 | X1:N
T−2


= E

E
 1

N

N∑
j=1

cjT−1 ·
N − 1∑N

k=1 Ck,N,T−1 − 1

 ·
 1

N

N∑
j=1

cjT ·
N − 1∑N

k=1 Ck,N,T − 1

 | X1:N
T−2:T−1, X

1:N

T−2, C1:N,N,T−1

 | X1:N
T−2


= E

 1

N

N∑
j=1

cjT−1 ·
N − 1∑N

k=1 Ck,N,T−1 − 1

E

 1

N

N∑
j=1

cjT ·
N − 1∑N

k=1 Ck,N,T − 1

 | X1:N
T−2:T−1, X

1:N

T−2, C1:N,N,T−1

 | X1:N
T−2


= E

 1

N

N∑
j=1

cjT−1 ·
N − 1∑N

k=1 Ck,N,T−1 − 1

∑N
k=1 p(yT−1:T | Xk

T−1)∑N
k=1 g(yT−1 | Xk

T−1)
| X1:N

T−2


= E

E
 1

N

N∑
j=1

cjT−1 ·
N − 1∑N

k=1 Ck,N,T−1 − 1

 | Xk
T−1, X

k

T−2

 ∑N
k=1 p(yT−1:T | Xk

T−1)∑N
k=1 g(yT−1 | Xk

T−1)
| X1:N

T−2


= E

[(
1

N

N∑
k=1

wkT−1

)
·
∑N
k=1 p(yT−1:T | Xk

T−1)∑N
k=1 g(yT−1 | Xk

T−1)
| X1:N

T−2

]
.

For the final expectation, we can calculate

E

[
1

N

N∑
k=1

wkT−1 ·
∑N
k=1 p(yT−1:T | Xk

T−1)∑N
k=1 g(yT−1 | Xk

T−1)
| X1:N

T−2

]

= E

[
1

N

N∑
k=1

g(yT−1 | Xk
T−1)

∑N
k=1 p(yT−1:T | Xk

T−1)∑N
k=1 g(yT−1 | Xk

T−1)
| X1:N

T−2

]

= E

[
1

N

N∑
k=1

p(yT−1:T | Xk
T−1) | X1:N

T−2

]

=
1

N

N∑
k=1

∫
p(yT−1:T | xkT−1)p(xkT−1 | X1:N

T−2)dxkT−1

=
1

N

N∑
k=1

∫
p(yT−1:T | xkT−1)

∑N
j=1 g(yT−2 | Xj

T−2)f(xkT−1 | X
j
T−2)∑N

j=1 g(yT−2 | Xj
T−2)

dxkT−1

=

N∑
j=1

p(yT−1:T | Xj
T−2)

g(yT−2 | Xj
T−2)∑N

k=1 g(yT−2 | Xk
T−2)

=

∑N
j=1 p(yT−2:T | X

j
T−2)∑N

j=1 g(yT−2 | Xj
T−2)

.

Repeated application of these steps yields

E

[
T∏
t=1

1

N

N∑
k=1

ckt ·
N − 1∑N

k=1 Ck,N − 1

]
= E

[
1

N

N∑
k=1

g(y1 | Xk
1 )

∑N
j=1 p(y1:T | X

j
1)∑N

j=1 g(y1 | Xj
1)

]
= p(y1:T ).

B Further Details to the Applications

B.1 Locally optimal proposal: run-time

We conjecture that the advantage of the BRPF over the RWPF grows as the state transition get computationally
more expensive. We will demonstrate that on a toy example.
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(a) Simulating from known Gaussian. (b) Rejection Sampler.

Figure 1: Comparing the run-time for different implementation for the proposal q(· | x, y). In case (a) the
Gaussian proposal is sampled using a näıve implementation. In (b) we use a rejection sampler proposing from
the state transition.

First note that in case of the Gaussian state space model, the locally optimal proposal,

q∗(xt | yt, xt−1) ∝ g(yt | xt)f(xt | xt−1)

∝ ϕ
(
xt;

1

2
(axt−1 + yt), 2.5

2

)
is known analytically and is Gaussian. Therefore, in this special case the rejection sampler can be avoided. This
will not usually be the case, hence we use the rejection sampler for our simulation. However, this will significantly
speed up the state transition. In Figure 1 we compare the run-time of both, the RWPF and BRPF for different
numbers of particles. In scenario (a) we use the cheap transition. Here the RWPF is very efficient. However, in
scenario (b), which we also show in the main paper, where sampling from the transition is more expensive, we
can implement the BRPF with the same run-time as the RWPF.

B.2 Sine diffusion: run-time

Here we compare the run-time for the RWPF and BRPF for the sine diffusion state space model. As pointed
out in the main text, the BRPF is slower when implemented sequentially, but we observe in Figure 2 that the
difference almost completely vanishes when use a parallel implementation with 16 processes.

C Cox Process inference

To further demonstrate the range of possible application and for further illustration of the Bernoulli race particle
filter, we consider another application of the BRPF to a Cox process whose intensity function is governed by
Gaussian process that is normalized through a sigmoid function. The underlying Gaussian process is modelled
as a Gauss–Markov process, allowing us to perform inference sequentially as done by Li and Godsill [5] based on
models of Adams et al. [1] and Christensen et al. [3].

C.1 Likelihood and Estimation

We assume the latent Gaussian process to evolve according to the Ornstein–Uhlenbeck process

dXt = AXtdt+ hdBt t ∈ [0, T ], (2)

where (Bt)t∈[0,T ] denotes a Brownian motion from 0 to T . We will describe the structural assumptions on A
and h in more detail below. Denote the observed data by s1:n ⊂ [0, T ], where n is the number of observations.
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Figure 2: Comparison of the run-time for RWPF and BRPF for sine diffusion state space model. For BRPF we
show a sequential and a parallel implementation with 16 cores. For all algorithms we show wall-clock time for
number of particles N .

We model the data by a Cox process with intensity function

λ(t) = σ(Xt) =
1

1 + exp(−Xt)
=

exp(Xt)

1 + exp(Xt)
,

where (Xt)t∈[0,T ] is the SDE (2) introduced before. The likelihood function of the Cox process conditional on
the intensity is Poisson with

p(s1:n | λ, T ) = exp

(
−
∫ T
0

λ(s)ds

)
n∏
i=1

λ(si). (3)

The likelihood is clearly intractable due to the integral which involves the latent Gaussian process. To implement
a particle filter for sequential inference we need to find an unbiased coin with probability proportional to the
integral in (3). For any interval [t0, t1] ⊂ [0, T ] we can find an estimator for exp(−

∫ t1
t0
λ(s)ds) by observing that

for U ∼ U [t0, t1] and a fixed process X = (Xt)t∈[t0,t1] we have

E [λ(U) | X = x] =

∫ t1

t0

λ(s)

t1 − t0
ds

=
1

t0 − t1

∫ t1

t0

1

1 + exp(−xs)
ds

and hence, if V ∼ U [0, 1] independent of all other random variables, we obtain

P (V ≤ λ(U) | X = x) =

∫ t1

t0

λ(s)

t1 − t0
ds.

Now sample K ∼ Pois(t1 − t0), then an unbiased coin flip can be generated using

Z =

K∏
i=1

1 {Vi ≤ 1− λ(Ui)} ,
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where 1{A} denotes the indicator function of the set A. This estimator is indeed unbiased as can be seen by

E [Z] = E

[
K∏
i=1

1 {Vi ≤ 1− λ(Ui)} | X = x

]

= e−(t1−t0)
∞∑
k=0

(t1 − t0)
k

k!

k∏
i=1

E [1 {Vi ≤ 1− λ(Ui)} | K = k,X = x]

= e−(t1−t0)
∞∑
k=0

(t1 − t0)
k

k!

(∫ t1

t0

1− λ(s)

t1 − t0
ds

)k

= e−(t1−t0)
∞∑
k=0

(∫ t1
t0

1− λ(s)ds
)k

k!

= e−(t1−t0)et1−t0 exp

(
−
∫ t1

t0

λ(s)ds

)
= exp

(
−
∫ t1

t0

λ(s)ds

)
.

To implement the Bernoulli race particle filter we sample from the prior, which can be done exactly, as seen in the
next section. As we are sampling from the prior the particle weights just depend on the observation likelihood.
Suppose the particle filter is at current time t0 and we propose to move to t1 = t0 + ∆t. Let (Xk

t1), k = 1, . . . , N
denote a proposed particle path. Then the weight is given by

g(si : si∈[t0,t1] | X
k) = exp

(
−
∫ t1

t0

λk(s)ds

) ∏
i : si∈[t0,t1]

λ(ski ),

where

λk(s) =
exp(Xk

s )

1 + exp(Xk
s )
.

In the notation of Section 4 we have

ckt1 =
∏

i : si∈[t0,t1]

λk(si),

bkt1 = exp

(
−
∫ t1

t0

λk(s)ds

)
.

To implement the estimator Ẑ, we need to be able to simulate a bridge from the stochastic differential equation
(2). Since the process at hand is analytically tractable, exact sampling from the bridge is straightforward, see
e.g. Bladt et al. [2] using the quantities computed below.

C.2 Ornstein–Uhlenbeck Prior

In this section we provide further details on the assumptions on the Gaussian process and show how we can sample
the state transition. We assume the prior distribution on the latent space is given by the Ornstein–Uhlenbeck
process (2), that is

dXt = AXtdt+ hdBt t ∈ [0, T ].

For A and h we take the values

A =

[
0 1
0 θ

]
, h =

[
0
σ

]
where θ is a negative real value. The process can be written as a differential equation with random velocity
following a mean reverting real-valued Ornstein–Uhlenbeck process,(

dx1,t
dx2,t

)
=

[
0 1
0 θ

](
x1,t
x2,t

)
dt+

(
0
σ

)
dWt.



Sebastian M Schmon, Arnaud Doucet, George Deligiannidis

This can be written as

dx1,t = x2,tdt

dx2,t = θx2,tdt+ σdBt.

This is a linear Gaussian system and thus the solution can be derived analytically, see e.g. Christensen et al. [3].
The discretized system at time s > r can be simulated exactly by sampling

Xs | (Xr = x) ∼ N
(
eA(s−r)x, eA(s−r)Q(r, s)

(
eA(s−r)

)T)
,

where

Q(r, s) =

∫ s

r

exp(−At)hhT exp(−At)T dt.

In order to implement the Ornstein–Uhlenbeck process we need the quantities

exp(At) =

∞∑
k=0

tk
Ak

k!
.

Note that

A2 =

[
0 1
0 θ

] [
0 1
0 θ

]
=

[
0 θ
0 θ2

]

Ak = A ·Ak−1 =

[
0 1
0 θ

] [
0 θk−2

0 θk−1

]
=

[
0 θk−1

0 θk

]
Hence, we can compute the matrix exponential analytically

exp(At) =

∞∑
k=0

tk

k!
Ak

=

∞∑
k=0

tk

k!

[
0 θk−1

0 θk

]

=

[
1 0
0 1

]
+

∞∑
k=1

tkθk

k!

[
0 1/θ
0 1

]
=

[
1 0
0 1

]
+

[
0 exp(θt)/θ − 1/θ
0 exp(θt)− 1

]
=

[
1 exp(θt)/θ − 1/θ
0 exp(θt)

]
.

This gives us

exp(−At)h =

[
1 exp(−θt)/θ − 1/θ
0 exp(−θt)

] [
0
σ

]
=

[
σ
θ exp(−θt)− σ/θ

σ exp(−θt)

]
and

exp(−At)hhT exp(−At)

=

[
σ
θ exp(−θt)− σ/θ

σ exp(−θt)

] [
σ
θ exp(−θt)− σ/θ σ exp(−θt)

]
=

[
σ2

θ2 (exp(−θt)− 1)
2 σ2

θ (exp(−2θt)− exp(−θt))
σ2

θ (exp(−2θt)− exp(−θt)) σ2 exp(−2θt)

]
.



Sebastian M Schmon, Arnaud Doucet, George Deligiannidis

Figure 3: Result of one run of the Bernoulli race particle filter using 30 particles. Arrival times of the Poisson
process are shown as dots on the abscissa. The solid blue line shows the true intensity function and the dashed
line shows the mean of the particle approximation at times t1, t2, . . .. The shaded area highlights the 10% and
90% quantile of the particle approximation.

Thus

Q(r, s) =

∫ s

r

exp(−At)hhT exp(−At)T dt

=

[ ∫ s
r
σ2 (exp(−θt)− 1)

2
dt

∫ s
r
σ2

θ (exp(−2θt)− exp(−θt)) dt∫ s
r
σ2 (exp(−2θt)− exp(−θt)/θ) dt

∫ s
r
σ2 exp(−2θt)dt

]
=

[
σ2

θ3

(
−2θr + e−2θr − 4e−θr − e−2θs + 4e−θs + 2θs

)
σ2

2θ2

(
e−2rθ − e−2sθ

)
− σ2

θ2

(
e−rθ − e−sθ

)
σ2

2θ2

(
e−2rθ − e−2sθ

)
− σ2

θ2

(
e−rθ − e−sθ

)
σ2

2θ

(
e−2rθ − e−2sθ

) ]
The covariance matrix for the system transition

Cov(r, s) = eA(s−r)Q(r, s)
(
eA(s−r)

)T
can thus be computed analytically.

C.3 Simulation

We simulate a non-homogeneous Poisson process in the interval [0, 50] using the intensity function

λ(s) = 2 exp(−s/15) + exp
(
−((s− 25)/10)2

)
,

see e.g. Adams et al. [1] and Li and Godsill [5]. We run the Bernoulli race particle filter with the above speci-
fication and 30 particles to find the intensity function on the interval [0, 50] which is divided into 10 equispaced
intervals. The result of one run is shown in Figure 3. We can see that the Bernoulli race particle filter is
approximating the true intensity function.
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