A Supplementary material for Sections 3-4

A.1 Proof of Remark 1

Since f is monotone, $f(\mathbf{x} + k\mathbf{e}_i) \ge f(\mathbf{x})$ and $f(k\mathbf{e}_i) \ge f(\mathbf{0})$ for any $\mathbf{x} \in \mathbf{Z}$, $i \in [n]$, and $k \in \mathbb{R}_+$. Hence, $\alpha(\mathbf{Z}) \le 1$. Moreover, $\inf_{\substack{\mathbf{x} \in \mathbf{Z} \\ i \in [n]}} \lim_{k \to 0^+} \frac{f(\mathbf{x} + k\mathbf{e}_i) - f(\mathbf{x})}{f(k\mathbf{e}_i) - f(\mathbf{0})} \le 1$, since the considered ratio equals 1 when $\mathbf{x} = \mathbf{0}$. Hence, $\alpha(\mathbf{Z}) \ge 0$.

A.2 Proof of Remark 2

The proof is obtained simply noting that the curvarture $\alpha(\tilde{\boldsymbol{\mathcal{S}}})$ of γ is always upper bounded by 1. \Box

A.3 Proof of Proposition 1

We first show that the budget allocation game of Example 1 is a valid utility game with continuous strategies. In fact, for any $l \in [Nd]$

$$[\nabla \gamma(\mathbf{s})]_l = \sum_{t \in \mathcal{T}: m \in \Gamma(t)} -\ln(1-p_j(m,t)) \prod_{i=1}^N (1-P_i(\mathbf{s}_i,t)),$$

where $j \in [N]$ and $m \in [d]$ are the indexes of advertiser and channel corresponding to coordinate $l \in [Nd]$, respectively. Hence, γ is monotone since $[\nabla \gamma(\mathbf{s})]_l \geq 0$ for any $l \in [Nd]$ and $\mathbf{s} \in \mathbb{R}^{Nd}_+$. Moreover, γ is DR-submodular since $\gamma(\mathbf{s}) = \sum_{t \in \mathcal{T}} \gamma_t(\mathbf{s})$ where $\gamma_t(\mathbf{s}) = 1 - \prod_{i=1}^N (1 - P_i(\mathbf{s}_i, t))$ is such that for any $j, l \in [N], m, n \in [d], \frac{\partial^2 \gamma_t(\mathbf{s})}{\partial [\mathbf{s}_j]_m \partial [\mathbf{s}_l]_n} = -\ln(1 - p_j(m, t)\ln(1 - p_l(n, t))\prod_{i=1}^N (1 - P_i(\mathbf{s}_i, t)) \leq 0$ for any $\mathbf{s} \in \mathbb{R}^{Nd}_+$. Finally, condition ii) can be verified equivalently as in [23, Proof of Proposition 5] and condition iii) holds with equality.

The set $\tilde{\boldsymbol{\mathcal{S}}} := \{ \mathbf{x} \in \mathbb{R}^{Nd}_+ \mid \mathbf{0} \leq \mathbf{x} \leq \mathbf{s}_{max} \}$ with $\mathbf{s}_{max} = 2(\bar{s}_1, \ldots, \bar{s}_N)$ is such that $\mathbf{s} + \mathbf{s}' \leq \mathbf{s}_{max}$ for any pair $\mathbf{s}, \mathbf{s}' \in \boldsymbol{\mathcal{S}}$. Moreover, using the expression of $\nabla \gamma(\mathbf{s})$, the curvature of γ with respect to $\tilde{\boldsymbol{\mathcal{S}}}$ is

$$1 - \alpha(\tilde{\boldsymbol{\mathcal{S}}}) = \inf_{\substack{\mathbf{s} \in \tilde{\boldsymbol{\mathcal{S}}} \\ l \in [Nd]}} \frac{[\nabla \gamma(\mathbf{s})]_l}{[\nabla \gamma(0)]_l} = \sum_{\substack{i \in \mathcal{T}: r \in \Gamma(t) \\ i \in [N], r \in [d]}} \frac{\sum_{\substack{t \in \mathcal{T}: r \in \Gamma(t) \\ \sum_{t \in \mathcal{T}: r \in \Gamma(t)}} \ln(1 - p_i(r, t)) \prod_{j \in [N]} (1 - P_j(2\bar{\mathbf{s}}_j, t))}{\sum_{t \in \mathcal{T}: r \in \Gamma(t)} \ln(1 - p_i(r, t))}$$
$$=: 1 - \alpha > 0.$$

Hence, using Theorem 1 we conclude that $PoA_{CCE} \leq 1 + \alpha$.

A.4 Proof of Fact 1

Condition i) holds since γ is monotone DR-submodular by definition. Also, condition ii) holds with equality. Moreover, defining (with abuse of notation) $[\mathbf{s}]_1^i =$ $(\mathbf{s}_1, \ldots, \mathbf{s}_i, \mathbf{0}, \ldots, \mathbf{0})$ for $i \in [N]$ with $[\mathbf{s}]_1^0 = \mathbf{0}$, condition iii) holds since by DR-submodularity one can verify that $\sum_{i=1}^N \hat{\pi}_i(\mathbf{s}) = \sum_{i=1}^N \gamma(\mathbf{s}) - \gamma(\mathbf{0}, \mathbf{s}_{-i}) \leq$ $\gamma([\mathbf{s}]_1^i) - \gamma([\mathbf{s}]_1^{i-1}) = \gamma(\mathbf{x}) - \gamma(\mathbf{0}) = \gamma(\mathbf{x}).$

A.5 Proof of Corollary 1

By definition of α , and according to Theorem 1, $\hat{\mathcal{G}}$ is such that $PoA_{CCE} \leq (1 + \alpha)$. In other words, letting $\mathbf{s}^* = \arg \max_{\mathbf{s} \in \boldsymbol{S}} \gamma(\mathbf{s})$, any CCE σ of $\hat{\mathcal{G}}$ satisfies $\mathbb{E}_{\mathbf{s} \sim \sigma}[\gamma(\mathbf{s})] \geq 1/(1 + \alpha)\gamma(\mathbf{s}^*)$. Moreover, since players simultaneously use no-regret algorithms D-NOREGRET converges to one of such CCE [15, 28]. Hence, the statement of the remark follows. \Box

A.6 Proof of Proposition 2

Consider the sensor coverage problem with continuous assignments defined in Example 2. We first show that γ is a monotone DR-submodular function. In fact, for any $i \in [Nd]$, $[\nabla \gamma(\mathbf{x})]_i = -\ln(1-p_l^m) \prod_{i \in [N]} (1-p_i^m)^{[\mathbf{x}_i]_m} \geq 0$, where l and m and the indexes of sensor and location corresponding to coordinate i, respectively. Moreover, for any pair of sensors $j, l \in [N]$, $\frac{\partial^2 \gamma(\mathbf{x})}{\partial [\mathbf{x}_i]_m \partial [\mathbf{x}_i]_n} = -\ln(1-p_j^m) \ln(1-p_l^n) \prod_{i \in [N]} (1-p_i^m)^{[\mathbf{x}_i]_m} \leq 0$ if m = n, and 0 otherwise. The problem of maximizing γ subject to $\mathcal{X} = \prod_{i=1}^N \mathcal{X}_i$, hence, is one of maximizing a monotone DR-submodular function subject to decoupled constraints discussed in Section 3.2. Thus, as outlined in Section 3.2, we can set-up a valid utility game $\hat{\mathcal{G}}$.

The vector $\mathbf{x}_{max} = 2\bar{\mathbf{x}} = 2(\bar{\mathbf{x}}_1, \dots, \bar{\mathbf{x}}_N)$ is such that $\forall \mathbf{x}, \mathbf{x}' \in \mathcal{X}, \mathbf{x} + \mathbf{x}' \leq \mathbf{x}_{max}$. Moreover, defining $\tilde{\mathcal{X}} := \{\mathbf{x} \in \mathbb{R}^{Nd} \mid \mathbf{0} \leq \mathbf{x} \leq \mathbf{x}_{max}\}$, the curvature of γ with respect to $\tilde{\mathcal{X}}$, satisfies $\alpha(\tilde{\mathcal{X}}) = 1 - \inf_{\substack{\mathbf{x} \in \tilde{\mathcal{X}} \\ l \in [Nd]}} \frac{[\nabla \gamma(\mathbf{x})]_l}{[\nabla \gamma(0)]_l} = 1 - \min_{r \in [d]} \prod_{i \in [N]} (1 - p_i^r)^{2\bar{\mathbf{x}}_i} = \max_{r \in [d]} P(r, 2\bar{\mathbf{x}}) = \alpha$. Hence, by Corollary 1, any no-regret distributed algorithm has expected approximation ratio of $1/(1 + \alpha)$. In addition, γ is also concave in each \mathcal{X}_i , since the $(d \times d)$ blocks on the diagonal of its Hessian are diagonal and negative, hence online gradient ascent ensures no-regret for each player [12] and can be run in a distributed manner.

A.7 Equivalent characterizations of DR properties

To prove the main results of the paper, the following two propositions provide equivalent characterizations

f

of weak DR and DR properties, respectively⁴.

Proposition 4. A function $f : \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}$ is weakly *DR-submodular* (Definition 4) if and only if for all $\mathbf{x} \leq \mathbf{y} \in \mathcal{X}, \forall \mathbf{z} \in \mathbb{R}^n_+$ s.t. $(\mathbf{x} + \mathbf{z})$ and $(\mathbf{y} + \mathbf{z})$ are in \mathcal{X} , with $z_i = 0 \forall i \in [n] : y_i > x_i$,

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{x}) \ge f(\mathbf{y} + \mathbf{z}) - f(\mathbf{y}).$$

Proof. (property of Proposition $4 \rightarrow \text{weak DR}$) We want to prove that for all $\mathbf{x} \leq \mathbf{y} \in \mathcal{X}$, $\forall i \text{ s.t.}$ $x_i = y_i, \forall k \in \mathbb{R}_+ \text{ s.t. } (\mathbf{x} + k\mathbf{e}_i) \text{ and } (\mathbf{y} + k\mathbf{e}_i) \text{ are in } \mathcal{X}$,

$$f(\mathbf{x} + k\mathbf{e}_i) - f(\mathbf{x}) \ge f(\mathbf{y} + k\mathbf{e}_i) - f(\mathbf{y}).$$

This is trivially done choosing $\mathbf{z} = k\mathbf{e}_i$. Note that \mathbf{z} is such that $z_i = 0, \forall i \in \{i|y_i > x_i\}$, so the property of Proposition 4 can indeed be applied.

(weak DR \rightarrow property of Proposition 4)

For all $\mathbf{x} \leq \mathbf{y} \in \mathcal{X}$, $\forall \mathbf{z} \in \mathbb{R}^n_+$ s.t. $(\mathbf{x} + \mathbf{z})$ and $(\mathbf{y} + \mathbf{z})$ are in \mathcal{X} , with $z_i = 0 \ \forall i \in [n] : y_i > x_i$, we have

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{x}) = \sum_{i=1}^{n} f(\mathbf{x} + [\mathbf{z}]_{1}^{i}) - f(\mathbf{x} + [\mathbf{z}]_{1}^{i-1})$$

$$= \sum_{i:x_{i}=y_{i}} f(\mathbf{x} + [\mathbf{z}]_{1}^{i-1} + z_{i}\mathbf{e}_{i}) - f(\mathbf{x} + [\mathbf{z}]_{1}^{i-1})$$

$$\geq \sum_{i:x_{i}=y_{i}} f(\mathbf{y} + [\mathbf{z}]_{1}^{i-1} + z_{i}\mathbf{e}_{i}) - f(\mathbf{y} + [\mathbf{z}]_{1}^{i-1})$$

$$= \sum_{i=1}^{n} f(\mathbf{y} + [\mathbf{z}]_{1}^{i}) - f(\mathbf{y} + [\mathbf{z}]_{1}^{i-1})$$

$$= f(\mathbf{y} + \mathbf{z}) - f(\mathbf{y}).$$

The first equality is obtained from a telescoping sum, the second equality follows since when $y_i > x_i$, $z_i = 0$. The inequality follows from weak DR property of f and the last two equalities are similar to the first two. \Box

Proposition 5. A function $f : \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}$ is *DR*submodular (Definition 1) if and only if for all $\mathbf{x} \leq \mathbf{y} \in \mathcal{X}, \forall \mathbf{z} \in \mathbb{R}^n_+$ s.t. $(\mathbf{x} + \mathbf{z})$ and $(\mathbf{y} + \mathbf{z})$ are in \mathcal{X} ,

$$f(\mathbf{x} + \mathbf{z}) - f(\mathbf{x}) \ge f(\mathbf{y} + \mathbf{z}) - f(\mathbf{y}).$$

Proof. (property of Proposition $5 \to DR$) We want to prove that for all $\mathbf{x} \leq \mathbf{y} \in \mathcal{X}$, $\forall i \in [n]$, $\forall k \in \mathbb{R}_+$ s.t. $(\mathbf{x} + k\mathbf{e}_i)$ and $(\mathbf{y} + k\mathbf{e}_i)$ are in \mathcal{X} ,

$$f(\mathbf{x} + k\mathbf{e}_i) - f(\mathbf{x}) \ge f(\mathbf{y} + k\mathbf{e}_i) - f(\mathbf{y})$$

This is trivially done choosing $\mathbf{z} = k\mathbf{e}_i$ and applying the property of Proposition 5. $(DR \rightarrow property of Proposition 5)$

For all $\mathbf{x} \leq \mathbf{y} \in \mathcal{X}$, $\forall \mathbf{z} \in \mathbb{R}^n_+$ s.t. $(\mathbf{x} + \mathbf{z})$ and $(\mathbf{y} + \mathbf{z})$ are in \mathcal{X} , we have

$$\begin{aligned} (\mathbf{x} + \mathbf{z}) - f(\mathbf{x}) &= \sum_{i=1}^{n} f(\mathbf{x} + [\mathbf{z}]_{1}^{i}) - f(\mathbf{x} + [\mathbf{z}]_{1}^{i-1}) \\ &= \sum_{i=1}^{n} f(\mathbf{x} + [\mathbf{z}]_{1}^{i-1} + z_{i}\mathbf{e}_{i}) - f(\mathbf{x} + [\mathbf{z}]_{1}^{i-1}) \\ &\geq \sum_{i=1}^{n} f(\mathbf{y} + [\mathbf{z}]_{1}^{i-1} + z_{i}\mathbf{e}_{i}) - f(\mathbf{y} + [\mathbf{z}]_{1}^{i-1}) \\ &= \sum_{i=1}^{n} f(\mathbf{y} + [\mathbf{z}]_{1}^{i}) - f(\mathbf{y} + [\mathbf{z}]_{1}^{i-1}) \\ &= f(\mathbf{y} + \mathbf{z}) - f(\mathbf{y}) \,. \end{aligned}$$

The first and last equalities are telescoping sums and the inequality follows from the DR property of f. \Box

A.8 Properties of (twice) differentiable submodular functions

As mentioned in Section 4, submodular continuous functions are defined on subsets of \mathbb{R}^n of the form $\mathcal{X} = \prod_{i=1}^n \mathcal{X}_i$, where each \mathcal{X}_i is a compact subset of \mathbb{R} . From the weak DR property (Definition 4) it follows that, when f is differentiable, it is submodular iff

$$\forall \mathbf{x}, \mathbf{y} \in \mathcal{X} : \mathbf{x} \leq \mathbf{y}, \forall i \text{ s.t. } x_i = y_i, \ \nabla_i f(\mathbf{x}) \geq \nabla_i f(\mathbf{y}).$$

That is, the gradient of f is a weak antitone mapping from \mathbb{R}^n to \mathbb{R}^n .

Moreover, we saw that a function $f : \mathcal{X} \to \mathbb{R}$ is submodular iff for all $\mathbf{x} \in \mathcal{X}$, $\forall i \neq j$ and $a_i, a_j > 0$ s.t. $x_i + a_i \in \mathcal{X}_i, x_j + a_j \in \mathcal{X}_j$, we have [1]

$$f(\mathbf{x} + a_i \mathbf{e}_i) - f(\mathbf{x}) \ge f(\mathbf{x} + a_i \mathbf{e}_i + a_j \mathbf{e}_j) - f(\mathbf{x} + a_j \mathbf{e}_j).$$

As visible from the latter condition, when f is twicedifferentiable, it is submodular iff all the off-diagonal entries of its Hessian are non-positive [1]:

$$\forall \mathbf{x} \in \mathcal{X}, \quad \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} \le 0, \quad \forall i \neq j.$$

Hence, the class of submodular continuous functions contains a subset of both convex and concave functions.

Similarly, from the DR property (Definition 1) it follows that for a differentiable continuous function DRsubmodularity is equivalent to

$$\forall \mathbf{x} \leq \mathbf{y}, \nabla f(\mathbf{x}) \geq \nabla f(\mathbf{y}) \,.$$

That is, the gradient of f is an antitone mapping from \mathbb{R}^n to \mathbb{R}^n . More precisely, [4, Proposition 2] showed

⁴The introduced properties are the continuous versions of the 'group DR property'[5] of submodular set functions.

that a function f is DR-submodular iff it is submodular (weakly DR-submodular) and *coordinate-wise concave*. A function $f : \mathcal{X} \to \mathbb{R}$ is coordinate-wise concave if, for all $\mathbf{x} \in \mathcal{X}, \forall i \in [n], \forall k, l \in \mathbb{R}_+$ s.t. $(\mathbf{x} + k\mathbf{e}_i),$ $(\mathbf{x} + l\mathbf{e}_i)$, and $(\mathbf{x} + (k + l)\mathbf{e}_i)$ are in \mathcal{X} , we have

$$f(\mathbf{x} + k\mathbf{e}_i) - f(\mathbf{x}) \ge f(\mathbf{x} + (k+l)\mathbf{e}_i) - f(\mathbf{x} + l\mathbf{e}_i),$$

or equivalently, if twice differentiable, $\frac{\partial^2 f(\mathbf{x})}{\partial x_i^2} \leq 0$ $\forall i \in [n]$. Hence, as stated in Section 3, a twicedifferentiable function is DR-submodular iff all the entries of its Hessian are non-positive:

$$\forall \mathbf{x} \in \boldsymbol{\mathcal{X}}, \quad \frac{\partial^2 f(\mathbf{x})}{\partial x_i \partial x_j} \leq 0, \quad \forall i, j$$

A.9 Proof of Proposition 3

By Definition 2, the curvature $\alpha(\boldsymbol{Z})$ of f w.r.t. \boldsymbol{Z} satisfies

$$f(\mathbf{x} + k\mathbf{e}_i) - f(\mathbf{x}) \ge (1 - \alpha(\boldsymbol{z}))[f(k\mathbf{e}_i) - f(\mathbf{0})], \quad (1)$$

for any $\mathbf{x} \in \mathbf{Z}, i \in [n]$ s.t. $\mathbf{x} + k\mathbf{e}_i \in \mathbf{Z}$ with $k \to 0_+$. We firstly show that condition (1) indeed holds for any $\mathbf{x} \in \mathbf{Z}, i \in [n]$, and $k \in \mathbb{R}_+$ s.t. $\mathbf{x} + k\mathbf{e}_i \in \mathbf{Z}$, by using monotonicity and coordinate-wise concavity of f. As seen in Appendix A.8, DR-submodularity implies coordinate-wise concavity. To this end, we define

$$\alpha_i^k(\boldsymbol{Z}) = 1 - \inf_{\substack{\mathbf{x} \in \boldsymbol{\mathcal{Z}}:\\ \mathbf{x} + k\mathbf{e}_i \in \boldsymbol{\mathcal{Z}}}} \frac{f(\mathbf{x} + k\mathbf{e}_i) - f(\mathbf{x})}{f(k\mathbf{e}_i) - f(\mathbf{0})}$$

Hence, it sufficies to prove that, for any $i \in [n]$, $\alpha_i^k(\mathbf{Z})$ is non-increasing in k. Note that by DR-submodularity,

$$\alpha_i^k(\boldsymbol{\mathcal{Z}}) = 1 - \frac{f(\mathbf{z}_{max}) - f(\mathbf{z}_{max} - k\mathbf{e}_i)}{f(k\mathbf{e}_i) - f(\mathbf{0})}$$

Hence, for any pair $l, m \in \mathbb{R}_+$ with $l < m, \alpha_i^m(\mathcal{Z}) \ge \alpha_i^l(\mathcal{Z})$ is true whenever

$$\frac{f(\mathbf{z}_{max}) - f(\mathbf{z}_{max} - m\mathbf{e}_i)}{f(m\mathbf{e}_i) - f(\mathbf{0})} \ge \frac{f(\mathbf{z}_{max}) - f(\mathbf{z}_{max} - l\mathbf{e}_i)}{f(l\mathbf{e}_i) - f(\mathbf{0})}$$

The last inequality is satisfied since, by coordinatewise concavity, $[f(\mathbf{z}_{max}) - f(\mathbf{z}_{max} - m\mathbf{e}_i)]/m \geq [f(\mathbf{z}_{max}) - f(\mathbf{z}_{max} - l\mathbf{e}_i)]/l$ and $[f(m\mathbf{e}_i) - f(\mathbf{0})]/m \leq [f(l\mathbf{e}_i) - f(\mathbf{0})]/l$. This is because, given a concave function $g : \mathbb{R} \to \mathbb{R}$, the quantity

$$R(x_1, x_2) := \frac{g(x_2) - g(x_1)}{x_2 - x_1}$$

is non-increasing in x_1 for fixed x_2 , and vice versa. Moreover, monotonicity ensures that all of the above ratios are non-negative. To conclude the proof of Proposition 3 we show that if condition (1) holds for any $\mathbf{x} \in \mathbf{Z}, i \in [n]$, and $k \in \mathbb{R}_+$ s.t. $\mathbf{x} + k\mathbf{e}_i \in \mathbf{Z}$, then the result of the proposition follows. Indeed, for any \mathbf{x}, \mathbf{y} s.t. $\mathbf{x} + \mathbf{y} \in \mathbf{Z}$ we have

$$f(\mathbf{x} + \mathbf{y}) - f(\mathbf{x}) = \sum_{i=1}^{n} f(\mathbf{x} + [\mathbf{y}]_{1}^{i}) - f(\mathbf{x} + [\mathbf{y}]_{1}^{i-1})$$

$$= \sum_{i=1}^{n} f(\mathbf{x} + [\mathbf{y}]_{1}^{i-1} + y_{i}\mathbf{e}_{i}) - f(\mathbf{x} + [\mathbf{y}]_{1}^{i-1})$$

$$\geq (1 - \alpha(\mathbf{Z})) \sum_{i=1}^{n} f(y_{i}\mathbf{e}_{i}) - f(\mathbf{0})$$

$$\geq (1 - \alpha(\mathbf{Z})) \sum_{i=1}^{n} f([\mathbf{y}]_{1}^{i}) - f([\mathbf{y}]_{1}^{i-1})$$

$$= (1 - \alpha(\mathbf{Z}))(f(\mathbf{y}) - f(\mathbf{0})),$$

where the first inequality follows by condition (1) and the second one from f being weakly DR-submodular (and using Proposition 4).

B Supplementary material for Section 5

In the first part of this appendix we generalize the submodularity ratio defined in [11] for set functions to continuous domains and discuss its main properties. We compare it to the ratio by [16] and we relate it to the generalized submodularity ratio defined in Definition 5. Then, we provide a class of social functions with generalized submodularity ratio $0 < \eta < 1$ and we report the proof of Theorem 2. Finally, we analyze the sensor coverage problem with the non-submodular objective defined in Section 5.

B.1 Submodularity ratio of a monotone function on continuous domains

We generalize the class of submodular continuous functions, defining the submodularity ratio $\eta \in [0, 1]$ of a monotone function defined on a continuous domain.

Definition 7 (submodularity ratio). The submodularity ratio of a monotone function $f : \mathcal{X} \subseteq \mathbb{R}^n_+ \to \mathbb{R}$ is the largest scalar η such that for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ such that $\mathbf{x} + \mathbf{y} \in \mathcal{X}$,

$$\sum_{i=1}^{n} \left[f(\mathbf{x} + y_i \mathbf{e}_i) - f(\mathbf{x}) \right] \ge \eta \left[f(\mathbf{x} + \mathbf{y}) - f(\mathbf{x}) \right].$$

It is straightforward to show that $\eta \in [0, 1]$ and, when restricted to binary sets $\mathcal{X} = \{0, 1\}^n$, Definition 7 coincides with the submodularity ratio defined in [11] for set functions. A set function is submodular iff it has submodularity ratio $\eta = 1$ [11]. However, functions with submodularity ratio $0 < \eta < 1$ still preserve 'nice' properties in term of maximization guarantees. Similarly to [11], we can affirm the following.

Proposition 6. A function $f : \mathcal{X} \subseteq \mathbb{R}^n_+ \to \mathbb{R}$ is weakly DR-submodular (Definition 4) iff it has submodularity ratio $\eta = 1$.

Proof. If f is weakly DR-submodular (Definition 4), then for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$,

$$\sum_{i=1}^{d} f(\mathbf{x} + y_i \mathbf{e}_i) - f(\mathbf{x})$$

$$\geq \sum_{i=1}^{d} f(\mathbf{x} + [\mathbf{y}]_1^i) - f(\mathbf{x} + [\mathbf{y}]_1^{i-1}) = f(\mathbf{x} + \mathbf{y}) - f(\mathbf{x}).$$

Assume now f has submodularity ratio $\eta = 1$. We prove that f is weakly DR-submodular by proving that it is submodular. Hence, we want to prove that for all $\mathbf{x} \in \mathcal{X}, \forall i \neq j$ and $a_i, a_j > 0$ s.t. $x_i + a_i \in \mathcal{X}_i$,

 $x_j + a_j \in \mathcal{X}_j,$

$$f(\mathbf{x} + a_i \mathbf{e}_i) - f(\mathbf{x}) \ge$$

$$f(\mathbf{x} + a_i \mathbf{e}_i + a_j \mathbf{e}_j) - f(\mathbf{x} + a_j \mathbf{e}_j).$$
(2)

Consider $\mathbf{y} = a_i \mathbf{e}_i + a_j \mathbf{e}_j \in \mathcal{X}$. Since f has submodularity ratio $\eta = 1$, we have

$$f(\mathbf{x} + a_i \mathbf{e}_i) - f(\mathbf{x}) + f(\mathbf{x} + a_j \mathbf{e}_j) - f(\mathbf{x})$$

$$\geq f(\mathbf{x} + a_i \mathbf{e}_i + a_j \mathbf{e}_j) - f(\mathbf{x}),$$

which is equivalent to the submodularity condition (2). $\hfill\square$

An example of functions with submodularity ratio $\eta > 0$ is the product between an affine and a weakly DR-submodular function, as stated in the following proposition.

Proposition 7. Let $f, \rho : \mathcal{X} \subseteq \mathbb{R}^n_+ \to \mathbb{R}_+$ be two monotone functions, with f weakly DR-submodular, and g affine such that $\rho(\mathbf{x}) = \mathbf{a}^\top \mathbf{x} + b$ with $\mathbf{a} \ge \mathbf{0}$ and b > 0. Then, provided that \mathcal{X} is bounded, the product $g(\mathbf{x}) := f(\mathbf{x})\rho(\mathbf{x})$ has submodularity ratio $\eta = \inf_{i \in [n], \mathbf{x} \in \mathcal{X}} \frac{b}{b + \sum_{j \neq i} a_j x_j} > 0$.

Proof. Note that since ρ is affine, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ we have that $g(\mathbf{x} + \mathbf{y}) - g(\mathbf{x}) = f(\mathbf{x} + \mathbf{y})\rho(\mathbf{x} + \mathbf{y}) - f(\mathbf{x})\rho(\mathbf{x}) = \rho(\mathbf{x} + \mathbf{y})[f(\mathbf{x} + \mathbf{y}) - f(\mathbf{x})] + f(\mathbf{x}) (\mathbf{a}^{\top}\mathbf{y})$. For any pair $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ we have:

$$\begin{split} &\sum_{i=1}^{n} \left[g(\mathbf{x} + y_i \mathbf{e}_i) - g(\mathbf{x}) \right] \\ &= \sum_{i=1}^{n} \rho(\mathbf{x} + y_i \mathbf{e}_i) [f(\mathbf{x} + y_i \mathbf{e}_i) - f(\mathbf{x})] + f(\mathbf{x}) (y_i \mathbf{a}^\top \mathbf{e}_i) \\ &\geq \min_{i \in [n]} \rho(\mathbf{x} + y_i \mathbf{e}_i) \sum_{i=1}^{n} f(\mathbf{x} + y_i \mathbf{e}_i) - f(\mathbf{x}) + f(\mathbf{x}) (\mathbf{a}^\top \mathbf{y}) \\ &\geq \underbrace{\frac{\min_{i \in [n]} \rho(\mathbf{x} + y_i \mathbf{e}_i)}{\rho(\mathbf{x} + \mathbf{y})}}_{i = \eta(\mathbf{x}, \mathbf{y})} \left(\rho(\mathbf{x} + \mathbf{y}) [f(\mathbf{x} + \mathbf{y}) - f(\mathbf{x})] \\ &+ f(\mathbf{x}) (\mathbf{a}^\top \mathbf{y}) \right) \\ &= \eta(\mathbf{x}, \mathbf{y}) \left[g(\mathbf{x} + \mathbf{y}) - g(\mathbf{x}) \right]. \end{split}$$

The first inequality follows since ρ is affine nonnegative and f is non-negative. The second inequality is due to f being weakly DR-submodular (f has submodularity ratio $\eta = 1$) and $0 < \eta(\mathbf{x}, \mathbf{y}) \leq 1$, which holds because b > 0 and $\mathbf{a} \geq \mathbf{0}$. Hence, it follows that γ has submodularity ratio

$$\eta := \inf_{\substack{\mathbf{x}, \mathbf{y} \in \boldsymbol{\mathcal{X}}:\\ \mathbf{x} + \mathbf{y} \in \boldsymbol{\mathcal{X}}}} \eta(\mathbf{x}, \mathbf{y}) = \inf_{i \in [n], \mathbf{y} \in \boldsymbol{\mathcal{X}}} \frac{b}{b + \sum_{j \neq i} a_j y_j} > 0.$$

B.1.1 Related notion by [16]

A generalization of submodular continuous functions was also provided in [16] together with provable maximization guarantees. However, it has different implications than the submodularity ratio defined above. In fact, [16] considered the class of differentiable functions $f: \mathcal{X} \subseteq \mathbb{R}^n_+ \to \mathbb{R}$ with parameter η defined as

$$\eta = \inf_{\mathbf{x}, \mathbf{y} \in \boldsymbol{\mathcal{X}}, \mathbf{x} \leq \mathbf{y}} \inf_{i \in [n]} \frac{[\nabla f(\mathbf{x})]_i}{[\nabla f(\mathbf{y})]_i}$$

For monotone functions $\eta \in [0, 1]$, and a differentiable function is DR-submodular iff $\eta = 1$ [16]. Note that the parameter η of [16] generalizes the DR property of f, while our submodularity ratio η generalizes the weak DR property.

B.2 Relations with the generalized submodularity ratio of Definition 5

In Proposition 6 we saw that submodularity ratio $\eta = 1$ is a necessary and sufficient condition for weak DR-submodularity. In contrast, a generalized submdoularity ratio (Definition 5) $\eta = 1$ is only necessary for the social function γ to be weakly DR-submodular. This is stated in the following proposition. For non submodular γ , no relation can be established between submodularity ratio of Definition 7 and generalized submodularity ratio of Definition 5.

Proposition 8. Given a game $\mathcal{G} = (N, \{\mathcal{S}_i\}_{i=1}^N, \{\pi_i\}_{i=1}^N, \gamma)$. If γ is weakly DR-submodular, then γ has generalized submodularity ratio $\eta = 1$.

Proof. Consider any pair of outcomes $\mathbf{s}, \mathbf{s}' \in \mathcal{S}$. For $i \in \{0, \ldots, N\}$, with abuse of notation we define $[\mathbf{s}']_1^i := (\mathbf{s}'_1, \ldots, \mathbf{s}'_i, \mathbf{0}, \ldots, \mathbf{0})$ with $[\mathbf{s}']_1^0 = \mathbf{0}$. We have,

$$\sum_{i=1}^{N} \gamma(\mathbf{s}_{i} + \mathbf{s}'_{i}, \mathbf{s}_{-i}) - \gamma(\mathbf{s})$$

$$\geq \sum_{i=1}^{N} \gamma(\mathbf{s} + [\mathbf{s}']_{1}^{i}) - \gamma(\mathbf{s} + [\mathbf{s}']_{1}^{i-1})$$

$$= \gamma(\mathbf{s} + \mathbf{s}') - \gamma(\mathbf{s}),$$

where the inequality follows since γ is weakly DRsubmodular and the equality is a telescoping sum. \Box

Similarly to Proposition 7 in the previous section, in the following proposition we show that social functions γ defined as product of weakly DR-submodular functions and affine functions have generalized submodularity ratio $\eta > 0$. **Proposition 9.** Given a game $\mathcal{G} = (N, \{\mathcal{S}_i\}_{i=1}^N, \{\pi_i\}_{i=1}^N, \gamma)$. Let γ be defined as $\gamma(\mathbf{s}) := f(\mathbf{x})\rho(\mathbf{x})$ with $f, \rho : \mathbb{R}^{Nd}_+ \to \mathbb{R}_+$ be two monotone functions, with f weakly DR-submodular, and g affine such that $\rho(\mathbf{x}) = \mathbf{a}^\top \mathbf{x} + b$ with $\mathbf{a} = (\mathbf{a}_1, \dots, \mathbf{a}_N) \geq \mathbf{0}$ and b > 0. Then, γ has generalized submodularity ratio $\eta = \inf_{i \in [N], \mathbf{s} \in \mathbf{S}} \frac{b}{b + \sum_{j \neq i} \mathbf{a}_j^\top \mathbf{s}_j} > 0$.

Proof. The proof is equivalent to the proof of Proposition 7, with the only difference that \mathbf{s}'_i belong to \mathbb{R}^d_+ instead of \mathbb{R}_+ .

Note that for the game considered in the previous proposition, using Proposition 7 one could also affirm that γ has submodularity ratio $\eta = \inf_{i \in [Nd], \mathbf{s} \in \mathbf{S}} \frac{b}{b + \sum_{j \neq i} [\mathbf{a}]_j[\mathbf{s}]_j} > 0$ which, unless d = 1, is strictly smaller than its generalized submodularity ratio.

B.3 Proof of Theorem 2

The proof is equivalent to the proof of Theorem 1, with the only difference that here we prove that \mathcal{G} is a (η, η) -smooth game in the framework of [28]. Then, it follows that $PoA_{CCE} \leq (1 + \eta)/\eta$.

For the smoothness proof, consider any pair of outcomes $\mathbf{s}, \mathbf{s}^* \in \boldsymbol{\mathcal{S}}$. We have:

$$\sum_{i=1}^{N} \pi_i(\mathbf{s}_i^{\star}, \mathbf{s}_{-i}) \ge \sum_{i=1}^{N} \gamma(\mathbf{s}_i^{\star}, \mathbf{s}_{-i}) - \gamma(0, \mathbf{s}_{-i})$$
$$\ge \sum_{i=1}^{N} \gamma(\mathbf{s}_i^{\star} + \mathbf{s}_i, \mathbf{s}_{-i}) - \gamma(\mathbf{s})$$
$$= \eta \gamma(\mathbf{s} + \mathbf{s}^{\star}) - \eta \gamma(\mathbf{s}).$$

The first inequality is due to condition ii) of Definition 3. The second inequality follows since γ is playerwise DR-submodular (applying Proposition 5 for each player *i*) and the second inequality from γ having generalized submodularity ratio η .

B.4 Analysis of the sensor coverage problem with non-submodular objective

We analyze the sensor coverage problem with non-submodular objective defined in Section 5, where $\gamma(\mathbf{x}) = \sum_{r \in [d]} w_r(\mathbf{x}) P(r, \mathbf{x})$ with $w_r(\mathbf{x}) =$ $\mathbf{a}_r \frac{\sum_{i=1}^{N} [\mathbf{x}_i]_r}{N} + b_r$. Note that by Proposition 9, the function $\gamma_r(\mathbf{x}) := w_r(\mathbf{x}) P(r, \mathbf{x})$ has generalized submodularity ratio $\eta > 0$, hence it is not hard to show that $\gamma(\mathbf{x}) = \sum_{r \in [d]} \gamma_r(\mathbf{x})$ shares the same property. Moreover, there exist parameters \mathbf{a}_r, b_r for which γ is not submodular. Interestingly, γ is convave in each \mathcal{X}_i . In fact, γ_r 's are concave in each \mathcal{X}_i since $P(r, \mathbf{x})$'s are concave in each \mathcal{X}_i and w_r 's are positive affine functions. Moreover, γ is playerwise DR-submodular since the $(d \times d)$ blocks on the diagonal of its Hessian are diagonal (and their entries are non-positive, by concavity of γ in each \mathcal{X}_i).

To maximize γ , as outlined in Section 3.2, we can set up a game $\mathcal{G} = (N, \{\mathcal{S}_i\}_{i=1}^N, \{\pi_i\}_{i=1}^N, \gamma)$ where for each player $i, \mathcal{S}_i = \mathcal{X}_i$, and $\pi_i(\mathbf{s}) = \gamma(\mathbf{s}) - \gamma(\mathbf{0}, \mathbf{s}_{-i})$ for every outcome $\mathbf{s} \in \mathcal{S} = \mathcal{X}$. Hence, condition ii) of Definition 3 is satisfied with equality. Following the proof of Theorem 2, we have that:

$$\sum_{i=1}^{N} \pi_i(\mathbf{s}_i^{\star}, \mathbf{s}_{-i}) \ge \eta \, \gamma(\mathbf{s} + \mathbf{s}^{\star}) - \eta \, \gamma(\mathbf{s})$$

In order to bound PoA_{CCE} , the last proof steps of Section 4.2 still ought to be used. Such steps rely on condition iii), which in Section 3.2 was proved using submodularity of γ . Although γ is not submodular, we prove a weaker version of condition iii) as follows. By definition of γ_r and for every outcome \mathbf{x} we have $\sum_{i=1}^{N} \gamma_r(\mathbf{s}) - \gamma_r(\mathbf{0}, \mathbf{s}_{-i}) = \sum_{i=1}^{N} w_r(\mathbf{x})[P(r, \mathbf{s}) - P(r, (\mathbf{0}, \mathbf{s}_{-i}))] + [w_r(\mathbf{s}_i, \mathbf{0}) - w_r(\mathbf{0})]P(r, (\mathbf{0}, \mathbf{s}_{-i})) \leq w_r(\mathbf{x})P(r, \mathbf{s}) + P(r, \mathbf{s}) \sum_{i=1}^{N} [w_r(\mathbf{s}_i, \mathbf{0}) - w_r(\mathbf{0})] = (1 + w_r(\mathbf{x}) - w_r(\mathbf{0})) \leq w_r(\mathbf{x})P(r, \mathbf{s}) + P(r, \mathbf{s}) \leq w_r(\mathbf{x})P(r, \mathbf{s}) + P(r, \mathbf{s}) = (1 + w_r(\mathbf{x}) - w_r(\mathbf{0})) = (1 + w_r(\mathbf{x}) - w_r(\mathbf{0}))$ $\frac{w_r(\mathbf{x}) - w_r(\mathbf{0})}{w_r(\mathbf{x})} \gamma_r(\mathbf{x}) \le 2\gamma_r(\mathbf{x})$. The equalities are due to w_r being affine, the first inequality is due to $P(r, \cdot)$ being submodular and monotone, and the last inequality holds since w_r is positive and monotone. Hence, from the inequalities above we have $\sum_{i=1}^{N} \pi_i(\mathbf{x}) =$ $\sum_{i=1}^{N} \gamma(\mathbf{x}) - \gamma(\mathbf{0}, \mathbf{x}_{-i}) \leq 2\gamma(\mathbf{x})$. Note that a tighter condition can also be derived depending on the functions w_r 's, using $(1 + \max_{\mathbf{x} \in \boldsymbol{\mathcal{X}}, r \in [d]} \frac{w_r(\mathbf{x}) - w_r(\mathbf{0})}{w_r(\mathbf{x})})$ in place of 2. We will now use such condition in the same manner condition iii) was used in Section 4.2. Let $\mathbf{s}^{\star} = \arg \max_{\mathbf{s} \in \boldsymbol{\mathcal{S}}} \gamma(\mathbf{s})$. Then, for any CCE σ of \mathcal{G} we have

$$\mathbb{E}_{\mathbf{s}\sim\sigma}[\gamma(\mathbf{s})] \geq \frac{1}{2} \sum_{i=1}^{N} \mathbb{E}_{\mathbf{s}\sim\sigma}[\pi_i(\mathbf{s})] \geq \frac{1}{2} \sum_{i=1}^{N} \mathbb{E}_{\mathbf{s}\sim\sigma}[\pi_i(\mathbf{s}_i^{\star}, \mathbf{s}_{-i})]$$
$$\geq \frac{\eta}{2} \gamma(\mathbf{s}^{\star}) - \frac{\eta}{2} \mathbb{E}_{\mathbf{s}\sim\sigma}[\gamma(\mathbf{s})].$$

Hence, $PoA_{CCE} \le (1 + 0.5\eta)/0.5\eta$.