A Supplementary material for Sections 3-4

A. 1 Proof of Remark 1

Since f is monotone, $f\left(\mathbf{x}+k \mathbf{e}_{i}\right) \geq f(\mathbf{x})$ and $f\left(k \mathbf{e}_{i}\right) \geq$ $f(\mathbf{0})$ for any $\mathbf{x} \in \mathcal{Z}, i \in[n]$, and $k \in \mathbb{R}_{+}$. Hence, $\alpha(\mathcal{Z}) \leq 1$. Moreover, $\inf _{\underset{\mathbf{x} \in \mathcal{Z}}{ } \lim _{k \rightarrow 0^{+}} \frac{f\left(\mathbf{x}+k \mathbf{e}_{i}\right)-f(\mathbf{x})}{f\left(k \mathbf{e}_{i}\right)-f(\mathbf{0})} \leq} \leq$ 1 , since the considered ratio equals 1 when $\mathbf{x}=\mathbf{0}$. Hence, $\alpha(\mathcal{Z}) \geq 0$.

A. 2 Proof of Remark 2

The proof is obtained simply noting that the curvarture $\alpha(\tilde{\mathcal{S}})$ of γ is always upper bounded by 1 .

A. 3 Proof of Proposition 1

We first show that the budget allocation game of Example 1 is a valid utility game with continuous strategies. In fact, for any $l \in[N d]$
$[\nabla \gamma(\mathbf{s})]_{l}=\sum_{t \in \mathcal{T}: m \in \Gamma(t)}-\ln \left(1-p_{j}(m, t)\right) \prod_{i=1}^{N}\left(1-P_{i}\left(\mathbf{s}_{i}, t\right)\right)$,
where $j \in[N]$ and $m \in[d]$ are the indexes of advertiser and channel corresponding to coordinate $l \in[N d]$, respectively. Hence, γ is monotone since $[\nabla \gamma(\mathbf{s})]_{l} \geq 0$ for any $l \in[N d]$ and $\mathbf{s} \in \mathbb{R}_{+}^{N d}$. Moreover, γ is DR-submodular since $\gamma(\mathbf{s})=\sum_{t \in \mathcal{T}} \gamma_{t}(\mathbf{s})$ where $\gamma_{t}(\mathbf{s})=1-\prod_{i=1}^{N}\left(1-P_{i}\left(\mathbf{s}_{i}, t\right)\right)$ is such that for any $j, l \in[N], m, n \in[d], \frac{\partial^{2} \gamma_{t}(\mathbf{s})}{\partial\left[\mathbf{s}_{j}\right]_{m} \partial\left[\mathbf{s}_{l}\right]_{n}}=-\ln (1-$ $p_{j}(m, t) \ln \left(1-p_{l}(n, t)\right) \prod_{i=1}^{N}\left(1-P_{i}\left(\mathbf{s}_{i}, t\right)\right) \leq 0$ for any $\mathbf{s} \in \mathbb{R}_{+}^{N d}$. Finally, condition ii) can be verified equivalently as in [23, Proof of Proposition 5] and condition iii) holds with equality.

The set $\tilde{\mathcal{S}}:=\left\{\mathbf{x} \in \mathbb{R}_{+}^{N d} \mid \mathbf{0} \leq \mathbf{x} \leq \mathbf{s}_{\max }\right\}$ with $\mathbf{s}_{\max }=$ $2\left(\bar{s}_{1}, \ldots, \bar{s}_{N}\right)$ is such that $\mathbf{s}+\mathbf{s}^{\prime} \leq \mathbf{s}_{\max }$ for any pair $\mathbf{s}, \mathbf{s}^{\prime} \in \mathcal{S}$. Moreover, using the expression of $\nabla \gamma(\mathbf{s})$, the curvature of γ with respect to $\tilde{\mathcal{S}}$ is

$$
\begin{aligned}
& 1-\alpha(\tilde{\mathcal{S}})=\inf _{\substack{\mathbf{s} \in \tilde{\mathcal{S}} \\
l \in[N d]}} \frac{[\nabla \gamma(\mathbf{s})]_{l}}{[\nabla \gamma(0)]_{l}}= \\
& \min _{i \in[N], r \in[d]} \frac{\sum_{t \in \mathcal{T}: r \in \Gamma(t)} \ln \left(1-p_{i}(r, t)\right) \prod_{j \in[N]}\left(1-P_{j}\left(2 \overline{\mathbf{s}}_{j}, t\right)\right)}{\sum_{t \in \mathcal{T}: r \in \Gamma(t)} \ln \left(1-p_{i}(r, t)\right)} \\
& =: 1-\alpha>0 .
\end{aligned}
$$

Hence, using Theorem 1 we conclude that $P o A_{C C E} \leq$ $1+\alpha$.

A. 4 Proof of Fact 1

Condition i) holds since γ is monotone DR-submodular by definition. Also, condition ii) holds with equality. Moreover, defining (with abuse of notation) $[\mathbf{s}]_{1}^{i}=$ $\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{i}, \mathbf{0}, \ldots, \mathbf{0}\right)$ for $i \in[N]$ with $[\mathbf{s}]_{1}^{0}=\mathbf{0}$, condition iii) holds since by DR-submodularity one can verify that $\sum_{i=1}^{N} \hat{\pi}_{i}(\mathbf{s})=\sum_{i=1}^{N} \gamma(\mathbf{s})-\gamma\left(\mathbf{0}, \mathbf{s}_{-i}\right) \leq$ $\gamma\left([\mathbf{s}]_{1}^{i}\right)-\gamma\left([\mathbf{s}]_{1}^{i-1}\right)=\gamma(\mathbf{x})-\gamma(\mathbf{0})=\gamma(\mathbf{x})$.

A. 5 Proof of Corollary 1

By definition of α, and according to Theorem 1, $\hat{\mathcal{G}}$ is such that $\operatorname{Po} A_{C C E} \leq(1+\alpha)$. In other words, letting $\mathbf{s}^{\star}=\arg \max _{\mathbf{s} \in \mathcal{S}} \gamma(\mathbf{s})$, any CCE σ of $\hat{\mathcal{G}}$ satisfies $\mathbb{E}_{\mathbf{s} \sim \sigma}[\gamma(\mathbf{s})] \geq 1 /(1+\alpha) \gamma\left(\mathbf{s}^{\star}\right)$. Moreover, since players simultaneously use no-regret algorithms DnoRegret converges to one of such CCE [15, 28]. Hence, the statement of the remark follows.

A. 6 Proof of Proposition 2

Consider the sensor coverage problem with continuous assignments defined in Example 2. We first show that γ is a monotone DR-submodular function. In fact, for any $i \in[N d],[\nabla \gamma(\mathbf{x})]_{i}=-\ln \left(1-p_{l}^{m}\right) \prod_{i \in[N]}(1-$ $\left.p_{i}^{m}\right)^{\left[\mathbf{x}_{i}\right]_{m}} \geq 0$, where l and m and the indexes of sensor and location corresponding to coordinate i, respectively. Moreover, for any pair of sensors $j, l \in$ $[N], \frac{\partial^{2} \gamma(\mathbf{x})}{\partial\left[\mathbf{x}_{j}\right]_{m} \partial\left[\mathbf{x}_{l}\right]_{n}}=-\ln \left(1-p_{j}^{m}\right) \ln \left(1-p_{l}^{n}\right) \prod_{i \in[N]}(1-$ $\left.p_{i}^{m}\right)^{\left[\mathbf{x}_{i}\right]_{m}} \leq 0$ if $m=n$, and 0 otherwise. The problem of maximizing γ subject to $\mathcal{X}=\prod_{i=1}^{N} \mathcal{X}_{i}$, hence, is one of maximizing a monotone DR-submodular function subject to decoupled constraints discussed in Section 3.2. Thus, as outlined in Section 3.2, we can setup a valid utility game $\hat{\mathcal{G}}$.
The vector $\mathbf{x}_{\max }=2 \overline{\mathbf{x}}=2\left(\overline{\mathbf{x}}_{1}, \ldots, \overline{\mathbf{x}}_{N}\right)$ is such that $\forall \mathbf{x}, \mathbf{x}^{\prime} \in \mathcal{X}, \mathbf{x}+\mathbf{x}^{\prime} \leq \mathbf{x}_{\max }$. Moreover, defining $\tilde{\mathcal{X}}:=$ $\left\{\mathbf{x} \in \mathbb{R}_{+}^{N d} \mid \mathbf{0} \leq \mathbf{x} \leq \mathbf{x}_{\max }\right\}$, the curvature of γ with respect to $\tilde{\mathcal{X}}$, satisfies $\alpha(\tilde{\boldsymbol{\mathcal { X }}})=1-\inf _{\underset{l \in[N d]}{\mathbf{x} \in \tilde{\mathcal{X}}} \frac{[\nabla \gamma(\mathbf{x})]_{l}}{[\nabla \gamma(0)]_{l}}=}=$ $1-\min _{r \in[d]} \prod_{i \in[N]}\left(1-p_{i}^{r}\right)^{2 \overline{\mathbf{x}}_{i}}=\max _{r \in[d]} P(r, 2 \overline{\mathbf{x}})=$ α. Hence, by Corollary 1, any no-regret distributed algorithm has expected approximation ratio of $1 /(1+$ α). In addition, γ is also concave in each \mathcal{X}_{i}, since the $(d \times d)$ blocks on the diagonal of its Hessian are diagonal and negative, hence online gradient ascent ensures no-regret for each player [12] and can be run in a distributed manner.

A. 7 Equivalent characterizations of DR properties

To prove the main results of the paper, the following two propositions provide equivalent characterizations
of weak $D R$ and $D R$ properties, respectively ${ }^{4}$.
Proposition 4. A function $f: \mathcal{X} \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is weakly DR-submodular (Definition 4) if and only if for all $\mathbf{x} \leq$ $\mathbf{y} \in \mathcal{X}, \forall \mathbf{z} \in \mathbb{R}_{+}^{n}$ s.t. $(\mathbf{x}+\mathbf{z})$ and $(\mathbf{y}+\mathbf{z})$ are in \mathcal{X}, with $z_{i}=0 \forall i \in[n]: y_{i}>x_{i}$,

$$
f(\mathbf{x}+\mathbf{z})-f(\mathbf{x}) \geq f(\mathbf{y}+\mathbf{z})-f(\mathbf{y})
$$

Proof. (property of Proposition $4 \rightarrow$ weak DR)
We want to prove that for all $\mathbf{x} \leq \mathbf{y} \in \mathcal{X}, \forall i$ s.t. $x_{i}=y_{i}, \forall k \in \mathbb{R}_{+}$s.t. $\left(\mathbf{x}+k \mathbf{e}_{i}\right)$ and $\left(\mathbf{y}+k \mathbf{e}_{i}\right)$ are in $\boldsymbol{\mathcal { X }}$,

$$
f\left(\mathbf{x}+k \mathbf{e}_{i}\right)-f(\mathbf{x}) \geq f\left(\mathbf{y}+k \mathbf{e}_{i}\right)-f(\mathbf{y})
$$

This is trivially done choosing $\mathbf{z}=k \mathbf{e}_{i}$. Note that \mathbf{z} is such that $z_{i}=0, \forall i \in\left\{i \mid y_{i}>x_{i}\right\}$, so the property of Proposition 4 can indeed be applied.
(weak DR \rightarrow property of Proposition 4)
For all $\mathbf{x} \leq \mathbf{y} \in \mathcal{X}, \forall \mathbf{z} \in \mathbb{R}_{+}^{n}$ s.t. $(\mathbf{x}+\mathbf{z})$ and $(\mathbf{y}+\mathbf{z})$ are in \mathcal{X}, with $z_{i}=0 \forall i \in[n]: y_{i}>x_{i}$, we have

$$
\begin{aligned}
f(\mathbf{x}+\mathbf{z}) & -f(\mathbf{x})=\sum_{i=1}^{n} f\left(\mathbf{x}+[\mathbf{z}]_{1}^{i}\right)-f\left(\mathbf{x}+[\mathbf{z}]_{1}^{i-1}\right) \\
& =\sum_{i: x_{i}=y_{i}} f\left(\mathbf{x}+[\mathbf{z}]_{1}^{i-1}+z_{i} \mathbf{e}_{i}\right)-f\left(\mathbf{x}+[\mathbf{z}]_{1}^{i-1}\right) \\
& \geq \sum_{i: x_{i}=y_{i}} f\left(\mathbf{y}+[\mathbf{z}]_{1}^{i-1}+z_{i} \mathbf{e}_{i}\right)-f\left(\mathbf{y}+[\mathbf{z}]_{1}^{i-1}\right) \\
& =\sum_{i=1}^{n} f\left(\mathbf{y}+[\mathbf{z}]_{1}^{i}\right)-f\left(\mathbf{y}+[\mathbf{z}]_{1}^{i-1}\right) \\
& =f(\mathbf{y}+\mathbf{z})-f(\mathbf{y}) .
\end{aligned}
$$

The first equality is obtained from a telescoping sum, the second equality follows since when $y_{i}>x_{i}, z_{i}=0$. The inequality follows from weak DR property of f and the last two equalities are similar to the first two.

Proposition 5. A function $f: \mathcal{X} \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$ is $D R$ submodular (Definition 1) if and only if for all $\mathbf{x} \leq \mathbf{y} \in$ $\mathcal{X}, \forall \mathbf{z} \in \mathbb{R}_{+}^{n}$ s.t. $(\mathbf{x}+\mathbf{z})$ and $(\mathbf{y}+\mathbf{z})$ are in $\boldsymbol{\mathcal { X }}$,

$$
f(\mathbf{x}+\mathbf{z})-f(\mathbf{x}) \geq f(\mathbf{y}+\mathbf{z})-f(\mathbf{y}) .
$$

Proof. (property of Proposition $5 \rightarrow \mathrm{DR}$)
We want to prove that for all $\mathbf{x} \leq \mathbf{y} \in \mathcal{X}, \forall i \in[n]$, $\forall k \in \mathbb{R}_{+}$s.t. $\left(\mathbf{x}+k \mathbf{e}_{i}\right)$ and $\left(\mathbf{y}+k \mathbf{e}_{i}\right)$ are in \mathcal{X},

$$
f\left(\mathbf{x}+k \mathbf{e}_{i}\right)-f(\mathbf{x}) \geq f\left(\mathbf{y}+k \mathbf{e}_{i}\right)-f(\mathbf{y}) .
$$

This is trivially done choosing $\mathbf{z}=k \mathbf{e}_{i}$ and applying the property of Proposition 5.

[^0](DR \rightarrow property of Proposition 5)
For all $\mathbf{x} \leq \mathbf{y} \in \mathcal{X}, \forall \mathbf{z} \in \mathbb{R}_{+}^{n}$ s.t. $(\mathbf{x}+\mathbf{z})$ and $(\mathbf{y}+\mathbf{z})$ are in $\boldsymbol{\mathcal { X }}$, we have
\[

$$
\begin{aligned}
f(\mathbf{x}+\mathbf{z}) & -f(\mathbf{x})=\sum_{i=1}^{n} f\left(\mathbf{x}+[\mathbf{z}]_{1}^{i}\right)-f\left(\mathbf{x}+[\mathbf{z}]_{1}^{i-1}\right) \\
& =\sum_{i=1}^{n} f\left(\mathbf{x}+[\mathbf{z}]_{1}^{i-1}+z_{i} \mathbf{e}_{i}\right)-f\left(\mathbf{x}+[\mathbf{z}]_{1}^{i-1}\right) \\
& \geq \sum_{i=1}^{n} f\left(\mathbf{y}+[\mathbf{z}]_{1}^{i-1}+z_{i} \mathbf{e}_{i}\right)-f\left(\mathbf{y}+[\mathbf{z}]_{1}^{i-1}\right) \\
& =\sum_{i=1}^{n} f\left(\mathbf{y}+[\mathbf{z}]_{1}^{i}\right)-f\left(\mathbf{y}+[\mathbf{z}]_{1}^{i-1}\right) \\
& =f(\mathbf{y}+\mathbf{z})-f(\mathbf{y}) .
\end{aligned}
$$
\]

The first and last equalities are telescoping sums and the inequality follows from the DR property of f.

A. 8 Properties of (twice) differentiable submodular functions

As mentioned in Section 4, submodular continuous functions are defined on subsets of \mathbb{R}^{n} of the form $\mathcal{X}=\prod_{i=1}^{n} \mathcal{X}_{i}$, where each \mathcal{X}_{i} is a compact subset of \mathbb{R}. From the weak $D R$ property (Definition 4) it follows that, when f is differentiable, it is submodular iff

$$
\forall \mathbf{x}, \mathbf{y} \in \mathcal{X}: \mathbf{x} \leq \mathbf{y}, \forall i \text { s.t. } x_{i}=y_{i}, \nabla_{i} f(\mathbf{x}) \geq \nabla_{i} f(\mathbf{y})
$$

That is, the gradient of f is a weak antitone mapping from \mathbb{R}^{n} to \mathbb{R}^{n}.

Moreover, we saw that a function $f: \mathcal{X} \rightarrow \mathbb{R}$ is submodular iff for all $\mathrm{x} \in \mathcal{X}, \forall i \neq j$ and $a_{i}, a_{j}>0$ s.t. $x_{i}+a_{i} \in \mathcal{X}_{i}, x_{j}+a_{j} \in \mathcal{X}_{j}$, we have [1]
$f\left(\mathbf{x}+a_{i} \mathbf{e}_{i}\right)-f(\mathbf{x}) \geq f\left(\mathbf{x}+a_{i} \mathbf{e}_{i}+a_{j} \mathbf{e}_{j}\right)-f\left(\mathbf{x}+a_{j} \mathbf{e}_{j}\right)$.
As visible from the latter condition, when f is twicedifferentiable, it is submodular iff all the off-diagonal entries of its Hessian are non-positive [1]:

$$
\forall \mathbf{x} \in \mathcal{X}, \quad \frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}} \leq 0, \quad \forall i \neq j
$$

Hence, the class of submodular continuous functions contains a subset of both convex and concave functions.

Similarly, from the DR property (Definition 1) it follows that for a differentiable continuous function DRsubmodularity is equivalent to

$$
\forall \mathbf{x} \leq \mathbf{y}, \nabla f(\mathbf{x}) \geq \nabla f(\mathbf{y})
$$

That is, the gradient of f is an antitone mapping from \mathbb{R}^{n} to \mathbb{R}^{n}. More precisely, [4, Proposition 2] showed
that a function f is DR-submodular iff it is submodular (weakly DR-submodular) and coordinate-wise concave. A function $f: \mathcal{X} \rightarrow \mathbb{R}$ is coordinate-wise concave if, for all $\mathbf{x} \in \mathcal{X}, \forall i \in[n], \forall k, l \in \mathbb{R}_{+}$s.t. $\left(\mathbf{x}+k \mathbf{e}_{i}\right)$, $\left(\mathbf{x}+l \mathbf{e}_{i}\right)$, and $\left(\mathbf{x}+(k+l) \mathbf{e}_{i}\right)$ are in $\boldsymbol{\mathcal { X }}$, we have

$$
f\left(\mathbf{x}+k \mathbf{e}_{i}\right)-f(\mathbf{x}) \geq f\left(\mathbf{x}+(k+l) \mathbf{e}_{i}\right)-f\left(\mathbf{x}+l \mathbf{e}_{i}\right)
$$

or equivalently, if twice differentiable, $\frac{\partial^{2} f(\mathbf{x})}{\partial x_{i}^{2}} \leq 0$ $\forall i \in[n]$. Hence, as stated in Section 3, a twicedifferentiable function is DR-submodular iff all the entries of its Hessian are non-positive:

$$
\forall \mathbf{x} \in \mathcal{X}, \quad \frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}} \leq 0, \quad \forall i, j
$$

A. 9 Proof of Proposition 3

By Definition 2, the curvature $\alpha(\mathcal{Z})$ of f w.r.t. \mathcal{Z} satisfies

$$
\begin{equation*}
f\left(\mathbf{x}+k \mathbf{e}_{i}\right)-f(\mathbf{x}) \geq(1-\alpha(\mathcal{Z}))\left[f\left(k \mathbf{e}_{i}\right)-f(\mathbf{0})\right] \tag{1}
\end{equation*}
$$

for any $\mathbf{x} \in \mathcal{Z}, i \in[n]$ s.t. $\mathbf{x}+k \mathbf{e}_{i} \in \mathcal{Z}$ with $k \rightarrow 0_{+}$. We firstly show that condition (1) indeed holds for any $\mathbf{x} \in \mathcal{Z}, i \in[n]$, and $k \in \mathbb{R}_{+}$s.t. $\mathbf{x}+k \mathbf{e}_{i} \in \mathcal{Z}$, by using monotonicity and coordinate-wise concavity of f. As seen in Appendix A.8, DR-submodularity implies coordinate-wise concavity. To this end, we define

$$
\alpha_{i}^{k}(\mathcal{Z})=1-\inf _{\substack{\mathbf{x} \in \mathcal{Z}: \\ \mathbf{x}+k \mathbf{e}_{i} \in \mathcal{Z}}} \frac{f\left(\mathbf{x}+k \mathbf{e}_{i}\right)-f(\mathbf{x})}{f\left(k \mathbf{e}_{i}\right)-f(\mathbf{0})}
$$

Hence, it sufficies to prove that, for any $i \in[n]$, $\alpha_{i}^{k}(\mathcal{Z})$ is non-increasing in k. Note that by DRsubmodularity,

$$
\alpha_{i}^{k}(\mathcal{Z})=1-\frac{f\left(\mathbf{z}_{\max }\right)-f\left(\mathbf{z}_{\max }-k \mathbf{e}_{i}\right)}{f\left(k \mathbf{e}_{i}\right)-f(\mathbf{0})}
$$

Hence, for any pair $l, m \in \mathbb{R}_{+}$with $l<m, \alpha_{i}^{m}(\mathcal{Z}) \geq$ $\alpha_{i}^{l}(\mathcal{Z})$ is true whenever
$\frac{f\left(\mathbf{z}_{\max }\right)-f\left(\mathbf{z}_{\max }-m \mathbf{e}_{i}\right)}{f\left(m \mathbf{e}_{i}\right)-f(\mathbf{0})} \geq \frac{f\left(\mathbf{z}_{\max }\right)-f\left(\mathbf{z}_{\max }-l \mathbf{e}_{i}\right)}{f\left(l \mathbf{e}_{i}\right)-f(\mathbf{0})}$.
The last inequality is satisfied since, by coordinatewise concavity, $\left[f\left(\mathbf{z}_{\max }\right)-f\left(\mathbf{z}_{\max }-m \mathbf{e}_{i}\right)\right] / m \geq$ $\left[f\left(\mathbf{z}_{\max }\right)-f\left(\mathbf{z}_{\max }-l \mathbf{e}_{i}\right)\right] / l$ and $\left[f\left(m \mathbf{e}_{i}\right)-f(\mathbf{0})\right] / m \leq$ $\left[f\left(l \mathbf{e}_{i}\right)-f(\mathbf{0})\right] / l$. This is because, given a concave function $g: \mathbb{R} \rightarrow \mathbb{R}$, the quantity

$$
R\left(x_{1}, x_{2}\right):=\frac{g\left(x_{2}\right)-g\left(x_{1}\right)}{x_{2}-x_{1}}
$$

is non-increasing in x_{1} for fixed x_{2}, and vice versa. Moreover, monotonicity ensures that all of the above ratios are non-negative.

To conclude the proof of Proposition 3 we show that if condition (1) holds for any $\mathbf{x} \in \mathcal{Z}, i \in[n]$, and $k \in \mathbb{R}_{+}$ s.t. $\mathbf{x}+k \mathbf{e}_{i} \in \mathcal{Z}$, then the result of the proposition follows. Indeed, for any \mathbf{x}, \mathbf{y} s.t. $\mathbf{x}+\mathbf{y} \in \mathcal{Z}$ we have

$$
\begin{aligned}
f(\mathbf{x}+\mathbf{y}) & -f(\mathbf{x})=\sum_{i=1}^{n} f\left(\mathbf{x}+[\mathbf{y}]_{1}^{i}\right)-f\left(\mathbf{x}+[\mathbf{y}]_{1}^{i-1}\right) \\
& =\sum_{i=1}^{n} f\left(\mathbf{x}+[\mathbf{y}]_{1}^{i-1}+y_{i} \mathbf{e}_{i}\right)-f\left(\mathbf{x}+[\mathbf{y}]_{1}^{i-1}\right) \\
& \geq(1-\alpha(\mathcal{Z})) \sum_{i=1}^{n} f\left(y_{i} \mathbf{e}_{i}\right)-f(\mathbf{0}) \\
& \geq(1-\alpha(\mathcal{Z})) \sum_{i=1}^{n} f\left([\mathbf{y}]_{1}^{i}\right)-f\left([\mathbf{y}]_{1}^{i-1}\right) \\
& =(1-\alpha(\mathcal{Z}))(f(\mathbf{y})-f(\mathbf{0}))
\end{aligned}
$$

where the first inequality follows by condition (1) and the second one from f being weakly DR-submodular (and using Proposition 4).

B Supplementary material for Section 5

In the first part of this appendix we generalize the submodularity ratio defined in [11] for set functions to continuous domains and discuss its main properties. We compare it to the ratio by [16] and we relate it to the generalized submodularity ratio defined in Definition 5. Then, we provide a class of social functions with generalized submodularity ratio $0<\eta<1$ and we report the proof of Theorem 2. Finally, we analyze the sensor coverage problem with the non-submodular objective defined in Section 5 .

B. 1 Submodularity ratio of a monotone function on continuous domains

We generalize the class of submodular continuous functions, defining the submodularity ratio $\eta \in[0,1]$ of a monotone function defined on a continuous domain.
Definition 7 (submodularity ratio). The submodularity ratio of a monotone function $f: \mathcal{X} \subseteq \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ is the largest scalar η such that for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ such that $\mathbf{x}+\mathbf{y} \in \mathcal{X}$,

$$
\sum_{i=1}^{n}\left[f\left(\mathbf{x}+y_{i} \mathbf{e}_{i}\right)-f(\mathbf{x})\right] \geq \eta[f(\mathbf{x}+\mathbf{y})-f(\mathbf{x})] .
$$

It is straightforward to show that $\eta \in[0,1]$ and, when restricted to binary sets $\mathcal{X}=\{0,1\}^{n}$, Definition 7 coincides with the submodularity ratio defined in [11] for set functions. A set function is submodular iff it has submodularity ratio $\eta=1$ [11]. However, functions with submodularity ratio $0<\eta<1$ still preserve 'nice' properties in term of maximization guarantees. Similarly to [11], we can affirm the following.
Proposition 6. A function $f: \mathcal{X} \subseteq \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ is weakly DR-submodular (Definition 4) iff it has submodularity ratio $\eta=1$.

Proof. If f is weakly DR-submodular (Definition 4), then for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$,

$$
\begin{aligned}
& \sum_{i=1}^{d} f\left(\mathbf{x}+y_{i} \mathbf{e}_{i}\right)-f(\mathbf{x}) \\
& \geq \sum_{i=1}^{d} f\left(\mathbf{x}+[\mathbf{y}]_{1}^{i}\right)-f\left(\mathbf{x}+[\mathbf{y}]_{1}^{i-1}\right)=f(\mathbf{x}+\mathbf{y})-f(\mathbf{x})
\end{aligned}
$$

Assume now f has submodularity ratio $\eta=1$. We prove that f is weakly DR-submodular by proving that it is submodular. Hence, we want to prove that for all $\mathbf{x} \in \mathcal{X}, \forall i \neq j$ and $a_{i}, a_{j}>0$ s.t. $x_{i}+a_{i} \in \mathcal{X}_{i}$,
$x_{j}+a_{j} \in \mathcal{X}_{j}$,

$$
\begin{align*}
f\left(\mathbf{x}+a_{i} \mathbf{e}_{i}\right)- & f(\mathbf{x}) \geq \tag{2}\\
& f\left(\mathbf{x}+a_{i} \mathbf{e}_{i}+a_{j} \mathbf{e}_{j}\right)-f\left(\mathbf{x}+a_{j} \mathbf{e}_{j}\right)
\end{align*}
$$

Consider $\mathbf{y}=a_{i} \mathbf{e}_{i}+a_{j} \mathbf{e}_{j} \in \mathcal{X}$. Since f has submodularity ratio $\eta=1$, we have

$$
\begin{aligned}
f\left(\mathbf{x}+a_{i} \mathbf{e}_{i}\right) & -f(\mathbf{x})+f\left(\mathbf{x}+a_{j} \mathbf{e}_{j}\right)-f(\mathbf{x}) \\
& \geq f\left(\mathbf{x}+a_{i} \mathbf{e}_{i}+a_{j} \mathbf{e}_{j}\right)-f(\mathbf{x}),
\end{aligned}
$$

which is equivalent to the submodularity condition (2).

An example of functions with submodularity ratio $\eta>0$ is the product between an affine and a weakly DR-submodular function, as stated in the following proposition.
Proposition 7. Let $f, \rho: \mathcal{X} \subseteq \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$be two monotone functions, with f weakly DR-submodular, and g affine such that $\rho(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}+b$ with $\mathbf{a} \geq \mathbf{0}$ and $b>0$. Then, provided that \mathcal{X} is bounded, the product $g(\mathbf{x}):=f(\mathbf{x}) \rho(\mathbf{x})$ has submodularity ratio $\eta=$ $\inf _{i \in[n], \mathbf{x} \in \mathcal{X}} \frac{b}{b+\sum_{j \neq i} a_{j} x_{j}}>0$.

Proof. Note that since ρ is affine, for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ we have that $g(\mathbf{x}+\mathbf{y})-g(\mathbf{x})=f(\mathbf{x}+\mathbf{y}) \rho(\mathbf{x}+\mathbf{y})-$ $f(\mathbf{x}) \rho(\mathbf{x})=\rho(\mathbf{x}+\mathbf{y})[f(\mathbf{x}+\mathbf{y})-f(\mathbf{x})]+f(\mathbf{x})\left(\mathbf{a}^{\top} \mathbf{y}\right)$. For any pair $\mathbf{x}, \mathbf{y} \in \mathcal{X}$ we have:

$$
\begin{aligned}
& \sum_{i=1}^{n}\left[g\left(\mathbf{x}+y_{i} \mathbf{e}_{i}\right)-g(\mathbf{x})\right] \\
& =\sum_{i=1}^{n} \rho\left(\mathbf{x}+y_{i} \mathbf{e}_{i}\right)\left[f\left(\mathbf{x}+y_{i} \mathbf{e}_{i}\right)-f(\mathbf{x})\right]+f(\mathbf{x})\left(y_{i} \mathbf{a}^{\top} \mathbf{e}_{i}\right) \\
& \geq \min _{i \in[n]} \rho\left(\mathbf{x}+y_{i} \mathbf{e}_{i}\right) \sum_{i=1}^{n} f\left(\mathbf{x}+y_{i} \mathbf{e}_{i}\right)-f(\mathbf{x})+f(\mathbf{x})\left(\mathbf{a}^{\top} \mathbf{y}\right) \\
& \geq \underbrace{\frac{\min _{i \in[n]} \rho\left(\mathbf{x}+y_{i} \mathbf{e}_{i}\right)}{\rho(\mathbf{x}+\mathbf{y})}(\rho(\mathbf{x}+\mathbf{y})[f(\mathbf{x}+\mathbf{y})-f(\mathbf{x})]}_{:=\eta(\mathbf{x}, \mathbf{y})}+\quad+f(\mathbf{x})\left(\mathbf{a}^{\top} \mathbf{y}\right)) \\
& =\eta(\mathbf{x}, \mathbf{y})[g(\mathbf{x}+\mathbf{y})-g(\mathbf{x})] .
\end{aligned}
$$

The first inequality follows since ρ is affine nonnegative and f is non-negative. The second inequality is due to f being weakly DR-submodular (f has submodularity ratio $\eta=1$) and $0<\eta(\mathbf{x}, \mathbf{y}) \leq 1$, which holds because $b>0$ and $\mathbf{a} \geq \mathbf{0}$. Hence, it follows that γ has submodularity ratio

$$
\eta:=\inf _{\substack{\mathbf{x}, \mathbf{y} \in \mathcal{X} \\ \mathbf{x}+\mathbf{y} \in \mathcal{X}}} \eta(\mathbf{x}, \mathbf{y})=\inf _{i \in[n], \mathbf{y} \in \mathcal{X}} \frac{b}{b+\sum_{j \neq i} a_{j} y_{j}}>0
$$

B.1.1 Related notion by [16]

A generalization of submodular continuous functions was also provided in [16] together with provable maximization guarantees. However, it has different implications than the submodularity ratio defined above. In fact, $[16]$ considered the class of differentiable functions $f: \mathcal{X} \subseteq \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ with parameter η defined as

$$
\eta=\inf _{\mathbf{x}, \mathbf{y} \in \mathcal{X}, \mathbf{x} \leq \mathbf{y}} \inf _{i \in[n]} \frac{[\nabla f(\mathbf{x})]_{i}}{[\nabla f(\mathbf{y})]_{i}} .
$$

For monotone functions $\eta \in[0,1]$, and a differentiable function is DR-submodular iff $\eta=1$ [16]. Note that the parameter η of [16] generalizes the DR property of f, while our submodularity ratio η generalizes the weak DR property.

B. 2 Relations with the generalized submodularity ratio of Definition 5

In Proposition 6 we saw that submodularity ratio $\eta=1$ is a necessary and sufficient condition for weak DR-submodularity. In contrast, a generalized submdoularity ratio (Definition 5) $\eta=1$ is only necessary for the social function γ to be weakly DR-submodular. This is stated in the following proposition. For non submodular γ, no relation can be established between submodularity ratio of Definition 7 and generalized submodularity ratio of Definition 5 .
Proposition 8. Given a game $\mathcal{G}=$ $\left(N,\left\{\mathcal{S}_{i}\right\}_{i=1}^{N},\left\{\pi_{i}\right\}_{i=1}^{N}, \gamma\right)$. If γ is weakly DRsubmodular, then γ has generalized submodularity ratio $\eta=1$.

Proof. Consider any pair of outcomes $\mathbf{s}, \mathbf{s}^{\prime} \in \mathcal{S}$. For $i \in\{0, \ldots, N\}$, with abuse of notation we define $\left[\mathbf{s}^{\prime}\right]_{1}^{i}:=\left(\mathbf{s}_{1}^{\prime}, \ldots, \mathbf{s}_{i}^{\prime}, \mathbf{0}, \ldots, \mathbf{0}\right)$ with $\left[\mathbf{s}^{\prime}\right]_{1}^{0}=\mathbf{0}$. We have,

$$
\begin{aligned}
& \sum_{i=1}^{N} \gamma\left(\mathbf{s}_{i}+\mathbf{s}_{i}^{\prime}, \mathbf{s}_{-i}\right)-\gamma(\mathbf{s}) \\
& \geq \sum_{i=1}^{N} \gamma\left(\mathbf{s}+\left[\mathbf{s}^{\prime}\right]_{1}^{i}\right)-\gamma\left(\mathbf{s}+\left[\mathbf{s}^{\prime}\right]_{1}^{i-1}\right) \\
& =\gamma\left(\mathbf{s}+\mathbf{s}^{\prime}\right)-\gamma(\mathbf{s})
\end{aligned}
$$

where the inequality follows since γ is weakly DRsubmodular and the equality is a telescoping sum.

Similarly to Proposition 7 in the previous section, in the following proposition we show that social functions γ defined as product of weakly DR-submodular functions and affine functions have generalized submodularity ratio $\eta>0$.

Proposition 9. Given a game $\mathcal{G}=$ $\left(N,\left\{\mathcal{S}_{i}\right\}_{i=1}^{N},\left\{\pi_{i}\right\}_{i=1}^{N}, \gamma\right)$ Let γ be defined as $\gamma(\mathbf{s}):=f(\mathbf{x}) \rho(\mathbf{x})$ with $f, \rho: \mathbb{R}_{+}^{N d} \rightarrow \mathbb{R}_{+}$be two monotone functions, with f weakly DRsubmodular, and g affine such that $\rho(\mathbf{x})=\mathbf{a}^{\top} \mathbf{x}+b$ with $\mathbf{a}=\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{N}\right) \geq \mathbf{0}$ and $b>0$. Then, γ has generalized submodularity ratio $\eta=\inf _{i \in[N], \mathbf{s} \in \mathcal{S}} \frac{b}{b+\sum_{j \neq i} \mathbf{a}_{j}^{\top} \mathbf{s}_{j}}>0$.

Proof. The proof is equivalent to the proof of Proposition 7 , with the only difference that \mathbf{s}_{i}^{\prime} belong to \mathbb{R}_{+}^{d} instead of \mathbb{R}_{+}.

Note that for the game considered in the previous proposition, using Proposition 7 one could also affirm that γ has submodularity ratio $\eta=$ $\inf _{i \in[N d], \mathbf{s} \in \mathcal{S}} \frac{b}{b+\sum_{j \neq i}[\mathbf{a}]_{j}[\mathbf{s}]_{j}}>0$ which, unless $d=1$, is strictly smaller than its generalized submodularity ratio.

B. 3 Proof of Theorem 2

The proof is equivalent to the proof of Theorem 1 , with the only difference that here we prove that \mathcal{G} is a (η, η)-smooth game in the framework of [28]. Then, it follows that $\operatorname{Po} A_{C C E} \leq(1+\eta) / \eta$.

For the smoothness proof, consider any pair of outcomes $\mathbf{s}, \mathbf{s}^{\star} \in \mathcal{S}$. We have:

$$
\begin{aligned}
& \sum_{i=1}^{N} \pi_{i}\left(\mathbf{s}_{i}^{\star}, \mathbf{s}_{-i}\right) \geq \sum_{i=1}^{N} \gamma\left(\mathbf{s}_{i}^{\star}, \mathbf{s}_{-i}\right)-\gamma\left(0, \mathbf{s}_{-i}\right) \\
& \geq \sum_{i=1}^{N} \gamma\left(\mathbf{s}_{i}^{\star}+\mathbf{s}_{i}, \mathbf{s}_{-i}\right)-\gamma(\mathbf{s}) \\
& =\eta \gamma\left(\mathbf{s}+\mathbf{s}^{\star}\right)-\eta \gamma(\mathbf{s})
\end{aligned}
$$

The first inequality is due to condition ii) of Definition 3. The second inequality follows since γ is playerwise DR-submodular (applying Proposition 5 for each player i) and the second inequality from γ having generalized submodularity ratio η.

B. 4 Analysis of the sensor coverage problem with non-submodular objective

We analyze the sensor coverage problem with non-submodular objective defined in Section 5 , where $\gamma(\mathbf{x})=\sum_{r \in[d]} w_{r}(\mathbf{x}) P(r, \mathbf{x})$ with $w_{r}(\mathbf{x})=$ $\mathbf{a}_{r} \frac{\sum_{i=1}^{N}\left[\mathbf{x}_{i}\right]_{r}}{N}+b_{r}$. Note that by Proposition 9, the function $\gamma_{r}(\mathbf{x}):=w_{r}(\mathbf{x}) P(r, \mathbf{x})$ has generalized submodularity ratio $\eta>0$, hence it is not hard to show that $\gamma(\mathbf{x})=\sum_{r \in[d]} \gamma_{r}(\mathbf{x})$ shares the same property. Moreover, there exist parameters \mathbf{a}_{r}, b_{r} for which γ is not submodular. Interestingly, γ is convave in each \mathcal{X}_{i}.

In fact, γ_{r} 's are concave in each \mathcal{X}_{i} since $P(r, \mathbf{x})$'s are concave in each \mathcal{X}_{i} and w_{r} 's are positive affine functions. Moreover, γ is playerwise DR-submodular since the $(d \times d)$ blocks on the diagonal of its Hessian are diagonal (and their entries are non-positive, by concavity of γ in each \mathcal{X}_{i}).

To maximize γ, as outlined in Section 3.2, we can set up a game $\mathcal{G}=\left(N,\left\{\mathcal{S}_{i}\right\}_{i=1}^{N},\left\{\pi_{i}\right\}_{i=1}^{N}, \gamma\right)$ where for each player $i, \mathcal{S}_{i}=\mathcal{X}_{i}$, and $\pi_{i}(\mathbf{s})=\gamma(\mathbf{s})-\gamma\left(\mathbf{0}, \mathbf{s}_{-i}\right)$ for every outcome $\mathbf{s} \in \mathcal{S}=\mathcal{X}$. Hence, condition ii) of Definition 3 is satisfied with equality. Following the proof of Theorem 2, we have that:

$$
\sum_{i=1}^{N} \pi_{i}\left(\mathbf{s}_{i}^{\star}, \mathbf{s}_{-i}\right) \geq \eta \gamma\left(\mathbf{s}+\mathbf{s}^{\star}\right)-\eta \gamma(\mathbf{s})
$$

In order to bound Po $A_{C C E}$, the last proof steps of Section 4.2 still ought to be used. Such steps rely on condition iii), which in Section 3.2 was proved using submodularity of γ. Although γ is not submodular, we prove a weaker version of condition iii) as follows. By definition of γ_{r} and for every outcome \mathbf{x} we have $\sum_{i=1}^{N} \gamma_{r}(\mathbf{s})-\gamma_{r}\left(\mathbf{0}, \mathbf{s}_{-i}\right)=\sum_{i=1}^{N} w_{r}(\mathbf{x})[P(r, \mathbf{s})-$ $\left.P\left(r,\left(\mathbf{0}, \mathbf{s}_{-i}\right)\right)\right]+\left[w_{r}\left(\mathbf{s}_{i}, \mathbf{0}\right)-w_{r}(\mathbf{0})\right] P\left(r,\left(\mathbf{0}, \mathbf{s}_{-i}\right)\right) \leq$ $w_{r}(\mathbf{x}) P(r, \mathbf{s})+P(r, \mathbf{s}) \sum_{i=1}^{N}\left[w_{r}\left(\mathbf{s}_{i}, \mathbf{0}\right)-w_{r}(\mathbf{0})\right]=(1+$ $\left.\frac{w_{r}(\mathbf{x})-w_{r}(\mathbf{0})}{w_{r}(\mathbf{x})}\right) \gamma_{r}(\mathbf{x}) \leq 2 \gamma_{r}(\mathbf{x})$. The equalities are due to w_{r} being affine, the first inequality is due to $P(r, \cdot)$ being submodular and monotone, and the last inequality holds since w_{r} is positive and monotone. Hence, from the inequalities above we have $\sum_{i=1}^{N} \pi_{i}(\mathbf{x})=$ $\sum_{i=1}^{N} \gamma(\mathbf{x})-\gamma\left(\mathbf{0}, \mathbf{x}_{-i}\right) \leq 2 \gamma(\mathbf{x})$. Note that a tighter condition can also be derived depending on the functions w_{r}^{\prime} 's, using $\left(1+\max _{\mathbf{x} \in \mathcal{X}, r \in[d]} \frac{w_{r}(\mathbf{x})-w_{r}(\mathbf{0})}{w_{r}(\mathbf{x})}\right)$ in place of 2 . We will now use such condition in the same manner condition iii) was used in Section 4.2. Let $\mathbf{s}^{\star}=\arg \max _{\mathbf{s} \in \mathcal{S}} \gamma(\mathbf{s})$. Then, for any CCE σ of \mathcal{G} we have

$$
\begin{aligned}
\mathbb{E}_{\mathbf{s} \sim \sigma}[\gamma(\mathbf{s})] & \geq \frac{1}{2} \sum_{i=1}^{N} \mathbb{E}_{\mathbf{s} \sim \sigma}\left[\pi_{i}(\mathbf{s})\right] \geq \frac{1}{2} \sum_{i=1}^{N} \mathbb{E}_{\mathbf{s} \sim \sigma}\left[\pi_{i}\left(\mathbf{s}_{i}^{\star}, \mathbf{s}_{-i}\right)\right] \\
& \geq \frac{\eta}{2} \gamma\left(\mathbf{s}^{\star}\right)-\frac{\eta}{2} \mathbb{E}_{\mathbf{s} \sim \sigma}[\gamma(\mathbf{s})]
\end{aligned}
$$

Hence, $P o A_{C C E} \leq(1+0.5 \eta) / 0.5 \eta$.

[^0]: ${ }^{4}$ The introduced properties are the continuous versions of the 'group DR property'[5] of submodular set functions.

