
Rotting bandits are not harder than stochastic ones

A Proof of core FEWA guarantees

Lemma 1. On the favorable event ⇠t, if an arm i passes through a filter of window h at round t, i.e., i 2 Kh,
then the average of its h last pulls satisfies

µh
i (N

⇡F
i,t ) � µ+

t (⇡F)� 4c(h, �t). (5)

Proof. Let i be an arm that passed a filter of window h at round t. First, we use the confidence bound for the
estimates and we pay the cost of keeping all the arms up to a distance 2c(h, �t) of bµh

max,t,

µh
i (Ni,t) � bµh

i (Ni,t)� c(h, �t) � bµh
max,t � 3c(h, �t) � max

i2Kh

µh
i (Ni,t)� 4c(h, �t), (11)

where in the last inequality, we used that that for all i 2 Kh,

bµh
max,t � bµh

i (Ni,t) � µh
i (Ni,t)� c(h, �t).

Second, since the means of arms are decaying, we know that

µ+
t (⇡F) , µi?t (Ni?t ,t)  µi?t (Ni?t ,t � 1) = µ1

i?t
(Ni?t ,t)  max

i2K
µ1
i (Ni,t) = max

i2K1

µ1
i (Ni,t). (12)

Third, we show that the largest average of the last h0 means of arms in Kh0 is increasing with h0,

8h0  Ni,t � 1, max
i2Kh0+1

µh0+1
i (Ni,t) � max

i2Kh0
µh0

i (Ni,t).

To show the above property, we remark that thanks to our selection rule, the arm that has the largest
average of means, always passes the filter. Formally, we show that argmaxi2Kh0 µ

h0

i (Ni,t) ✓ Kh0+1. Let

ih
0

max 2 argmaxi2Kh0 µ
h0

i (Ni,t). Then for such ih
0

max, we have

bµh0

ih0
max

(Nih0
max,t

) � µh0

ih0
max

(Nih0
max,t

)� c(h0, �t) � µh0

max,t � c(h0, �t) � bµh0

max,t � 2c(h0, �t),

where the first and the third inequality are due to confidence bounds on estimates, while the second one is due to
the definition of ih

0

max.

Since the arms are decaying, the average of the last h0 + 1 mean values for a given arm is always greater than the
average of the last h0 mean values and therefore,

max
i2Kh0

µh0

i (Ni,t) = µh0

ih0
max

(Nih0
max,t

)  µh0+1
ih0
max

(Nih0
max,t

)  max
i2Kh0+1

µh0+1
i (Ni,t), (13)

because ih
0

max 2 Kh0+1. Gathering Equations 11, 12, and 13 leads to the claim of the lemma,

µh
i (Ni,t)

(11)
� max

i2Kh

µh
i (Ni,t)� 4c(h, �t)

(13)
� max

i2K1

µ1
i (Ni,t)� 4c(h, �t)

(12)
� µ+

t (⇡F)� 4c(h, �t).

Corollary 1. Let i 2 op be an arm overpulled by FEWA at round t and hi,t , N⇡F
i,t �N⇡?

i,t � 1 be the di↵erence
in the number of pulls w.r.t. the optimal policy ⇡? at round t. On the favorable event ⇠t, we have

µ+
t (⇡F)� µ

hi,t

i (Ni,t)  4c(hi,t, �t). (8)

Proof. If i was pulled at round t, then by the condition at Line 10 of Algorithm 1, it means that i passes through
all the filters from h = 1 up to Ni,t. In particular, since 1  hi,t  Ni,t, i passed the filter for hi,t, and thus we
can apply Lemma 1 and conclude

µh
i (Ni,t) � µ+

t (⇡F)� 4c(hi,t, �t). (14)
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B Proofs of auxiliary results

Lemma 2. Let h⇡
i,t , |N⇡

i,T �N⇡?

i,T |. For any policy ⇡, the regret at round T is no bigger than

RT (⇡) 
X

i2op

h⇡
i,T�1X

h=0

h
⇠t⇡i (N?

i,T+h)

i⇣
µ+
T (⇡)� µi(N

⇡?

i,T + h)
⌘
+

TX

t=0

h
⇠t
i
Lt.

We refer to the the first sum above as to A⇡ and to the second on as to B.

Proof. We consider the regret at round T . From Equation 3, the decomposition of regret in terms of overpulls
and underpulls gives

RT (⇡) =
X

i2up

N⇡?

i,TX

t0=N⇡
i,T+1

µi(t
0)�

X

i2op

N⇡
i,TX

t0=N⇡?
i,T+1

µi(t
0).

In order to separate the analysis for each arm, we upper-bound all the rewards in the first sum by their maximum
µ+
T (⇡) , maxi2K µi(N⇡

i,T ). This upper bound is tight for problem-independent bound because one cannot hope
that the unexplored reward would decay to reduce its regret in the worst case. We also notice that there are as
many terms in the first double sum (number of underpulls) than in the second one (number of overpulls). This
number is equal to

P
op

h⇡
i,T . Notice that this does not mean that for each arm i, the number of overpulls equals

to the number of underpulls, which cannot happen anyway since an arm cannot be simultaneously underpulled
and overpulled. Therefore, we keep only the second double sum,

RT (⇡) 
X

i2op

h⇡
i,T�1X

t0=0

⇣
µ+
T (⇡F)� µi(N

⇡?

i,T + t0)
⌘
. (15)

Then, we need to separate overpulls that are done under ⇠t and under ⇠t. We introduce t⇡i (n), the round at which
⇡ pulls arm i for the n-th time. We now make the round at which each overpull occurs explicit,

RT (⇡) 
X

i2op

h⇡
i,T�1X

t0=0

TX

t=0

h
t⇡i

⇣
N⇡?

i,T + t0
⌘
= t
i⇣

µ+
T (⇡)� µi(N

⇡?

i,T + t0)
⌘


X

i2op

h⇡
i,T�1X

t0=0

TX

t=0

h
t⇡i

⇣
N⇡?

i,T + t0
⌘
= t ^ ⇠t

i⇣
µ+
T (⇡)� µi(N

⇡?

i,T + t0)
⌘

| {z }
A⇡

+
X

i2op

h⇡
i,T�1X

t0=0

TX

t=0

h
t⇡i

⇣
N⇡?

i,T + t0
⌘
= t ^ ⇠t

i⇣
µ+
T (⇡)� µi(N

⇡?

i,T + t0)
⌘

| {z }
B

.

For the analysis of the pulls done under ⇠t we do not need to know at which round it was done. Therefore,

A⇡ 
X

i2op

h⇡
i,T�1X

t0=0

h
⇠t(N?

i,t+t0)

i⇣
µ+
T (⇡)� µi(N

⇡?

i,T + t0)
⌘
.

For FEWA, it is not easy to directly guarantee the low probability of overpulls (the second sum). Thus, we
upper-bound the regret of each overpull at round t under ⇠t by its maximum value Lt. While this is done to ease
FEWA analysis, this is valid for any policy ⇡. Then, noticing that we can have at most 1 overpull per round t,

i.e.,
P

i2op

Ph⇡
i,T�1

t0=0

⇥
t⇡i
�
N⇡?

i,T + t0
�
= t
⇤
 1, we get

B 
TX

t=0

h
⇠t
i
Lt
X

i2op

h⇡
i,T�1X

t0=0

h
t⇡i

⇣
N⇡?

i,T + t0
⌘
= t
i


TX

t=0

h
⇠t
i
Lt.
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Therefore, we conclude that

RT (⇡) 
X

i2op

h⇡
i,T�1X

t0=0

h
⇠t⇡i (N?

i,t+t0)

i⇣
µ+
T (⇡)� µi(N

⇡?

i,T + t0)
⌘

| {z }
A⇡

+
TX

t=0

h
⇠t
i
Lt

| {z }
B

.

Lemma 3. Let hi,t , h⇡F
i,t = |N⇡F

i,T �N⇡?

i,T |.For policy ⇡F with parameters (↵, �0), A⇡F defined in Lemma 2 is
upper-bounded by

A⇡F ,
X

i2op

hi,T�1X

t0=0

h
⇠t⇡F

i (N?
i,t+t0)

i⇣
µ+
T (⇡F)� µi(N

⇡?

i,T + t0)
⌘


X

i2op⇠

 
4
q
2↵�2 log+(KT ��1/↵

0 ) + 4

r
2↵�2

⇣
h⇠
i,T � 1

⌘
log+(KT ��1/↵

0 ) + L

!
.

Proof. First, we define h⇠
i,T , max

n
h  hi,T | ⇠t⇡F

i (N?
i,t+h)

o
, the last overpull of arm i pulled at round ti ,

t⇡F
i (N?

i,t + h⇠
i,T )  T under ⇠t. Now, we upper-bound A⇡F by including all the overpulls of arm i until the h⇠

i,T -th

overpull, even the ones under ⇠t,

A⇡F ,
X

i2op

h
⇡F
i,T�1X

t0=0

h
⇠t⇡F

i (N?
i,t+t0)

i⇣
µ+
T (⇡F)� µi(N

⇡?

i,T + t0)
⌘

X

i2op⇠

h⇠
i,T�1X

t0=0

⇣
µ+
T (⇡F)� µi(N

⇡?

i,T + t0)
⌘
,

where op⇠ ,
n
i 2 op| h⇠

i,T � 1
o
. We can therefore split the second sum of h⇠

i,T term above into two parts. The

first part corresponds to the first h⇠
i,T � 1 (possibly zero) terms (overpulling di↵erences) and the second part

to the last (h⇠
i,T � 1)-th one. Recalling that at round ti, arm i was selected under ⇠ti , we apply Corollary 1 to

bound the regret caused by previous overpulls of i (possibly none),

A⇡F 
X

i2op⇠

µ+
T (⇡F)� µi

⇣
N?

i,T + h⇠
i,T � 1

⌘
+ 4
⇣
h⇠
i,T � 1

⌘
c
⇣
h⇠
i,T � 1, �ti

⌘
(16)


X

i2op⇠

µ+
T (⇡F)� µi

⇣
N?

i,T + h⇠
i,T � 1

⌘
+ 4
⇣
h⇠
i,T � 1

⌘
c
⇣
h⇠
i,T � 1, �T

⌘
(17)


X

i2op⇠

µ+
T (⇡F)� µi

⇣
N?

i,T + h⇠
i,T � 1

⌘
+ 4

r
2↵�2

⇣
h⇠
i,T � 1

⌘
log+

⇣
KT ��1/↵

0

⌘
, (18)

with log+(x) , max(log(x), 0). The second inequality is obtained because �t is decreasing and c(., ., �) is decreasing
as well. The last inequality is the definition of confidence interval in Proposition 4 with log+(KT↵)  ↵ log+(KT )

for ↵ > 1. If N⇡?

i,T = 0 and h⇠
i,T = 1 then

µ+
T (⇡F)� µi(N

⇡?

i,T + h⇠
i,T � 1) = µ+(⇡F)� µi(0)  L,

since and µ+(⇡F)  L and µi(0) � 0 by the assumptions of our setting. Otherwise, we can decompose

µ+
T (⇡F)�µi(N

⇡?

i,T + h⇠
i,T � 1) = µ+

T (⇡F)� µi(N
⇡?

i,T + h⇠
i,T � 2)

| {z }
A1

+µi(N
⇡?

i,T + h⇠
i,T � 2)� µi(N

⇡?

i,T + h⇠
i,T � 1)

| {z }
A2

.

For term A1, since arm i was overpulled at least once by FEWA, it passed at least the first filter. Since this
h⇠
i,T -th overpull is done under ⇠ti , by Lemma 1 we have that

A1  4c(1, �ti)  4c(1,K�1T�↵)  4

r
2↵�2 log+

⇣
KT ��1/↵

0

⌘
.
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The second di↵erence, A2 = µi(N⇡?

i,T + h⇠
i,T � 2)� µi(N⇡?

i,T + h⇠
i,T � 1) cannot exceed L, since by the assumptions

of our setting, the maximum decay in one round is bounded. Therefore, we further upper-bound Equation 18 as

A⇡F 
X

i2op⇠

 
4

r
2↵�2 log+

⇣
KT ��1/↵

0

⌘
+ 4

r
2↵�2

⇣
h⇠
i,T � 1

⌘
log+

⇣
KT ��1/↵

0

⌘
+ L

!
. (19)

Lemma 4. Let ⇣(x) =
P

n n
�x. Thus, with �t = �0/(Kt↵) and ↵ > 4, we can use Proposition 4 and get

E[B] ,
TX

t=0

p
�
⇠t
�
Lt 

TX

t=0

Lt�0
2t↵�2

 L�0
⇣(↵� 3)

2
·

C Minimax regret analysis of FEWA

Theorem 1. For any rotting bandit scenario with means {µi(n)}i,n satisfying Asm. 1 with bounded decay L and
any time horizon T , FEWA run with ↵ = 5 and �t = 1/(Kt5), su↵ers an expected regret 7 of

E[RT (⇡F)]  13�(
p
KT +K)

p
log(KT ) +KL.

Proof. To get the problem-independent upper bound for FEWA, we need to upper-bound the regret by quantities
which do not depend on {µi}i. The proof is based on Lemma 2, where we bound the expected values of terms
A⇡F and B from the statement of the lemma. We start by noting that on high-probability event ⇠T , we have by
Lemma 3 and ↵ = 5 that

A⇡F 
X

i2op⇠

⇣
4
p
10�2 log(KT ) + 4

p
10�2(hi � 1) log(KT ) + L

⌘
.

Since op⇠ ✓ op and there are at most K � 1 overpulled arms, we can upper-bound the number of terms in the
above sum by K � 1. Next, the total number of overpulls

P
i2op

hi,T cannot exceed T . As square-root function is
concave we can use Jensen’s inequality. Moreover, we can deduce that the worst allocation of overpulls is the
uniform one, i.e., hi,T = T/(K � 1),

A⇡F  (K � 1)(4
p
10�2 log(KT ) + L) + 4

p
10�2 log(KT )

X

i2op

q
(hi,T � 1)

 (K � 1)(4
p
10�2 log(KT ) + L) + 4

p
10�2(K � 1)T log(KT ). (20)

Now, we consider the expectation of term B from Lemma 2. According to Lemma 4, with ↵ = 5 and �0 = 1,

E[B]  L⇣(2)

2
=

L⇡2

12
· (21)

Therefore, using Lemma 2 together with Equations 20 and 21, we bound the total expected regret as

E[RT (⇡F)]  4
p

10�2(K � 1)T log(KT ) + (K � 1)(4
p
10�2 log(KT ) + L) +

L⇡2

6
· (22)

Corollary 3. FEWA run with ↵ > 3 and �0 , 2�/⇣(↵� 2) achieves with probability 1� �,

RT (⇡F) = A⇡F  4

vuut2↵�2 log+

 
KT

�1/↵0

!⇣
K � 1 +

p
(K � 1)T

⌘
+ (K � 1)L.

7See Corollary 3 and 4 for the high-probability result.
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Proof. We consider the event
S

tT ⇠t which happens with probability

1�
X

tT

Kt2�t
2
 1�

X

tT

Kt2�t
2
 1� ⇣(↵� 2)�0

2
·

Therefore, by setting �0 , 2�/⇣(↵� 2), we have that B = 0 with probability 1� � since
h
⇠t
i
= 0 for all t. We can

then use the same analysis of A⇡F as in Theorem 1 to get

RT (⇡F) = A⇡F  4

vuut2↵�2 log+

 
KT

�1/↵0

!⇣
K � 1 +

p
(K � 1)T

⌘
+ (K � 1)L.

D Problem-dependent regret analysis of FEWA

Lemma 5. A⇡F defined in Lemma 2 is upper-bounded by a problem-dependent quantity,

A⇡F 
X

i2K

 
32↵�2 log+(KT ��1/↵

0 )

�i,h+
i,T�1

+
q

32↵�2 log+(KT ��1/↵
0 )

!
+ (K � 1)L.

Proof. We start from the result of Lemma 3,

A⇡F 
X

i2op⇠

✓
4

q
2↵�2 log(KT ��1/↵

0 )

✓
1 +

q
h⇠
i,T � 1

◆◆
+ (K � 1)L. (23)

We want to bound h⇠
i,T with a problem dependent quantity h+

i,T . We remind the reader that for arm i at round

T , the h⇠
i,T -th overpull has been on ⇠ti pulled at round ti. Therefore, Corollary 1 applies and we have

µ
h⇠
i,T�1

i

⇣
N⇡?

i,T + h⇠
i,T � 1

⌘
� µ+

T (⇡F)� 4c
⇣
h⇠
i,T � 1, �ti

⌘
� µ+

T (⇡F)� 4c
⇣
h⇠
i,T � 1, �T

⌘

� µ+
T (⇡F)� 4

vuuut
2↵�2 log

⇣
KT ��1/↵

0

⌘

h⇠
i,T � 1

� µ�
T (⇡

?)� 4

vuuut
2↵�2 log

⇣
KT ��1/↵

0

⌘

h⇠
i,T � 1

,

with µ�
T (⇡

?) , mini2K µi

�
N?

i,T � 1
�
being the lowest mean reward for which a noisy value was ever obtained by

the optimal policy. µ�
T (⇡

?) < µ+
T (⇡F) implies that the regret is 0. Indeed, in that case the next possible pull with

the largest mean for ⇡F is strictly larger than the mean of the last pull for ⇡?. Thus, there is no underpull at this
round for ⇡F and RT (⇡F) = 0 according to Equation 3. Therefore, we can assume µ�

T (⇡
?) � µ+

T (⇡F) for the regret
bound. Next, we define �i,h , µ�

T (⇡
?) � µh

i

�
N?

i,t + h
�
as the di↵erence between the lowest mean value of the

arm pulled by ⇡? and the average of the h first overpulls of arm i. Thus, we have the following bound for h⇠
i,T ,

h⇠
i,T  1 +

32↵�2 log
⇣
KT ��1/↵

0

⌘

�i,h⇠
i,T�1

·

Next, h⇠
i,T has to be smaller than the maximum such h, for which the inequality just above is satisfied if we

replace h⇠
i,T by h. Therefore,

h⇠
i,T  h+

i,T , max

8
<

:h  T
�� h  1 +

32↵�2 log+

⇣
KT ��1/↵

0

⌘

�2
i,h�1

9
=

;· (24)
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Since the square-root function is increasing, we can upper-bound Equation 18 by replacing h⇠
i,T by its upper

bound h+
i,T to get

A⇡F 
X

i2op⇠

✓
4
q
2↵�2 log+(KT ��1/↵

0 )
⇣
1 +

q
h+
i,T � 1

⌘
+ L

◆


X

i2op⇠

0

@
q

32↵�2 log+(KT ��1/↵
0 )

0

@1 +

q
32↵�2 log+(KT ��1/↵

0 )

�i,h+
i,T�1

1

A+ L

1

A.

The quantity op⇠ is depends on the execution. Notice that there are at most K � 1 arms in op⇠ and that op ⇢ K.
Therefore, we have

A⇡F 
X

i2K

0

@
32↵�2 log+

⇣
KT ��1/↵

0

⌘

�i,h+
i,T�1

+

r
32↵�2 log+

⇣
KT ��1/↵

0

⌘
1

A+ (K � 1)L.

Corollary 2. For �t , 1/(Kt5) and C↵ , 32↵�2, the regret of FEWA is bounded as

E[RT (⇡F)] 
X

i2K

 
C5 log(KT )

�i,h+
i,T�1

+
p
C5 log(KT ) + L

!
.

Proof. Using Lemmas 2, 4, and 5 we get

E[RT (⇡F)] = E[A⇡F ] + E[B] 
X

i2K

 
32↵�2 log(KT )

�i,h+
i,T�1

+
p
32↵�2 log(KT )

!
+ (K � 1)L+

L⇡2

6


X

i2K

 
32↵�2 log(KT )

�i,h+
i,T�1

+
p
32↵�2 log(KT ) + L

!
·

Corollary 4. FEWA run with ↵ > 3 and �0 , 2�/⇣(↵� 2) achieves with probability 1� �,

RT (⇡F) 
X

i2K

0

@
32↵�2 log+

⇣
KT⇣(↵�2)1/↵

(2�)1/↵

⌘

�i,h+
i,T�1

+

s

32↵�2 log+

✓
KT ⇣(↵� 2)1/↵

(2�)1/↵

◆1

A+ (K � 1)L.

Proof. We consider the event [tT ⇠t which happens with probability

1�
X

tT

Kt2�t
2
 1�

X

tT

Kt2�t
2
 1� ⇣(↵� 2)�0

2
·

Therefore, by setting �0 , 2�/⇣(↵� 2), we have that with probability 1� �, B = 0 since
h
⇠t
i
= 0 for all t. We

use Lemma 5 to get the claim of the corollary.

E E�cient algorithm EFF-FEWA

In Algorithm 3, we present EFF-FEWA, an algorithm that stores at most 2K log2(t) statistics. More precisely,
for j  log2(N

⇡EF
i,t ), we let bs p

i,j and bs c
i,j be the current and pending j-th statistic for arm i. We then present an

analysis of EFF-FEWA.
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Figure 3: Illustration of the functioning of EFF-FEWA. The red circles denotes the number of pulls of arm i
at which a new estimate bs c

i,j is created corresponding to a window h = 2j , while the green boxes indicate the
number of pulls for which bsci,j is updated with the last 2j samples.

Algorithm 3 EFF-FEWA

Input: K, �0, ↵
1: pull each arm once, collect reward, and initialize Ni,K  1
2: for t K + 1,K + 2, . . . do
3: �t  �0/(Kt↵)
4: j  0 {initialize bandwidth}

5: K1  K {initialize with all the arms}

6: i(t) none
7: while i(t) is none do

8: K2j+1  EFF Filter(K2j , j, �t)
9: j  j + 1

10: if 9i 2 K2j such that Ni,t  2j then

11: i(t) i
12: end if

13: end while

14: receive ri(Ni,t+1) ri(t),t
15: EFF Update(i(t), ri(Ni,t+1), t+ 1)
16: end for

Algorithm 4 EFF Filter

Input: K2j , j, �t, �

1: c(2j , �t) 
q
2�2/2j log ��1

t

2: bs c
max,j  maxi2Kh bs c

i,j

3: for i 2 Kh do

4: �i  bs c
max,j � bs c

i,j

5: if �i  2c(2j , �t) then
6: add i to K2j+1

7: end if

8: end for

Output: K2j+1
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Algorithm 5 EFF Update

Input: i, r, t
1: Ni(t),t  Ni(t),t�1 + 1
2: Rtotal

i  Rtotal
i + r {keep track of total reward}

3: if 9j such that Ni,t = 2j then

4: bs c
i,j  Rtotal

i /Ni,t {initialize new statistics}

5: bs p
i,j  0

6: ni,j  0
7: end if

8: for j  0 . . . log2(Ni,t) do
9: ni,j  ni + 1

10: bs p
i,j  bs p

i,j + r

11: if ni,j = 2j then

12: bs c
i,j  bs p

i,j/2
j

13: ni,j  0
14: bs p

i,j  0
15: end if

16: end for

As Ni,t increases new statistics bs c
i,j for larger windows are created, as illustrated in Fig. 3. On one hand, at any

time t, bs c
i,j is the average of 2j�1 consecutive reward samples for arm i within the last 2j � 1 sample. These

statistics are used in the filtering process as they are representative of exactly 2j�1 recent samples. On the other
hand, bs p

i,j stores the pending samples that are not yet taken into account by bs c
i,j . Therefore, each time we pull

arm i, we update all the pending averages. When the pending statistic is the average of the 2j�1 last samples
then we set bs c

i,j  bs p
i,j and we reinitialize bs p

i,j  0.

In analyzing the performance of EFF-FEWA, we have to account for two di↵erent e↵ects: 1) the loss in resolution
due to windows of size that increases exponentially instead of fix increment of 1, and 2) the delay in updating

the statistics bs c
i,j , which do not include the most recent samples. We let µh0,h00

i be the average of the samples

between the h0-th to last one and the h00-th to last one (included) with h00 > h0. FEWA was controlling µ1,h
i for

each arm, EFF-FEWA controls µ
h0
i,h

0
i+2j�1

i with di↵erent h0
i  2j�1 � 1 for each arm depending on when bs c

i,j was
refreshed last time. However, since the means of arms are non-increasing, we can consider the worst case when
the arm with the highest mean available at that round is estimated on its last samples (the smaller one) and the
bad arms are estimated on their oldest possibles samples (the larger one).

Lemma 6. On the favorable event ⇠t, if an arm i passes through a filter of window h at round t, the average of
its h last pulls cannot deviate significantly from the best available arm i?t at that round,

µ2j�1,2j�1
i � µ+

t (⇡F)� 4c(h, �t).

Then, we modify Corollary 1 to have the following e�cient version of it.

Corollary 5. Let i 2 op be an arm overpulled by EFF-FEWA at round t and h⇡EF
i,t , N⇡EF

i,t �N⇡?

i,t � 1 be the
di↵erence in the number of pulls w.r.t. the optimal policy ⇡? at round t. On the favorable event ⇠t, we have that

µ+
t (⇡EF)� µh

⇡EF
i,t (Ni,t) 

4
p
2p

2� 1
c(h⇡EF

i,t , �t).

Proof. If i was pulled at round t, then by the condition at Line 10 of Algorithm 3, it means that i passes through
all the filters until at least window 2f such that 2f  h⇡EF

i,t < 2f+1. Note that for h⇡EF
i,t = 1, then EFF-FEWA has
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the same guarantee as FEWA since the first filter is always up to date. Then for h⇡EF
i,t � 2,

µ
1,h

⇡EF
i,t

i (Ni,t) � µ1,2f�1
i (Ni,t) =

Pf
j=1 2

j�1µ2j�1,2j�1
i

2f � 1
(25)

� µ+
t (⇡EF)�

4
Pf

j=1 2
j�1c(2j�1, �)

2f � 1
= µ+

t (⇡EF)� 4c(1, �t)

Pf
j=1

p
2
j�1

2f � 1
(26)

= µ+
t (⇡EF)� 4c(1, �t)

p
2
f � 1

(2f � 1)(
p
2� 1)

� µ+
t (⇡EF)� 4c(1, �t)

1
p
2
f
(
p
2� 1)

(27)

= µ+
t (⇡EF)�

4
p
2p

2� 1
c
�
2f+1, �t

�
� µ+

t (⇡EF)�
4
p
2p

2� 1
c
�
h⇡EF
i,t , �t

�
, (28)

where Equation 25 uses that the average of older means is larger than average of the more recent ones and then
decomposes 2f � 1 means onto a geometric grid. Then, Equation 26 uses Lemma 6 and make the dependence of
c(2j�1, �) on j explicit. Next, Equations 27 and 28 use standard algebra to derive a lower bound and that c(h, �)
decreases with h.

Using the result above, we follow the same proof as the one for FEWA and derive minimax and problem-dependent
upper bounds for EFF-FEWA using Corollary 5 instead of Corollary 1.

Corollary 6 (minimax guarantee for EFF-FEWA). For any rotting bandit scenario with means {µi(n)}i,n
satisfying Assumption 1 with bounded decay L and any time horizon T , EFF-FEWA with �t = 1/(Kt5), ↵ = 5,
and �0 = 1, has its expected regret upper-bounded as

E[RT (⇡EF)]  13�

 p
2p

2� 1

p
KT +K

!
p

log(KT ) +KL.

Corollary 7 (problem-dependent guarantee for EFF-FEWA). For �t = 1/(Kt5), the regret of EFF-FEWA is
upper-bounded as

RT (⇡EF) 
X

i2K

 
C5

2
3�2

p
2
log(KT )

�i,h+
i,T�1

+
p

C5 log(KT ) + L

!
,

with C↵ , 32↵�2 and h+
i,T defined in Equation 10.

F Numerical simulations: Stochastic bandits

Figure 4: Comparing UCB1 and FEWA with � = 0.14 and � = 1.
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In Figure 4 we compare the performance of FEWA against UCB1 (Auer et al., 2002a) on two-arm bandits with
di↵erent gaps. These experiments confirm the theoretical findings of Theorem 1 and Corollary 2: FEWA has
comparable performance with UCB1. In particular, both algorithms have a logarithmic asymptotic behavior and
for ↵ = 0.06, the ratio between the regret of two algorithms is empirically lower than 2. Notice, the theoretical
factor between the two upper bounds is 5 (for ↵ = 5). This shows the ability of FEWA to be competitive for
stochastic bandits.
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