
Amirreza Shaban*, Ching-An Cheng*, Nathan Hatch, Byron Boots

Appendix

A Proof of Proposition 3.1

Proposition 3.1. Assume g is �-smooth, twice di↵erentiable, and locally ↵-strongly convex in w around
{wT�K�1, . . . , wT }. Let ⌅t+1(wt,�) = wt � �rwg(wt,�). For � 1

� , it holds

khT�K � d�fk 2

T�K+1
(1� �↵)Kkrŵ⇤fkMB (9)

where MB = maxt2{0,...,T�K} kBtk. In particular, if g is globally ↵-strongly convex, then

khT�K � d�fk (1��↵)K

�↵ krŵ⇤fkMB . (10)

Proof. Let d�f � hT�K = eK . By definition of hT�K ,

eK =

T�KX

t=0

BtAt+1 · · ·AT�K

!
AT�K+1 · · ·ATrŵ⇤f

Therefore, when g is locally ↵-strongly convex with respect to w in the neighborhood of {wT�K�1, . . . , wT },

keKk k
T�KX

t=0

BtAt+1 · · ·AT�KkkAT�K+1 · · ·ATrŵ⇤fk

 (1� �↵)Kkrŵ⇤fkk
T�KX

t=0

BtAt+1 · · ·AT�Kk

Suppose g is �-smooth but nonconvex. In the worst case, if the smallest eigenvalue of rw,wg(wt�1,�) is ��, then
kAtk = 1 + �� 2 for t = 0, . . . , T �K. This gives the bound in (9). However, if g is globally strongly convex,

then

keKk krŵ⇤fk(1� �↵)K max

t2{0,...,T�K}
kBtk

T�KX

t=0

(1� �↵)t

The bound (10) uses the fact that

PT�K
t=0 (1� �↵)t

P1
t=0(1� �↵)t = 1

�↵ ⌅

B Proof of Lemma 3.2

Lemma 3.2. Let g be globally strongly convex and r�f = 0. Assume g is second-order continuously di↵erentiable
and Bt has full column rank for all t. Let ⌅t+1(wt,�) = wt � �rwg(wt,�). For all K � 1, with T large enough
and � small enough, there exists c > 0, s.t. h>

T�Kd�f � ckrŵ⇤fk2. This implies hT�K is a su�cient descent

direction, i.e. h>
T�Kd�f � ⌦(kd�fk2).

Proof. To illustrate the idea, here we prove the case where K = 1. For K > 1, similar steps can be applied. To

prove the statement, we first expand the inner product by definition

h>
T�1d�f = khT�1k2 + (BTrŵ⇤f)>

T�1X

t=0

BtAt+1 · · ·AT�1

!
ATrŵ⇤f

where we recall hT�1 = BTrŵ⇤f as r�f = 0 by assumption.

Next we show a technical lemma, which provides a critical tool to bound the second term above; its proof is given

in the next section.

Truncated Back-propagation for Bilevel Optimization

Lemma B.1. Let g be ↵-strongly convex and �-smooth. Assume Bt and At are Lipschitz continuous in w, and
assume BT has full column rank. For � 1

� ,

(BTrŵ⇤f)> BtAt+1 · · ·ATrŵ⇤f

� (1� �↵)T�tkBTrŵ⇤fk2 � krŵ⇤fk2O
✓
e�↵�(T�1)

1� e�↵�
+ (�(� � ↵))T�t

◆

By Lemma B.1, we can then write

h>
T�1d�f � kBTrŵ⇤fk2

1 +

T�1X

t=0

(1� �↵)T�t

!
� krŵ⇤fk2O

T�1X

t=0

e�↵�(T�1)

1� e�↵�
+ (�(� � ↵))T�t

!

Because

T�1X

t=0

(�(� � ↵))T�t
=

TX

k=1

(�(� � ↵))k �(� � ↵)

1� �(� � ↵)
(* � �)

and B>
T BT is non-singular by assumption,

h>
T�1d�f � krŵ⇤fk2⌦(1)� krŵ⇤fk2O

✓
Te�↵�(T�1)

1� e�↵�
+

�(� � ↵)

1� �(� � ↵)

◆

� Ckrŵ⇤fk2

for some c > 0, when T is large enough and � is small enough. The implication holds because kd�fk
O(krŵ⇤fk). ⌅

B.1 Proof of Lemma B.1

Proof. Let CA and CB be the Lipschitz constant of At and Bt. First, we see that the inner product can be lower

bounded by the following terms

(BTrŵ⇤f)> BtAt+1 · · ·ATrŵ⇤f � (1� �↵)T�tkBTrŵ⇤fk2 ��1 ��2 ��3

where

�1 = CBkBTrŵ⇤fkkrŵ⇤fkkwT�1 � wt�1kkAt+1 · · ·AT k

�2 = CAkB>
T BTrŵ⇤fkkrŵ⇤fk

T�1X

k=t+1

kwT�1 � wk�1kkAt+1 · · ·Ak�1kkAT kT�k

�3 = krŵ⇤fkkB>
T BTrŵ⇤fkkAk � (1� �↵)IkT�k

The above lower bounds can be shown by the following inequalities:

(BTrŵ⇤f)> BtAt+1 · · ·ATrŵ⇤f

� rŵ⇤f> �B>
T BT

�
At+1 · · ·ATrŵ⇤f � CBkBTrŵ⇤fkkwT�1 � wt�1kkAt+1 · · ·ATrŵ⇤fk

rŵ⇤f> �B>
T BT

�
At+1 · · ·ATrŵ⇤f

� rŵ⇤f> �B>
T BT

�
At+1 · · ·AT�2A

2
Trŵ⇤f � CAkwT�1 � wT�2kkAt+1 · · ·AT�2kkAT kkB>

T BTrŵ⇤fkkrŵ⇤fk

� rŵ⇤f>B>
T BtA

T�t
T rŵ⇤f � CAkB>

T BTrŵ⇤fkkrŵ⇤fk
T�1X

k=t+1

kwT�1 � wk�1kkAt+1 · · ·Ak�1kkAT kT�k

rŵ⇤f>B>
T BTA

T�t
T rŵ⇤f � (1� �↵)T�trŵ⇤f>B>

T BTrŵ⇤f � krŵ⇤fkkB>
T BTrŵ⇤fkkAT � (1� �↵)IkT�t

Next we upper bound the error terms: �1, �2, and �3. We will use the fact that gradient descent converges

linearly when optimizing a strongly convex and smooth function [25].

Amirreza Shaban*, Ching-An Cheng*, Nathan Hatch, Byron Boots

Lemma B.2. Let w0 be the initial condition. Running gradient descent to optimize an ↵-strongly convex and
�-smooth function g, with step size 0 < � 1

� , generates a sequence {wt} satisfying

kwt � w⇤k De�↵�t
(13)

where D = kw0 � w⇤k and w⇤
= argmin g(w).

Lemma B.2 implies for T � t, kwT � wtk 2De�↵�t
.

Now we proceed to bound the errors �1, �2, and �3.

Bound on �1 Because

kwT�1 � wt�1kkAt+1 · · ·AT k 2De�↵�(t�1)
(1� �↵)T�t

 2De�↵�(t�1)e��↵(T�t)

= 2De�↵�(T�1)

we can upper bound �1 by

�1 = CBkBTrŵ⇤fkkrŵ⇤fkkwT�1 � wt�1kkAt+1 · · ·AT k
 kBTrŵ⇤fkkrŵ⇤fk ⇥ 2CBDe�↵�(T�1)

Bound on �2 Because

T�1X

k=t+1

kwT�1 � wk�1kkAt+1 · · ·Ak�1kkAT kT�k
T�1X

k=t+1

2De�↵�(k�1)
(1� ↵�)k�1�t+T�k

 2D(1� ↵�)T�t�1
T�1X

k=t+1

e�↵�(k�1)

 2D(1� ↵�)T�t�1e�↵�t
T�1X

k=t+1

e�↵�(k�t�1)

 2De�↵�(T�1)
T�tX

m=0

e�↵�m

 2D

1� e�↵�
e�↵�(T�1)

we can upper bound �2 by

�2 = CAkB>
T BTrŵ⇤fkkrŵ⇤fk

T�1X

k=t+1

kwT�1 � wk�1kkAt+1 · · ·Ak�1kkAT kT�k

= kB>
T BTrŵ⇤fkkrŵ⇤fk ⇥ 2CAD

1� e�↵�
e�↵�(T�1)

Bound on �3 Because

kAk � (1� �↵)Ik = k�
�
↵I �r2

wf(wk�1)
�
k �(� � ↵)

we can upper bound �3 by

�3 = krŵ⇤fkkB>
T BTrŵ⇤fkkAt � (1� �↵)IkT�t krŵ⇤fkkB>

T BTrŵ⇤fk (�(� � ↵))T�t

Truncated Back-propagation for Bilevel Optimization

Final Result Using the bounds on �1, �2, and �3, we prove the final result.

(BTrŵ⇤f)> BtAt+1 · · ·ATrŵ⇤f

� (1� �↵)T�tkBTrŵ⇤fk2 ��1 ��2 ��3

� (1� �↵)T�tkBTrŵ⇤fk2 � krŵ⇤fk2O
✓
e�↵�(T�1)

1� e�↵�
+ (�(� � ↵))T�t

◆

because BT has full column rank and

�1 +�2 +�3 krŵ⇤fk2
✓

2CAD

1� e�↵�
e�↵�(T�1)

+ 2CBDe�↵�(T�1)
+ (�(� � ↵))T�k

◆

= krŵ⇤fk2 ⇥O

✓
e�↵�(T�1)

1� e�↵�
+ (�(� � ↵))T�t

◆
⌅

C Proof of Theorem 3.3

Theorem 3.3. Suppose F is smooth and bounded below, and suppose there is ✏ < 1 such that khT�K �d�fk ✏.
Using hT�K as a stochastic first-order oracle with a decaying step size ⌘⌧ = O(1/

p
⌧) to update � with gradient

descent, it follows after R iterations,

E
"

RX

⌧=1

⌘⌧krF (�⌧)k2PR
⌧=1 ⌘⌧

#
 eO

✓
✏+

✏2 + 1p
R

◆
.

That is, under the assumptions in Proposition 3.1, learning with hT�K converges to an ✏-approximate stationary
point, where ✏ = O((1� �↵)�K

).

Proof. The proof of this theorem is a standard proof of non-convex optimization with biased gradient estimates.

Here we include it for completeness, as part of it will be used later in the proof of Theorem 3.4.

Let �⌧ be the ⌧th iterate. For short hand, we write d�f(⌧) = d�f(�⌧), and hT�K,(⌧) = hT�K(�⌧). Assume F is

L-smooth and kd�f(⌧)k G and khT�K,(⌧)k G almost surely for all ⌧ . Then by L-smoothness, it satisfies

F (�⌧+1) F (�⌧) + hrF (�⌧),�⌧+1 � �⌧ i+
L

2

k�⌧+1 � �⌧k2.

Let e⌧ = d�f(⌧) � hT�K,(⌧) be the error in the gradient estimate. Substitute the recursive update �⌧+1 =

�⌧ � ⌘thT�K,(⌧) to the above inequality. Conditioned on �⌧ , it satisfies

E|�⌧
[F (�⌧+1)] F (�⌧) + E|�⌧

�⌘thrF (�⌧), hT�K,(⌧)i+

L⌘2t
2

khT�K,(⌧)k2
�
.

Because

�E|�⌧
[hrF (�⌧), hT�K,(⌧)i] = E|�⌧

⇥
�hrF (�⌧), d�f(⌧)i+ hrF (�⌧), e⌧ i

⇤

 �krF (�⌧)k2 +Gke⌧k (14)

and

1

2

khT�K,(⌧)k2 =

1

2

kd�f(⌧)k2 +
1

2

ke⌧k2 � hd�f(⌧), hT�K,(⌧)i
3G2

2

+

1

2

ke⌧k2

we can upper bound E|�⌧
[F (�⌧+1)] as

E|�⌧
[F (�⌧+1)] F (�⌧) + E|�⌧

�⌘⌧krF (�⌧)k2 + ⌘⌧Gke⌧k+ L⌘2⌧

✓
3G2

2

+

1

2

ke⌧k2
◆�

Amirreza Shaban*, Ching-An Cheng*, Nathan Hatch, Byron Boots

Performing telescoping sum with the above inequality, we have

E
"

RX

⌧=1

⌘⌧krF (�⌧)k2
#
 F (�1) + E

"
RX

⌧=1

G⌘⌧ke⌧k+ L⌘2⌧

✓
3G2

2

+

1

2

ke⌧k2
◆#

 F (�1) +

RX

⌧=1

✓
G✏⌘⌧ +

L(3G2
+ ✏2)

2

⌘2⌧

◆

Dividing both sides by

PR
⌧=1 ⌘⌧ and using the facts that ⌘⌧ = O(

1p
⌧
) and that

PR
⌧=1

1
⌧PR

⌧=1
1p
⌧

= O

✓
logRp

R

◆

proves the theorem. ⌅

D Proof of Theorem 3.4

Theorem 3.4. Under the assumptions in Proposition 3.1 and Theorem 3.3, if in addition

1. g is second-order continuously di↵erentiable

2. Bt has full column rank around wT

3. r�f>
(d�f + hT�K �r�f) � ⌦(kr�fk2)

4. the problem is deterministic (i.e. F = f)

then for all K � 1, with T large enough and � small enough, the limit point is an exact stationary point, i.e.
lim⌧!1 krF (�⌧)k = 0.

Proof. First we consider the special case when S is deterministic. Let H � K. We decompose the full gradients

into four parts

rF = d�f = r�f + q + r + e

where

q =

TX

t=T�K+1

BtAt+1 · · ·ATrŵ⇤f

r =

T�KX

t=T�H+1

BtAt+1 · · ·ATrŵ⇤f

e =
T�HX

t=0

BtAt+1 · · ·ATrŵ⇤f

We assume that wt enters a locally strongly convex region for t � H. This implies, by Proposition 3.1, that

kek O(e�↵�Hkrŵ⇤fk).

To prove the theorem, we first verify two conditions:

1. By Lemma 3.2, the assumption r�f>
(d�f + hT�K �r�f) � ⌦(kr�fk2), and kek O(e�↵�Hkrŵ⇤fk):

d�f
>hT�K = (r�f + q + r + e)>(r�f + q)

= kr�fk2 +r�f
>
(q + e+ r) + q>r�f + q>(q + r) + q>e

� ⌦(kr�fk2) + q>(q + r) + q>e (Assumption)

� ⌦(kr�fk2) + ⌦(krŵ⇤fk2) + q>e (Lemma 3.2)

� ⌦(kr�fk2) + ⌦(krŵ⇤fk2)�O
�
e�↵�Hkrŵ⇤fk2

�
(kek O(e�↵�Hkrŵ⇤fk))

Truncated Back-propagation for Bilevel Optimization

where we note

d�f + hT�K �r�f = r�f + q + r + e+r�f + q �r�f

= r�f + q + r + e+ q

Therefore, for H large enough, it holds that

d�f
>hT�K � ⌦(kr�fk2 + krŵ⇤fk2) (15)

2. By definition of hT�K = r�f + q, it holds that

khT�Kk2 2kr�fk2 + 2kqk2 O(kr�fk2 + krŵ⇤fk2) (16)

Next, we prove a lemma

Lemma D.1. Let f be a lower-bound and L-smooth function. Consider the iterative update rule

xt+1 = xt � ⌘gt

where gt satisfies g>t rf(xt) � c1h2
t and kgtk2 c2h2

t , for some constant c1, c2 > 0 and scalar ht. Suppose f is

lower-bounded and ⌘ is chosen such that
⇣
�c1⌘ +

Lc2⌘
2

2

⌘
 0. Then lim

t!1
ht = 0.

Proof. By L-smoothness,

f(xt+1)� f(xt) rf(xt)
>
(xt+1 � xt) +

L

2

kxt+1 � xtk2

= �⌘rf(xt)
>gt +

L⌘2

2

kgtk2

✓
�c1⌘ +

Lc2⌘2

2

◆
h2
t

By telescoping sum, we can show

P1
t=0

⇣
c⌘ � L⌘2

2

⌘
h2
t < 1, which implies limt!1 ht = 0. ⌅

Finally, we prove the main theorem by applying Lemma D.1. Consider a deterministic problem. Take h2
t =

kr�f(�t)k2 + krŵ⇤f(�t)k2. Because of (15) and (16), by Lemma D.1, it satisfies that

lim

t!1
ht = lim

t!1
kr�f(�t)k2 + krŵ⇤f(�t)k2 = 0

As kd�fk O(kr�fk+ krŵ⇤fk), it shows kd�fk converges to zero in the limit.

⌅

E Proof of Theorem 3.5

Theorem 3.5. There is a problem, satisfying all but assumption 3 in Theorem 3.4, such that optimizing � with
hT�K does not converge to a stationary point.

Proof. We prove the non-convergence using the following strategy. First we show that, when assumption 3 in

Theorem 3.4, i.e.

r�f
>
(d�f + hT�K �r�f) � ⌦(kr�fk2) (17)

does not hold, there is some problem such that hT�k 6= 0 for all stationary points (i.e. � such that d�f = 0).

Then we show that, for such a problem, optimizing � with hT�k cannot converge to any of the stationary points.

Amirreza Shaban*, Ching-An Cheng*, Nathan Hatch, Byron Boots

Counter example To construct the counterexample, we consider a scalar deterministic bilevel optimization

problem of the form

min

�

1

2

(ŵ⇤
)

2
+ �(�)

s.t. ŵ⇤ ⇡ w⇤ 2 argmin

w

1

2

(w � �)2
(18)

in which � is some perturbation function that we will later define, and ŵ⇤
is computed by performing T > 1 steps

of gradient descent in the lower-level optimization problem with some constant initial condition w0 and constant

step size 0 < � < 1, i.e.

ŵ⇤
= wT , wt+1 = wt � �(wt � �)

We can observe this problem satisfies almost all the assumptions in Theorem 3.4:

1. The lower-level objective g is smooth and strongly convex. (Proposition 3.1)

2. The upper-level objective F is smooth. (Theorem 3.3)

3. The lower-level objective g is second-order continuously di↵erentiable (assumption 1 in Theorem 3.4)

4. The Jacobian if full rank, i.e. Bt = � > 0 (assumption 2 in Theorem 3.4)

5. The upper-level objective function is deterministic, i.e. F = f (assumption 4 in Theorem 3.4)

But we will show that properly setting � can break the non-interfering assumption in (17) (i.e. assumption 3 in

Theorem 3.4) and then creates a problem such that optimizing � with K-RMD does not converge to an exact

stationary point.

We follow the two-step strategy mentioned above.

Step 1: Non-vanishing approximate gradient Without loss of generality, let us consider optimizing � with

1-RMD. In this case we can write the approximate and the exact gradients in closed form as

hT�1 = r�+ w⇤�, d�f = r�+ w⇤�
TX

t=0

(1� �)T�t
(19)

which are given by (5) and (8). We will show that by properly choosing �, we can define f(�) = 1
2 (ŵ

⇤
)

2
+ �(�)

such that, at any of the stationary points of f , the approximate gradient of 1-RMD does not vanish. That is, we

show when d�f = 0, hT�1 6= 0.

Before proceeding, let us define u = w⇤� and v = w⇤�
PT

t=0(1� �)T�t
for convenience. To show how to construct

�, let us consider the stationary points in the case

9
when � = 0. Let P0 denote the set of these stationary points,

i.e. P0 = {� : v = 0}. Since f is smooth and lower-bounded, we know that P0 is non-empty, and from the

construction of our counterexample we know that P0 contains exactly the �s such that w⇤
= 0.

This implies that for � 2 R\P0, it satisfies w⇤ 6= 0 and therefore

uv = (w⇤�)2
TX

t=0

(1� �)T�t > 0 (20)

We use this fact to pick an adversarial �. Consider any smooth, lower-bounded � whose stationary points are not

in P0, e.g. �(�) =
1
2 (�� �0)

2
and �0 /2 P0. Then f(�) = 1

2 (ŵ
⇤
)

2
+ �(�) has a non-empty set of stationary points

9Note in this special case, assumption 3 in Theorem 3.4 holds trivially when �(�) = 0 (i.e. r�f = 0) and optimizing �
with K-RMD converges to an exact stationary point.

Truncated Back-propagation for Bilevel Optimization

P� such that P� \P0 = ;. We see that, for such �, the non-interfering assumption (assumption 3 in Theorem 3.4)

is violated in P�:

r�f
>
(d�f + hT�1 �r�f) = r�f

>
(r�f + u�r�f) * d�f = 0 and hT�1 = r�f + u

= r��
>u

= �vu * 0 = d�f = r��+ v

< 0 * (20) and P� \ P0 = ;
< (r��)

2 * v > 0 for � 2 P�

And we show for any � 2 P� it holds that hT�1 6= 0. This can be seen from the definition

hT�1 = r�+ u = d�f + u� v = u� v 6= 0

where the last inequality is because w⇤ 6= 0 for � 2 P�.

Step 2: Non-convergence to any stationary point We have shown that there is a problem which satisfies

all the assumptions but assumption 3 of Theorem 3.4, and at any of its stationary points (i.e. when d�f = 0) we

have hT�K 6= 0. Now we show this property implies failure to converge to the stationary points for the general

problems considered in Theorem 3.5 (i.e. we do not rely on the form made in Step 1 anymore).

We prove this by contradiction. Let �⇤
be one of the stationary points. We choose �0 > 0 such that, for some

✏ > 0, khT�Kk > ✏/� for all � inside the neighborhood {� : k�� �⇤k < �0
2 }, where we recall � is the step size of

the lower-level optimization problem. A non-zero �0 exists because hT�1 is continuous by our assumption and

hT�K 6= 0 at �⇤
.

We are ready to show the contradiction. Let � = min{�0, ✏}. Suppose there is a sequence {�⌧} that converges to

the stationary point �⇤
. This means that there is 0 < M < 1 such that, 8⌧ � M , k�⌧ � �⇤k < �

2 , which implies

that 8⌧ � M , k�⌧+1 � �⌧k < �. However, by our choice of �0, k�⌧+1 � �⌧k = �khT�Kk > ✏ � �, leading to a

contradiction.

Thus, no sequence {�⌧} converges to any of the stationary points. This concludes our proof. ⌅

F Proof of Proposition 3.6

Proposition 3.6. Under the assumptions in Proposition 3.1, suppose wt converges to a stationary point w⇤. Let
A1 = limt!1 At and B1 = limt!1 Bt. For � < 1

� , it satisfies that

�r�,wgr�1
w,wg = B1

P1
k=0 A

k
1 (12)

Proof. Recall our shorthand that r�,wg and rw,wg are evaluated at (w⇤,�). In the limit, it holds that

lim

t
At = lim

t
rw⌅t(wt�1,�) = rw(w

⇤ � �rwg(w
⇤,�)) = I � �rw,wg =

: A1

lim

t
Bt = lim

t
r�⌅t(wt�1,�) = r�(w

⇤ � �rwg(w
⇤,�)) = ��r�,wg =

: B1

To prove the equality (12), we use Lemma (F.1).

Lemma F.1. [32] For a matrix A with kAk < 1, it satisfies that

(I �A)

�1
=

1X

k=0

Ak

Since � 1
� , we have �↵I � �rw,wg � I, so kI � �rw,wgk < 1. By Lemma F.1,

r�1
w,wg = �(I � I + �rw,wg)

�1
= �

1X

k=0

(I � �rw,wg)
k
= �

1X

k=0

Ak
1

Amirreza Shaban*, Ching-An Cheng*, Nathan Hatch, Byron Boots

Therefore,

�r�,wgr�1
w,wg = (��r�,wg)

✓
1

�
r�1

w,wg

◆
= B1

1X

k=0

Ak
1

⌅

G Detailed experimental setup

In this appendix, we provide more details about the settings we used in each experiment. We use Adam [33] to

optimize the upper-level objective and vanilla gradient descent for the lower objective. We denote by ŵ⇤
the

results of running T steps of gradient descent with step size �.

G.1 Data hypercleaning

In this appendix, we provide more details about the data hypercleaning experiment on MNIST from Section 4.2.1.

Both the training and the validation sets consist of 5000 class-balanced examples from the MNIST dataset. The

test set consists of the remaining examples. For each training example, with probability

1
2 , we replaced the label

with a uniformly random one.

For various K, we performed K-RMD for 1000 hyperiterations. Like in the toy experiment (Section 4.1) we

adjusted the initial meta-learning rate ⌘0 for each K so that the norm of the initial update was roughly the same

for each K.

We asserted earlier that the reported F1 scores are not sensitive to our choice of threshold �i < �3. To validate

this assertion, we repeated the experiment for various thresholds. F1 scores are reported in the table below.

K �i < �4 �i < �3 �i < �1

1 0.84 0.84 0.84

5 0.89 0.89 0.90

25 0.89 0.89 0.89

50 0.89 0.89 0.89

100 0.89 0.89 0.89

We only ran these experiments for 150 hyperiterations, because the F1 score has essentially converged by that

point. Indeed, the plot below shows identification of corrupted labels for K = 1, with cuto↵ �i < �4. The X axis

is in units of 1000 hyperiterations. We see that 1-RMD rapidly identifies most of the mislabeled examples, with a

few false positives.

G.2 Task interaction

We use T = 100 iterations of gradient descent with learning rate 0.1 in the lower objective which yields ŵ⇤
S . To

ensure that C is symmetric, and that Cij and ⇢ are nonnegative, we re-parametrize them as ⇢ = softplus(⌫) and

Truncated Back-propagation for Bilevel Optimization

l1 l2 l3 l4 l5

Figure 8: One-shot learning network architecture. The first two convolutional layers map the input image into a

”hyper-representation” space which is frozen while optimizing the lower-level objective. The last three layers are

tuned for each task and regularized to avoid overfitting. All the convolutional layers have 64 3⇥ 3 kernels. There

is a max-pooling layer followed by a batch-normalization and a ReLU layer after each convolution.

C = A+ A>
, where Aij = softplus(Bij) and B is a hyperparameter matrix. Thus, the hyperparameters to be

optimized are � = {B, ⌫}.

Rather than using raw pixels, we extract image features from the output of the average pooling layer in Resnet-

18 [34] which is trained on ImageNet [35]. We use the same data pre-processing that is used for training Resnet

architecture.

When reporting test accuracy, we run 10 independent trials. In each trial, we sample the training and validation

datasets with a balanced set of m examples each (m = 50 for CIFAR-10 and m = 300 for CIFAR-100) and use

the rest of the dataset for testing. To avoid over-fitting, we use early stopping when the testing error does not

improve for 500 hyper-iterations.

Although we are using a similar setting as Franceschi et al. [9], our results on full back-propagation are quite

di↵erent from theirs. We believe it is because we are using a di↵erent network architecture and pre-processing

method for feature extraction.

G.3 One-shot classification

Dataset The Omniglot dataset [31], a popular benchmark for few-shot learning, is used in this experiment. We

consider 5-way classification with 1 training and 15 validation examples for each of the five classes. To evaluate the

generalization performance, we restrict the meta-training dataset to a random subset of 1200 of the 1623 Omniglot

characters. The meta-validation dataset consists of 100 other characters, and meta-testing dataset has the

remaining 323 characters. We use the meta-validation dataset for tuning the upper-level optimization parameters

and report the performance of the algorithm on the meta-testing dataset. Note that no data augmentation

method is used in the training.

Neural Network and Optimization The overall neural network architecture is shown in Figure 8. Our

architecture inherits the hyper-representation model of Franceschi et al. [2] with some modifications. The first

two convolutional layers, parametrized by hyperparameter � = {�l1 ,�l2}, transform the input image into a

“hyper-representation” space. The last three layers, parametrized by w = {wl3 , wl4 , wl5} are fine-tuned in the

lower-level optimization. Additionally, we have regularization hyperparameters �r = {⇢i}3i=1 [{cj}3j=1. The

overall setup corresponds essentially to meta-learning the two bottom layers of a CNN; for each task, the weights

in the first two layers are frozen, and the k-way classifier of the last three layers is fine tuned. Overall, the model

has ⇡ 110k hyperparameters and ⇡ 75k parameters.

We use a meta-batch-size of 4 in each hyper-iteration. To limit the training time, we stop all the algorithms

after 5000 hyper-iterations. Needless to say, these results could be further improved by using data augmentation,

higher meta-batch size, and running more hyper-iterations. However, our current setup is selected so that all the

experiments can be run in a reasonable amount of time, while sharing a similar setting used in practical one-shot

learning.

