A Technical Lemmas

Lemma 4 (Theorem 1.1 in [10]). There exists a constant K such that, for any n, m any $h \leq 2 \log \max \{m, n\}$ and any $m \times n$ matrix $A = (a_{ij})$ where a_{ij} are i.i.d. symmetric random variables, the following inequality holds:

$$
\max \left\{ \mathbb{E} \max_{1 \leq i \leq m} \|a_i\|_2^h, \mathbb{E} \max_{1 \leq j \leq n} \|a_j^h\|_2 \right\} \leq \mathbb{E} \|A\|_h^2 \leq K \left(\mathbb{E} \max_{1 \leq i \leq m} \|a_i\|_2^h + \mathbb{E} \max_{1 \leq j \leq n} \|a_j^h\|_2 \right).
$$

Lemma 5 (Symmetrization, Lemma 6.3 in [30]). Let $F : \mathbb{R}_+ \to \mathbb{R}_+$ be convex. Then, for any finite sequence $\{t_i\}$ of independent mean zero random variables in B such that for every $i \mathbb{E} \left[F(\|t_i\|_2) \right] < \infty$, then

$$
\mathbb{E} \left[F \left(\frac{1}{2} \sum \xi_i t_i \right) \right] \leq \mathbb{E} \left[F \left(\sum t_i \right) \right] \leq \mathbb{E} \left[F \left(2 \sum \xi_i t_i \right) \right],
$$

where $\{\xi_i\}$ are i.i.d. Rademacher random variables.

Lemma 6 (Contraction, Theorem 4.12 in [30]). Let $F : \mathbb{R}_+ \to \mathbb{R}_+$ be convex and increasing. Let $\psi_i : \mathbb{R} \to \mathbb{R}$ be contraction such that $\psi_i(0) = 0$. Then it holds that

$$
\mathbb{E} \left[F \left(\frac{1}{2} \sup_{t_1, \ldots, t_N} \left| \sum_{i=1}^N \xi_i \psi_i(t_i) \right| \right) \right] \leq \mathbb{E} \left[F \left(\sup_{t_1, \ldots, t_N} \left| \sum_{i=1}^N \xi_i t_i \right| \right) \right],
$$

where $\{\xi_i\}$ are i.i.d. Rademacher random variables.

Lemma 7 (Lemma 2 in [17]). Let f be a differentiable function and assume $\max \left\{ \|M\|_\infty, \|\hat{M}\|_\infty \right\} \leq \alpha$. Then

$$
d_H^2 \left(f(M), f(\hat{M}) \right) \geq \inf_{|x| \leq \alpha} \frac{(f'(x))^2}{8f(x)(1-f(x))} \frac{\|M - \hat{M}\|_F^2}{d_1d_2}.\]

Lemma 8 (Lemma 4 in [17]). Suppose that $x, y \in (0, 1)$. Then

$$
D(x|y) \leq \frac{(x-y)^2}{y(1-y)}.
$$

Lemma 9 (Lemma 3 in [17]). Let \mathcal{K} be the set of matrices that satisfy (A2) and (A3). Let $0 < \nu \leq 1$ be a scalar such that νr^{-2} is an integer that is not larger than d_1. Then there exists a subset $\mathcal{X} \subset \mathcal{K}$ with the following properties:

1. $|\mathcal{X}| \geq \exp \left(\frac{\nu}{16 \log \nu} \right)$.
2. $\forall X \in \mathcal{X}$, $|X_{ij}| = \alpha \nu$.
3. $\forall X, \tilde{X} \in \mathcal{X}$ with $X \neq \tilde{X}$, $\|X - \tilde{X}\|_F^2 > \frac{1}{4} \alpha^2 \nu^2 d_1d_2$.

B Proof for Main Results

Recall the observation model: $M \in \mathbb{R}^{d_1 \times d_2}$ is the true low-rank matrix and $\Omega \subset [d_1] \times [d_2]$ is the index set of entries we observed. $Y \in \mathbb{R}^{d_1 \times d_2}$ is the binary matrix determined by M: for all $(i, j) \in \Omega$,

$$
Y_{ij} = \begin{cases} +1, \text{ with probability } f(M_{ij}), \\ -1, \text{ with probability } 1 - f(M_{ij}). \end{cases}
$$

In the setting of symmetric noise, the observation $Y'_{ij} = \delta_{ij} Y_{ij}$ where δ_{ij} are i.i.d. and

$$
\delta_{ij} = \begin{cases} +1, \text{ with probability } 1 - \tau, \\ -1, \text{ with probability } \tau, \end{cases}
$$
where \(\tau \in (0, 1/2) \) itself can be a random variable. Therefore, conditioning on \(\tau \), we observe
\[
\Pr(Y_{ij}' = 1 \mid \tau) = (1 - \tau)f(M_{ij}) + \tau(1 - f(M_{ij})).
\]

Case 1. If \(\tau \) is a discrete random variable, say
\[
\Pr(\tau = \tau_k) = p_k, \quad 1 \leq k \leq s,
\]
then it is easy to see that
\[
\Pr(Y_{ij}' = 1) = \sum_{k=1}^{s} \Pr(Y_{ij}' = 1, \ \tau = \tau_k)
\]
\[
= \sum_{k=1}^{s} \Pr(Y_{ij}' = 1 \mid \tau = \tau_k) \cdot \Pr(\tau = \tau_k)
\]
\[
= \sum_{k=1}^{s} p_k \left[(1 - \tau_k)f(M_{ij}) + \tau_k(1 - f(M_{ij})) \right].
\]

Denote
\[
g(x) = \sum_{k=1}^{s} p_k \left[(1 - \tau_k)f(x) + \tau_k(1 - f(x)) \right] = (1 - 2E[\tau])f(x) + E[\tau].
\]

We have
\[
Y_{ij}' = \begin{cases}
 +1, \text{ with probability } g(M_{ij}), \\
 -1, \text{ with probability } 1 - g(M_{ij}).
\end{cases}
\]

Case 2. If \(\tau \) is a continuous random variable with probability density function (pdf) \(h_\tau(t) \), then we have
\[
\Pr(Y_{ij}' = 1) = \int_t h_{Y,\tau}(Y_{ij}' = 1, t)dt
\]
\[
= \int_t h_{Y\mid\tau}(Y_{ij}' = 1 \mid t)h_\tau(t)dt
\]
\[
= \int_t h_\tau(t) \left[(1 - t)f(M_{ij}) + t(1 - f(M_{ij})) \right] dt,
\]
where \(h_{Y,\tau}(y, t) \) is the joint pdf of \(Y_{ij} \) and \(\tau \), and \(h_{Y\mid\tau}(y \mid t) \) is the conditional pdf. Thus, define
\[
g(x) = \int_t h_\tau(t) \left[(1 - t)f(x) + t(1 - f(x)) \right] dt = (1 - 2E[\tau])f(x) + E[\tau].
\]

We again have
\[
Y_{ij}' = \begin{cases}
 +1, \text{ with probability } g(M_{ij}), \\
 -1, \text{ with probability } 1 - g(M_{ij}).
\end{cases}
\]

Hence, the maximum likelihood estimator is given as follows:
\[
\hat{M} = \arg\max_X L_{\Omega,Y'}(X), \quad \text{s.t. } \|X\|_* \leq \alpha \sqrt{rd_1d_2}, \|X\|_\infty \leq \gamma,
\]
where
\[
L_{\Omega,Y'}(X) := \sum_{(i,j) \in \Omega} (1_{(Y_{ij} = 1)} \log g(X_{ij}) + 1_{(Y_{ij} = -1)} \log(1 - g(X_{ij}))).
\]
For the sake of a principled analysis, we will treat \(g(x) \) as a general function at this point. Associated with the function \(g(x) \) are two quantities:

\[
\rho_\gamma^+ := \sup_{|x| \leq \gamma} \frac{|g'(x)|}{g(x)(1-g(x))}, \quad \rho_\gamma^- := \sup_{|x| \leq \gamma} \frac{g(x)(1-g(x))}{(g'(x))^2}.
\]

We will use several kinds of distances in the proof. The first one is Hellinger distance that is given by

\[
d_H^2(p, q) := (\sqrt{p} - \sqrt{q})^2 + (\sqrt{1-p} + \sqrt{1-q})^2, \quad \forall \ 0 \leq p, q \leq 1.
\]

Extending it to the matrix, we write

\[
d_H^2(P, Q) := \frac{1}{d_1d_2} \sum_{i,j} d_H^2(P_{ij}, Q_{ij}),
\]

where \(P, Q \in \mathbb{R}^{d_1 \times d_2} \) and the entries therein are between 0 and 1.

For two probability distributions \(P \) and \(Q \) on a finite set \(A \), the Kullback-Leibler (KL) divergence is defined as

\[
D(P || Q) = \sum_{x \in A} P(x) \log \frac{P(x)}{Q(x)}.
\]

With a slight abuse, we write for two scalars \(p, q \in [0, 1] \)

\[
D(p || q) = p \log \frac{p}{q} + (1 - p) \log \frac{1 - p}{1 - q},
\]

and for two matrices \(P, Q \in [0, 1]^{d_1 \times d_2} \),

\[
D(P || Q) = \frac{1}{d_1d_2} \sum_{i,j} D(P_{ij} || Q_{ij}).
\]

Throughout the proof, we will work with a shifted MLE, i.e.

\[
\bar{L}_{\Omega, Y'}(X) := L_{\Omega, Y'}(X) - L_{\Omega, Y'}(0) = \sum_{(i,j) \in \Omega} \left(1_{\{Y_{ij} = 1\}} \log \frac{g(X_{ij})}{g(0)} + 1_{\{Y_{ij} = -1\}} \log \frac{1 - g(X_{ij})}{1 - g(0)} \right),
\]

\[
= \sum_{i,j} 1_{\{(i,j) \in \Omega\}} \left(1_{\{Y_{ij} = 1\}} \log \frac{g(X_{ij})}{g(0)} + 1_{\{Y_{ij} = -1\}} \log \frac{1 - g(X_{ij})}{1 - g(0)} \right). \quad (12)
\]

B.1 Proof for Lemma 3

Proof. Using the Markov’s inequality, we have for any \(\theta > 0 \),

\[
\Pr \left(\sup_{X \in S} \left| \bar{L}_{\Omega, Y'}(X) - \mathbb{E} \bar{L}_{\Omega, Y'}(X) \right| \geq C_0 \alpha \rho_\gamma^+ \sqrt{\theta} \sqrt{n(d_1 + d_2)} + d_1d_2 \log(d_1d_2) \right) \\
\leq \frac{\mathbb{E} \left[\sup_{X \in S} \left| \bar{L}_{\Omega, Y'}(X) - \mathbb{E} \bar{L}_{\Omega, Y'}(X) \right|^\theta \right]}{(C_0 \alpha \rho_\gamma^+ \sqrt{\theta} \sqrt{n(d_1 + d_2)} + d_1d_2 \log(d_1d_2))^{\frac{\theta}{2}}} \quad (13)
\]

We bound the numerator above. Recall that

\[
\bar{L}_{\Omega, Y'}(X) = \sum_{i,j} 1_{\{(i,j) \in \Omega\}} \left(1_{\{Y'_{ij} = 1\}} \log \frac{g(X_{ij})}{g(0)} + 1_{\{Y'_{ij} = -1\}} \log \frac{1 - g(X_{ij})}{1 - g(0)} \right).
\]

Let the random variable

\[
\bar{e}_{ij} = 1_{\{(i,j) \in \Omega\}} \left(1_{\{Y'_{ij} = 1\}} \log \frac{g(X_{ij})}{g(0)} + 1_{\{Y'_{ij} = -1\}} \log \frac{1 - g(X_{ij})}{1 - g(0)} \right),
\]
and let
\[t_{ij} = \tilde{t}_{ij} - \mathbb{E} \tilde{t}_{ij}. \]

Then
\[\bar{L}_{\Omega,Y'}(X) - \mathbb{E} \bar{L}_{\Omega,Y'}(X) = \sum_{i,j} t_{ij}. \]

Note that \{t_{ij}\} are i.i.d. random variables with zero mean. The function \(F(t) = \sup t^\theta \) is convex for \(\theta \geq 1 \), and \(\mathbb{E} F(|t_{ij}|) \) is finite for all \((i,j) \in [d_1] \times [d_2]\). Hence, we can apply Lemma 5 to obtain
\[
\mathbb{E} \left[\sup_{X \in S} \left| \bar{L}_{\Omega,Y'}(X) - \mathbb{E} \bar{L}_{\Omega,Y'}(X) \right|^\theta \right] \leq 2^\theta \mathbb{E} \left[\sup_{X \in S} \sum_{i,j} \xi_{ij} 1_{\{(i,j) \in \Omega\}} \left(1_{\{Y'_{ij} = 1\}} \log \frac{g(X_{ij})}{g(0)} + 1_{\{Y'_{ij} = -1\}} \log \frac{1 - g(X_{ij})}{1 - g(0)} \right) \right]^\theta,
\]

where \{\xi_{ij}\} are i.i.d. Rademacher random variables. Now observe that due to the construction of \(\rho^+_\alpha \), both \(\frac{1}{p_\alpha} \log \frac{g(x)}{g(0)} \) and \(\frac{1}{p_\alpha} \log \frac{1 - g(x)}{1 - g(0)} \) are contractions and vanish at \(x = 0 \). Thereby, using Lemma 6 we have
\[
\mathbb{E} \left[\sup_{X \in S} \left| \bar{L}_{\Omega,Y'}(X) - \mathbb{E} \bar{L}_{\Omega,Y'}(X) \right|^\theta \right] \leq (4 \rho^+_\alpha)^\theta \mathbb{E} \left[\sup_{X \in S} \sum_{i,j} \xi_{ij} 1_{\{(i,j) \in \Omega\}} \left(1_{\{Y'_{ij} = 1\}} X_{ij} - 1_{\{Y'_{ij} = -1\}} X_{ij} \right) \right]^\theta.
\]

With a simple algebra, we have
\[\Pr(\xi_{ij} Y'_{ij} = 1) = \Pr(\xi_{ij} = 1, Y'_{ij} = 1) + \Pr(\xi_{ij} = -1, Y'_{ij} = -1) = \frac{1}{2} \left(\Pr(Y'_{ij} = 1) + \Pr(Y'_{ij} = -1) \right) = \frac{1}{2}, \]

which implies that the distribution of \(\xi_{ij} Y'_{ij} \) is the same as that of \(\xi_{ij} \) for all \((i,j) \in [d_1] \times [d_2]\). Thus, by denoting \(\Delta_\Omega \) the matrix such that its \((i,j)\)-th element is 1 if \((i,j) \in \Omega\) and 0 otherwise, and \(\Xi = (\xi_{ij}) \), it follows that
\[
\mathbb{E} \left[\sup_{X \in S} \left| \bar{L}_{\Omega,Y'}(X) - \mathbb{E} \bar{L}_{\Omega,Y'}(X) \right|^\theta \right] \leq (4 \rho^+_\alpha)^\theta \mathbb{E} \left[\sup_{X \in S} \sum_{i,j} \xi_{ij} 1_{\{(i,j) \in \Omega\}} X_{ij} \right]^\theta = (4 \rho^+_\alpha)^\theta \mathbb{E} \left[\sup_{X \in S} \|\Delta_\Omega \circ \Xi, X\|^\theta \right] \leq (4 \rho^+_\alpha)^\theta \mathbb{E} \left[\sup_{X \in S} \|\Delta_\Omega \circ \Xi\|^\theta \right] \leq (\alpha \sqrt{rd_1 d_2})^\theta \mathbb{E} \left[\|\Delta_\Omega \circ \Xi\|^\theta \right].
\]

Above, the last inequality follows from the nuclear norm constraint we imposed in the MLE estimator. Note that the \((i,j)\)-th entry of the matrix \(\Delta_\Omega \circ \Xi \) is given by \(1_{\{(i,j) \in \Omega\}} \xi_{ij} \), which are i.i.d. symmetric random variables. Thus, Lemma 7 implies that
\[
\mathbb{E} \left[\|\Delta_\Omega \circ \Xi\|^\theta \right] \leq C \left(\mathbb{E} \max_{1 \leq i \leq d_1} \left(\sum_{j=1}^{d_2} (\xi_{ij} \Delta_{ij})^2 \right)^{\theta/2} + \mathbb{E} \max_{1 \leq j \leq d_2} \left(\sum_{i=1}^{d_1} (\xi_{ij} \Delta_{ij})^2 \right)^{\theta/2} \right) \leq C \left(\mathbb{E} \max_{1 \leq i \leq d_1} \left(\sum_{j=1}^{d_2} \Delta_{ij} \right)^{\theta/2} + \mathbb{E} \max_{1 \leq j \leq d_2} \left(\sum_{i=1}^{d_1} \Delta_{ij} \right)^{\theta/2} \right). \]
Fix i. By Bernstein’s inequality, for all $t > 0$,

$$\Pr \left(\sum_{j=1}^{d_2} \left| \Delta_{ij} - \frac{n}{d_1 d_2} \right| > t \right) \leq 2 \exp \left(\frac{-t^2/2}{n/d_1 + t/3} \right).$$

When $t \geq \frac{6n}{d_1}$, the above reduces to

$$\Pr \left(\sum_{j=1}^{d_2} \left| \Delta_{ij} - \frac{n}{d_1 d_2} \right| > t \right) \leq 2 \exp(-t).$$

Suppose that W_1, \ldots, W_{d_1} are i.i.d. exponential random variables with pdf $\exp(-t)$. Then it follows that

$$\Pr \left(\sum_{j=1}^{d_2} \left| \Delta_{ij} - \frac{n}{d_1 d_2} \right| > t \right) \leq 2 \Pr(W_i > t).$$

On the other hand, we have

$$\left(\mathbb{E} \max_{1 \leq i \leq d_1} \left(\sum_{j=1}^{d_2} \Delta_{ij} \right)^{\theta/2} \right)^{1/\theta} \leq \sqrt{\frac{n}{d_1}} + \left(\frac{6n}{d_1} \right)^{\theta/2} + \int_0^{+\infty} \Pr \left(\max_{1 \leq i \leq d_1} \left(\sum_{j=1}^{d_2} \left| \Delta_{ij} - \frac{n}{d_1 d_2} \right| \right)^{\theta/2} \geq t \right) dt \right)^{1/\theta} \leq \sqrt{\frac{n}{d_1}} + \left(\frac{6n}{d_1} \right)^{\theta/2} + \int_0^{+\infty} \Pr \left(\max_{1 \leq i \leq d_1} W_i^{\theta/2} \geq t \right) dt \right)^{1/\theta} \leq \sqrt{\frac{n}{d_1}} + \left(\frac{6n}{d_1} \right)^{\theta/2} + 2 \mathbb{E} \max_{1 \leq i \leq d_1} W_i^{\theta/2} \right)^{1/\theta} \leq (1 + \sqrt{6}) \sqrt{\frac{n}{d_1}} + 2^{1/\theta} \left(\mathbb{E} \max_{1 \leq i \leq d_1} W_i^{\theta/2} \right)^{1/\theta}.$$

Here, ζ_1 and ζ_2 use the identity $\mathbb{E} x = \int_0^{+\infty} \Pr(x \geq t) dt$ for any positive random variable x. It remains to bound $\mathbb{E} \max_{1 \leq i \leq d_1} W_i^{\theta/2}$. Using the fact that W_i is exponential, we have

$$\mathbb{E} \max_{1 \leq i \leq d_1} W_i^{\theta/2} \leq \max_{1 \leq i \leq d_1} W_i - \log d_1 \left(\frac{\theta/2}{\log^{\theta/2} d_1 + \log^{\theta/2} d_1 \leq 2((\theta/2)!)} + \log^{\theta/2} d_1 \leq 2(\theta/2)^{\theta/2} + \log^{\theta/2} d_1,\right.$$

where we apply Stirling’s approximation in the last inequality. Thus,

$$2^{1/\theta} \left(\mathbb{E} \max_{1 \leq i \leq d_1} W_i^{\theta/2} \right)^{1/\theta} \leq 2^{1/\theta} \left(\sqrt{\log d_1} + 2^{1/\theta} \sqrt{\theta/2} \right).$$

Picking $\theta = 2 \log(d_1 + d_2)$ gives

$$2^{1/\theta} \left(\mathbb{E} \max_{1 \leq i \leq d_1} W_i^{\theta/2} \right)^{1/\theta} \leq (2 + \sqrt{2}) \sqrt{\log(d_1 + d_2)}.$$
Putting pieces together, we obtain

\[
\left(\mathbb{E} \max_{1 \leq i \leq d_1} \left(\sum_{j=1}^{d_2} \Delta_{ij} \right)^{\theta/2} \right)^{1/\theta} \leq (1 + \sqrt{6}) \sqrt{\frac{n}{d_1}} + (2 + \sqrt{2}) \sqrt{\log(d_1 + d_2)}.
\]

Likewise, we can show that

\[
\left(\mathbb{E} \max_{1 \leq i \leq d_2} \left(\sum_{i=1}^{d_1} \Delta_{ij} \right)^{\theta/2} \right)^{1/\theta} \leq (1 + \sqrt{6}) \sqrt{\frac{n}{d_2}} + (2 + \sqrt{2}) \sqrt{\log(d_1 + d_2)}.
\]

Note that \(\sqrt{\cdot}\) is a concave function. Hence, Jensen’s inequality implies that (13) can be bounded as follows:

\[
\left(\mathbb{E} \left[\|\Delta_\Omega \circ \Theta \|^\theta \right] \right)^{1/\theta} \leq C^{1/\theta} \left((1 + \sqrt{6}) \sqrt{\frac{2n(d_1 + d_2)}{d_1 d_2}} + (2 + \sqrt{2}) \sqrt{\log(d_1 + d_2)} \right)
\]

\[
\leq C^{1/\theta} 2(1 + \sqrt{6}) \sqrt{\frac{n(d_1 + d_2) + d_1 d_2 \log(d_1 + d_2)}{d_1 d_2}}.
\]

Plugging this back to (14), we have

\[
\left(\mathbb{E} \left[\sup_{X \in \mathcal{S}} |\hat{L}_{\Omega,Y'}(X) - \mathbb{E} \hat{L}_{\Omega,Y'}(X)|^\theta \right] \right)^{1/\theta} \leq C^{1/\theta} 8(1 + \sqrt{6}) \alpha \rho_1^\gamma \sqrt{\frac{n(d_1 + d_2) + d_1 d_2 \log(d_1 + d_2)}{n}}.
\]

Therefore, (13) is upper bounded by

\[
C \left(\frac{8(1 + \sqrt{6})}{C_0} \right)^{2\log(d_1 + d_2)} \leq \frac{C}{d_1 + d_2},
\]

as soon as we choose \(C_0 \geq 8(1 + \sqrt{6})\sqrt{e}\). \(\square\)

B.2 Proof for Theorem 11

We need the following result in our proof.

Proposition 10. Assume same conditions as in Theorem 11 but with a slightly more general assumption that \(\|M\|_\infty \leq \gamma\) in place of \(\|M\|_\infty \leq \alpha\). Then, with probability at least \(1 - C_1/(d_1 + d_2)\), the follow holds:

\[
d^2_{TV}(g(M), g(M)) \leq C_2 \rho_1^\gamma \alpha \sqrt{\frac{r(d_1 + d_2)}{n}} \sqrt{1 + \frac{(d_1 + d_2) \log(d_1 d_2)}{n}},
\]

where \(C_1\) and \(C_2\) are absolute constants.

Proof. For any matrix \(X \in \mathbb{R}^{d_1 \times d_2}\), we have

\[
\mathbb{E} \left[\hat{L}_{\Omega,Y'}(X) - \hat{L}_{\Omega,Y'}(M) \right] = \mathbb{E} \left[L_{\Omega,Y'}(X) - L_{\Omega,Y'}(M) \right]
\]

\[
= \mathbb{E} \left[\sum_{i,j} 1_{\{i,j\} \in \Omega} \left(1_{\{y'_{ij} = 1\}} \log \frac{g(X_{ij})}{g(M_{ij})} + 1_{\{y'_{ij} = -1\}} \log \frac{1 - g(X_{ij})}{1 - g(M_{ij})} \right) \right]
\]

\[
= \mathbb{E} \left[\sum_{i,j} \frac{n}{d_1 d_2} \left(g(M_{ij}) \log \frac{g(X_{ij})}{g(M_{ij})} + (1 - g(M_{ij})) \log \frac{1 - g(X_{ij})}{1 - g(M_{ij})} \right) \right]
\]

\[
= -nD(g(M)||g(X)).
\]
On the other hand, for the optimum \hat{M}, it holds that
\[
\hat{L}_{\Omega,Y'}(\hat{M}) - L_{\Omega,Y'}(M) = \mathbb{E} [L_{\Omega,Y'}(\hat{M}) - L_{\Omega,Y'}(M)] + \left(\hat{L}_{\Omega,Y'}(\hat{M}) - \mathbb{E} [L_{\Omega,Y'}(\hat{M})]\right)
+ \left(\mathbb{E} [L_{\Omega,Y'}(M) - L_{\Omega,Y'}(M)]\right)
\leq \mathbb{E} [\hat{L}_{\Omega,Y'}(X) - L_{\Omega,Y'}(M)] + 2 \sup_{X \in \mathcal{S}} \left|\hat{L}_{\Omega,Y'}(X) - \mathbb{E} [L_{\Omega,Y'}(X)]\right|,
\]
where we recall that \mathcal{S} was defined in Lemma 3. Since \hat{M} also maximizes $\hat{L}_{\Omega,Y'}(X)$, we obtain
\[
- \mathbb{E} [\hat{L}_{\Omega,Y'}(X) - L_{\Omega,Y'}(M)] \leq 2 \sup_{X \in \mathcal{S}} \mathbb{E} [\hat{L}_{\Omega,Y'}(X) - \mathbb{E} [L_{\Omega,Y'}(X)]].
\]

This together with (16) and Lemma 3 imply that
\[
D(g(M)||g(\hat{M})) \leq 2C_0C_0^\alpha \rho_\alpha^+ \sqrt{\frac{r(d_1 + d_2)}{n}} \sqrt{1 + \frac{(d_1 + d_2) \log(d_1d_2)}{n}}
\]
holds with probability at least $1 - C_1/(d_1 + d_2)$. Since the Hellinger distance is upper bounded by the KL divergence, we complete the proof. \hfill \square

Now we are in the position to prove Theorem 1. In fact, Theorem 1 follows immediately from Prop. 10 and Lemma 7.

B.3 Proof for Theorem 2

Proof. Without loss of generality, suppose that $d_1 \leq d_2$. Let
\[
e^2 = \min \left\{ \frac{1}{1024}, C \alpha \sqrt{\frac{\rho_\alpha^+ r d_2}{n}} \right\}.
\]
Pick
\[
\frac{4\sqrt{2}}{\alpha} \leq \nu \leq \frac{8e}{\alpha}.
\]
It is easy to see that
\[
\frac{r \alpha^2}{64e^2} \leq \frac{\nu}{\nu^2} \leq \frac{r \alpha^2}{32e^2}.
\]
The length of this interval is $\frac{r \alpha^2}{64e^2}$, which is larger than 1 since $\alpha \geq 1$, $r \geq 16$ and $e^2 \leq 1/1024$. Hence, it is possible to pick a proper ν such that $\frac{\nu}{\nu^2}$ is an integer. Also, the assumption that $e^2 \geq O(r \alpha^2/d_1)$ suggests $r/\nu^2 \leq d_1$. Hence we have found an appropriate ν for Lemma 9.

Let $\mathcal{X}_\alpha/2,\nu$ be a set that satisfies all the properties in Lemma 9 with parameter $\alpha/2$. Let
\[
\mathcal{X} = \left\{ X' + \alpha \left(1 - \frac{\nu}{2}\right) U : X' \in \mathcal{X}_\alpha/2,\nu \right\},
\]
where all the entries of U equal one.

First, we verify that each component in \mathcal{X} satisfies (A2) and (A3). It is easy to see that for any $X \in \mathcal{X}$, $|X_{ij}|$ either equals α or $(1 - \nu)\alpha$, i.e., $\|X\|_\infty \leq \alpha$ since $\nu < 1$. In addition,
\[
\left\|X' + \alpha \left(1 - \frac{\nu}{2}\right) U\right\|_* \leq \|X'\|_* + \alpha \left(1 - \frac{\nu}{2}\right) \|U\|_* \leq \frac{\alpha}{2} \sqrt{rd_1d_2} + \alpha \left(1 - \frac{\nu}{2}\right) \|U\|_*.
\]
Since $\nu \in (0,1)$ and $r \geq 16$, we have $2 - \nu \leq \sqrt{r}$, which together with $\|U\|_* = \sqrt{d_1d_2}$ imply that $\|X\|_* \leq \alpha \sqrt{rd_1d_2}$ for all $X \in \mathcal{X}$.

Robust Matrix Completion from Quantized Observations
We prove the theorem by showing that its converse is false. That is, suppose that there exists an algorithm such that for any \(M \in \mathcal{X} \) (which satisfies (A2) and (A3)), with probability at least 1/4, its output \(\hat{X} \) satisfies
\[
\frac{1}{d_1d_2} \left\| \hat{X} - M \right\|_F^2 < \epsilon^2. \tag{17}
\]
Let \(X^* \in \mathcal{X} \) be the closest member to \(\hat{X} \). For any \(\tilde{X} \notin M \in \mathcal{X} \), it follows that
\[
\left\| \tilde{X} - \hat{X} \right\|_F \geq \left\| \tilde{X} - M \right\|_F - \left\| \hat{X} - M \right\|_F > 2\epsilon \sqrt{d_1d_2} - \epsilon \sqrt{d_1d_2} = \epsilon \sqrt{d_1d_2}, \tag{18}
\]
where the last inequality follows from (17) and the fact that for any \(X, \tilde{X} \in \mathcal{X} \),
\[
\left\| X - \tilde{X} \right\|_F^2 \geq \frac{\alpha^2 \nu^2 d_1d_2}{8} \geq 4d_1d_2 \nu^2.
\]
The first inequality above uses the third property in Lemma 8 and the second inequality follows from our choice of \(\nu \).

On the other hand, since \(X^* \) is the closest one to \(\hat{X} \), we have
\[
\left\| X^* - \hat{X} \right\|_F \leq \left\| M - \hat{X} \right\|_F \leq \epsilon \sqrt{d_1d_2}. \tag{19}
\]
Combining (18) and (19), we obtain
\[
\left\| X^* - \hat{X} \right\|_F < \left\| \tilde{X} - \hat{X} \right\|_F, \forall \tilde{X} \neq M,
\]
which implies \(X^* = M \). Since (17) holds with probability at least 1/4,
\[
\Pr(X^* \neq M) \leq \frac{3}{4}. \tag{20}
\]
From a variant of Fano’s inequality,
\[
\Pr(X^* \neq M) \geq 1 - \frac{1 + d_1d_2 \max_{X \neq \tilde{X}} D(Y_{ij} | X || Y_{ij} | \tilde{X})}{\log |\mathcal{X}|} \tag{21}
\]
Denote
\[
D = d_1d_2D(Y_{ij} | X || Y_{ij} | \tilde{X}) = \sum_{(i,j) \in \Omega} D(Y_{ij} | X_{ij} || Y_{ij} | \tilde{X}_{ij}).
\]
For each \((i, j) \in \Omega, D(Y_{ij} | X_{ij} || Y_{ij} | \tilde{X}_{ij})\) is either 0, \(D(g(\alpha)||g(\alpha')) \) or \(D(g(\alpha)||g(\alpha')) \), where \(\alpha' = (1 - \nu)\alpha \) and we recall that \(X_{ij}, \tilde{X}_{ij} \) can only take value from \{\alpha, \alpha'\}. It thus follows from Lemma 8 that
\[
D(Y_{ij} | X_{ij} || Y_{ij} | \tilde{X}_{ij}) \leq \frac{(g(\alpha) - g(\alpha'))^2}{g(\alpha')(1 - g(\alpha'))},
\]
since \(\alpha' < \alpha \). Now using the mean value theorem, we obtain
\[
D \leq n(g'(\theta))^2 \frac{(\alpha - \alpha')^2}{g(\alpha')(1 - g(\alpha'))}, \text{ for some } \theta \in [\alpha', \alpha].
\]
As we assumed that \(\nabla g(x) \) is decreasing in \((0, +\infty)\), we get
\[
D \leq \frac{n(\nu \alpha)^2}{\rho_{\alpha'}} \leq 64n\epsilon^2 \frac{\rho}{\rho_{\alpha'}}.
\]
Due to the construction, the cardinality of \mathcal{X} equals to that of $\mathcal{X}'_{\alpha/2,\nu}$. Hence, combining (20) and (21), we can show

$$\frac{1}{4} \leq \frac{D + 1}{\log |\mathcal{X}|} \leq \frac{16\nu^2}{rd_2} \left(\frac{64n\epsilon^2}{\rho_{\alpha'}} + 1 \right) \leq \frac{1024\epsilon^2}{\alpha^2rd_2} \left(\frac{64n\epsilon^2}{\rho_{\alpha'}} + 1 \right).$$

(22)

Note that when $64n\epsilon^2 \leq \rho_{\alpha'}$, we have

$$\frac{1}{4} \leq 1024 \times \frac{2048\epsilon^2}{\alpha^2rd_2},$$

implying $\alpha^2rd_2 \leq 8$ due to the definition of ϵ. This contradicts our assumption that $\alpha^2rd_2 \geq C_0$ if we specify $C_0 > 8$.

When $64n\epsilon^2 > \rho_{\alpha'}$, then (22) suggests

$$\frac{1}{4} \leq \frac{1024 \times 128 \times n\epsilon^4}{\rho_{\alpha'}^2 \alpha^2rd_2},$$

which gives

$$\epsilon^2 > \frac{\alpha \sqrt{\rho_{\alpha'}} \sqrt{\frac{rd_2}{n}}}{1024}.$$

Picking $C_2 = 1/1024$ in the definition of ϵ and noting $\rho_{\alpha'} \geq \bar{\rho}_{0.75\alpha}$ yields a contradiction. Therefore, (17) fails to hold with probability at least $3/4$.

\Box