A Technical Lemmas

Lemma 4 (Theorem 1.1 in [40]). There exists a constant K such that, for any n, m any $h \leq 2 \log \max \{m, n\}$ and any $m \times n$ matrix $A=\left(a_{i j}\right)$ where $a_{i j}$ are i.i.d. symmetric random variables, the following inequality holds:

$$
\max \left\{\mathbb{E} \max _{1 \leq i \leq m}\left\|a_{i} \cdot\right\|_{2}^{h}, \mathbb{E} \max _{1 \leq j \leq n}\left\|a_{\cdot j}^{h}\right\|_{2}\right\} \leq \mathbb{E}\|A\|^{h} \leq K\left(\mathbb{E} \max _{1 \leq i \leq m}\left\|a_{i}\right\|_{2}^{h}+\mathbb{E} \max _{1 \leq j \leq n}\left\|a_{\cdot j}^{h}\right\|_{2}\right)
$$

Lemma 5 (Symmetrization, Lemma 6.3 in [30]). Let $F: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be convex. Then, for any finite sequence $\left\{t_{i}\right\}$ of independent mean zero random variables in B such that for every $i \mathbb{E}\left[F\left(\left\|t_{i}\right\|_{2}\right)\right]<\infty$, then

$$
\mathbb{E}\left[F\left(\frac{1}{2}\left\|\sum \xi_{i} t_{i}\right\|_{2}\right)\right] \leq \mathbb{E}\left[F\left(\left\|\sum t_{i}\right\|_{2}\right)\right] \leq \mathbb{E}\left[F\left(2\left\|\sum \xi_{i} t_{i}\right\|_{2}\right)\right]
$$

where $\left\{\xi_{i}\right\}$ are i.i.d. Rademacher random variables.
Lemma 6 (Contraction, Theorem 4.12 in 30]). Let $F: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be convex and increasing. Let $\psi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ be contraction such that $\psi_{i}(0)=0$. Then it holds that

$$
\mathbb{E}\left[F\left(\frac{1}{2} \sup _{t_{1}, \ldots t_{N}}\left|\sum_{i=1}^{N} \xi_{i} \psi_{i}\left(t_{i}\right)\right|\right)\right] \leq \mathbb{E}\left[F\left(\sup _{t_{1}, \ldots t_{N}}\left|\sum_{i=1}^{N} \xi_{i} t_{i}\right|\right)\right]
$$

where $\left\{\xi_{i}\right\}$ are i.i.d. Rademacher random variables.
Lemma 7 (Lemma 2 in [17]). Let f be a differentiable function and assume $\max \left\{\|M\|_{\infty},\|\widehat{M}\|_{\infty}\right\} \leq \alpha$. Then

$$
d_{H}^{2}(f(M), f(\widehat{M})) \geq \inf _{|x| \leq \alpha} \frac{\left(f^{\prime}(x)\right)^{2}}{8 f(x)(1-f(x))} \frac{\|M-\widehat{M}\|_{F}^{2}}{d_{1} d_{2}}
$$

Lemma 8 (Lemma 4 in [17]). Suppose that $x, y \in(0,1)$. Then

$$
D(x \| y) \leq \frac{(x-y)^{2}}{y(1-y)}
$$

Lemma 9 (Lemma 3 in [17]). Let \mathcal{K} be the set of matrices that satisfy (A2) and (A3). Let $0<\nu \leq 1$ be a scalar such that $r \nu^{-2}$ is an integer that is not larger than d_{1}. Then there exists a subset $\mathcal{X} \subset \mathcal{K}$ with the following properties:

1. $|\mathcal{X}| \geq \exp \left(\frac{r d_{2}}{16 \nu^{2}}\right)$.
2. $\forall X \in \mathcal{X},\left|X_{i j}\right|=\alpha \nu$.
3. $\forall X, \widetilde{X} \in \mathcal{X}$ with $X \neq \widetilde{X},\|X-\widetilde{X}\|_{F}^{2}>\frac{1}{2} \alpha^{2} \nu^{2} d_{1} d_{2}$.

B Proof for Main Results

Recall the observation model: $M \in \mathbb{R}^{d_{1} \times d_{2}}$ is the true low-rank matrix and $\Omega \subset\left[d_{1}\right] \times\left[d_{2}\right]$ is the index set of entries we observed. $Y \in \mathbb{R}^{d_{1} \times d_{2}}$ is the binary matrix determined by M : for all $(i, j) \in \Omega$,

$$
Y_{i j}=\left\{\begin{array}{l}
+1, \text { with probability } f\left(M_{i j}\right) \\
-1, \text { with probability } 1-f\left(M_{i j}\right)
\end{array}\right.
$$

In the setting of symmetric noise, the observation $Y_{i j}^{\prime}=\delta_{i j} Y_{i j}$ where $\delta_{i j}$ are i.i.d. and

$$
\delta_{i j}=\left\{\begin{array}{l}
+1, \text { with probability } 1-\tau \\
-1, \text { with probability } \tau
\end{array}\right.
$$

where $\tau \in(0,1 / 2)$ itself can be a random variable. Therefore, conditioning on τ, we observe

$$
\operatorname{Pr}\left(Y_{i j}^{\prime}=1 \mid \tau\right)=(1-\tau) f\left(M_{i j}\right)+\tau\left(1-f\left(M_{i j}\right)\right) .
$$

Case 1. If τ is a discrete random variable, say

$$
\operatorname{Pr}\left(\tau=\tau_{k}\right)=p_{k}, 1 \leq k \leq s,
$$

then it is easy to see that

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{i j}^{\prime}=1\right) & =\sum_{k=1}^{s} \operatorname{Pr}\left(Y_{i j}^{\prime}=1, \tau=\tau_{k}\right) \\
& =\sum_{k=1}^{s} \operatorname{Pr}\left(Y_{i j}^{\prime}=1 \mid \tau=\tau_{k}\right) \cdot \operatorname{Pr}\left(\tau=\tau_{k}\right) \\
& =\sum_{k=1}^{s} p_{k}\left[\left(1-\tau_{k}\right) f\left(M_{i j}\right)+\tau_{k}\left(1-f\left(M_{i j}\right)\right)\right] .
\end{aligned}
$$

Denote

$$
g(x)=\sum_{k=1}^{s} p_{k}\left[\left(1-\tau_{k}\right) f(x)+\tau_{k}(1-f(x))\right]=(1-2 \mathbb{E}[\tau]) f(x)+\mathbb{E}[\tau] .
$$

We have

$$
Y_{i j}^{\prime}=\left\{\begin{array}{l}
+1, \text { with probability } g\left(M_{i j}\right) \\
-1, \text { with probability } 1-g\left(M_{i j}\right) .
\end{array}\right.
$$

Case 2. If τ is a continuous random variable with probability density function (pdf) $h_{\tau}(t)$, then we have

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{i j}^{\prime}=1\right) & =\int_{t} h_{Y, \tau}\left(Y_{i j}^{\prime}=1, t\right) d t \\
& =\int_{t} h_{Y \mid \tau}\left(Y_{i j}^{\prime}=1 \mid t\right) h_{\tau}(t) d t \\
& =\int_{t} h_{\tau}(t)\left[(1-t) f\left(M_{i j}\right)+t\left(1-f\left(M_{i j}\right)\right)\right] d t,
\end{aligned}
$$

where $h_{Y, \tau}(y, t)$ is the joint pdf of $Y_{i j}$ and τ, and $h_{Y \mid \tau}(y \mid t)$ is the conditional pdf. Thus, define

$$
g(x)=\int_{t} h_{\tau}(t)[(1-t) f(x)+t(1-f(x))] d t=(1-2 \mathbb{E}[\tau]) f(x)+\mathbb{E}[\tau] .
$$

We again have

$$
Y_{i j}^{\prime}=\left\{\begin{array}{l}
+1, \text { with probability } g\left(M_{i j}\right) \\
-1, \text { with probability } 1-g\left(M_{i j}\right)
\end{array}\right.
$$

Hence, the maximum likelihood estimator is given as follows:

$$
\widehat{M}=\underset{X}{\arg \max } L_{\Omega, Y^{\prime}}(X), \quad \text { s.t. }\|X\|_{*} \leq \alpha \sqrt{r d_{1} d_{2}},\|X\|_{\infty} \leq \gamma,
$$

where

$$
L_{\Omega, Y^{\prime}}(X):=\sum_{(i, j) \in \Omega}\left(\mathbf{1}_{\left\{Y_{i j}=1\right\}} \log g\left(X_{i j}\right)+\mathbf{1}_{\left\{Y_{i j}=-1\right\}} \log \left(1-g\left(X_{i j}\right)\right)\right) .
$$

For the sake of a principled analysis, we will treat $g(x)$ as a general function at this point. Associated with the function $g(x)$ are two quantities:

$$
\rho_{\gamma}^{+}:=\sup _{|x| \leq \gamma} \frac{\left|g^{\prime}(x)\right|}{g(x)(1-g(x))}, \quad \rho_{\gamma}^{-}:=\sup _{|x| \leq \gamma} \frac{g(x)(1-g(x))}{\left(g^{\prime}(x)\right)^{2}} .
$$

We will use several kinds of distances in the proof. The first one is Hellinger distance that is given by

$$
d_{H}^{2}(p, q):=(\sqrt{p}-\sqrt{q})^{2}+(\sqrt{1-p}+\sqrt{1-q})^{2}, \quad \forall 0 \leq p, q \leq 1
$$

Extending it to the matrix, we write

$$
d_{H}^{2}(P, Q):=\frac{1}{d_{1} d_{2}} \sum_{i, j} d_{H}^{2}\left(P_{i j}, Q_{i j}\right)
$$

where $P, Q \in \mathbb{R}^{d_{1} \times d_{2}}$ and the entries therein are between 0 and 1 .
For two probability distributions \mathcal{P} and \mathcal{Q} on a finite set A, the Kullback-Leibler (KL) divergence is defined as

$$
D(\mathcal{P} \| \mathcal{Q})=\sum_{x \in A} \mathcal{P}(x) \log \frac{\mathcal{P}(x)}{\mathcal{Q}(x)}
$$

With a slight abuse, we write for two scalars $p, q \in[0,1]$

$$
D(p \| q)=p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q}
$$

and for two matrices $P, Q \in[0,1]^{d_{1} \times d_{2}}$,

$$
D(P \| Q)=\frac{1}{d_{1} d_{2}} \sum_{i, j} D\left(P_{i j} \| Q_{i j}\right)
$$

Throughout the proof, we will work with a shifted MLE, i.e.

$$
\begin{align*}
\bar{L}_{\Omega, Y^{\prime}}(X):=L_{\Omega, Y^{\prime}}(X)-L_{\Omega, Y^{\prime}}(0) & =\sum_{(i, j) \in \Omega}\left(\mathbf{1}_{\left\{Y_{i j}=1\right\}} \log \frac{g\left(X_{i j}\right)}{g(0)}+\mathbf{1}_{\left\{Y_{i j}=-1\right\}} \log \frac{1-g\left(X_{i j}\right)}{1-g(0)}\right) \\
& =\sum_{i, j} \mathbf{1}_{\{(i, j) \in \Omega\}}\left(\mathbf{1}_{\left\{Y_{i j}=1\right\}} \log \frac{g\left(X_{i j}\right)}{g(0)}+\mathbf{1}_{\left\{Y_{i j}=-1\right\}} \log \frac{1-g\left(X_{i j}\right)}{1-g(0)}\right) \tag{12}
\end{align*}
$$

B. 1 Proof for Lemma 3

Proof. Using the Markov's inequality, we have for any $\theta>0$,

$$
\begin{align*}
\operatorname{Pr}\left(\sup _{X \in \mathcal{S}}\left|\bar{L}_{\Omega, Y^{\prime}}(X)-\mathbb{E} \bar{L}_{\Omega, Y^{\prime}}(X)\right|\right. & \left.\geq \mathrm{C}_{0} \alpha \rho_{\gamma}^{+} \sqrt{r} \sqrt{n\left(d_{1}+d_{2}\right)+d_{1} d_{2} \log \left(d_{1} d_{2}\right)}\right) \\
\leq & \frac{\mathbb{E}\left[\sup _{X \in \mathcal{S}}\left|\bar{L}_{\Omega, Y^{\prime}}(X)-\mathbb{E} \bar{L}_{\Omega, Y^{\prime}}(X)\right|^{\theta}\right]}{\left(\mathrm{C}_{0} \alpha \rho_{\gamma}^{+} \sqrt{r} \sqrt{n\left(d_{1}+d_{2}\right)+d_{1} d_{2} \log \left(d_{1} d_{2}\right)}\right)^{\theta}} . \tag{13}
\end{align*}
$$

We bound the numerator above. Recall that

$$
\bar{L}_{\Omega, Y^{\prime}}(X)=\sum_{i, j} \mathbf{1}_{\{(i, j) \in \Omega\}}\left(\mathbf{1}_{\left\{Y_{i j}^{\prime}=1\right\}} \log \frac{g\left(X_{i j}\right)}{g(0)}+\mathbf{1}_{\left\{Y_{i j}^{\prime}=-1\right\}} \log \frac{1-g\left(X_{i j}\right)}{1-g(0)}\right)
$$

Let the random variable

$$
\tilde{t}_{i j}=\mathbf{1}_{\{(i, j) \in \Omega\}}\left(\mathbf{1}_{\left\{Y_{i j}^{\prime}=1\right\}} \log \frac{g\left(X_{i j}\right)}{g(0)}+\mathbf{1}_{\left\{Y_{i j}^{\prime}=-1\right\}} \log \frac{1-g\left(X_{i j}\right)}{1-g(0)}\right),
$$

and let

$$
t_{i j}=\tilde{t}_{i j}-\mathbb{E} \tilde{t}_{i j}
$$

Then

$$
\bar{L}_{\Omega, Y^{\prime}}(X)-\mathbb{E} \bar{L}_{\Omega, Y^{\prime}}(X)=\sum_{i, j} t_{i j}
$$

Note that $\left\{t_{i j}\right\}$ are i.i.d. random variables with zero mean. The function $F(t)=\sup t^{\theta}$ is convex for $\theta \geq 1$, and $\mathbb{E} F\left(\left|t_{i j}\right|\right)$ is finite for all $(i, j) \in\left[d_{1}\right] \times\left[d_{2}\right]$. Hence, we can apply Lemma to obtain

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{X \in \mathcal{S}}\left|\bar{L}_{\Omega, Y^{\prime}}(X)-\mathbb{E} \bar{L}_{\Omega, Y^{\prime}}(X)\right|^{\theta}\right] \\
\leq & 2^{\theta} \mathbb{E}\left[\sup _{X \in \mathcal{S}}\left|\sum_{i, j} \xi_{i j} \mathbf{1}_{\{(i, j) \in \Omega\}}\left(\mathbf{1}_{\left\{Y_{i j}^{\prime}=1\right\}} \log \frac{g\left(X_{i j}\right)}{g(0)}+\mathbf{1}_{\left\{Y_{i j}^{\prime}=-1\right\}} \log \frac{1-g\left(X_{i j}\right)}{1-g(0)}\right)\right|^{\theta}\right],
\end{aligned}
$$

where $\left\{\xi_{i j}\right\}$ are i.i.d. Rademacher random variables. Now observe that due to the construction of ρ_{γ}^{+}, both $\frac{1}{\rho_{\gamma}^{+}} \log \frac{g(x)}{g(0)}$ and $\frac{1}{\rho_{\gamma}^{+}} \log \frac{1-g(x)}{1-g(0)}$ are contractions and vanish at $x=0$. Thereby, using Lemma 6 we have

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{X \in \mathcal{S}}\left|\bar{L}_{\Omega, Y^{\prime}}(X)-\mathbb{E} \bar{L}_{\Omega, Y^{\prime}}(X)\right|^{\theta}\right] \\
\leq & \left(4 \rho_{\gamma}^{+}\right)^{\theta} \mathbb{E}\left[\sup _{X \in \mathcal{S}}\left|\sum_{i, j} \xi_{i j} \mathbf{1}_{\{(i, j) \in \Omega\}}\left(\mathbf{1}_{\left\{Y_{i j}^{\prime}=1\right\}} X_{i j}-\mathbf{1}_{\left\{Y_{i j}^{\prime}=-1\right\}} X_{i j}\right)\right|^{\theta}\right] \\
= & \left(4 \rho_{\gamma}^{+}\right)^{\theta} \mathbb{E}\left[\sup _{X \in \mathcal{S}}\left|\sum_{i, j} \xi_{i j} \mathbf{1}_{\{(i, j) \in \Omega\}} Y_{i j}^{\prime} X_{i j}\right|^{\theta}\right] .
\end{aligned}
$$

With a simple algebra, we have

$$
\operatorname{Pr}\left(\xi_{i j} Y_{i j}^{\prime}=1\right)=\operatorname{Pr}\left(\xi_{i j}=1, Y_{i j}^{\prime}=1\right)+\operatorname{Pr}\left(\xi_{i j}=-1, Y_{i j}^{\prime}=-1\right)=\frac{1}{2}\left(\operatorname{Pr}\left(Y_{i j}^{\prime}=1\right)+\operatorname{Pr}\left(Y_{i j}^{\prime}=-1\right)\right)=\frac{1}{2}
$$

which implies that the distribution of $\xi_{i j} Y_{i j}^{\prime}$ is the same as that of $\xi_{i j}$ for all $(i, j) \in\left[d_{1}\right] \times\left[d_{2}\right]$. Thus, by denoting Δ_{Ω} the matrix such that its (i, j)-th element is 1 if $(i, j) \in \Omega$ and 0 otherwise, and $\Xi=\left(\xi_{i j}\right)$, it follows that

$$
\begin{align*}
\mathbb{E}\left[\sup _{X \in \mathcal{S}}\left|\bar{L}_{\Omega, Y^{\prime}}(X)-\mathbb{E} \bar{L}_{\Omega, Y^{\prime}}(X)\right|^{\theta}\right] & \leq\left(4 \rho_{\gamma}^{+}\right)^{\theta} \mathbb{E}\left[\sup _{X \in \mathcal{S}}\left|\sum_{i, j} \xi_{i j} \mathbf{1}_{\{(i, j) \in \Omega\}} X_{i j}\right|^{\theta}\right] \\
& =\left(4 \rho_{\gamma}^{+}\right)^{\theta} \mathbb{E}\left[\sup _{X \in \mathcal{S}}\left|\left\langle\Delta_{\Omega} \circ \Xi, X\right\rangle\right|^{\theta}\right] \\
& \leq\left(4 \rho_{\gamma}^{+}\right)^{\theta} \mathbb{E}\left[\sup _{X \in \mathcal{S}}\left\|\Delta_{\Omega} \circ \Xi\right\|^{\theta}\|X\|_{*}^{\theta}\right] \\
& \leq\left(\alpha \sqrt{r d_{1} d_{2}}\right)^{\theta} \mathbb{E}\left[\left\|\Delta_{\Omega} \circ \Xi\right\|^{\theta}\right] \tag{14}
\end{align*}
$$

Above, the last inequality follows from the nuclear norm constraint we imposed in the MLE estimator. Note that the (i, j)-th entry of the matrix $\Delta_{\Omega} \circ \Xi$ is given by $\mathbf{1}_{\{(i, j) \in \Omega\}} \xi_{i j}$, which are i.i.d. symmetric random variables. Thus, Lemma 4 implies that

$$
\begin{align*}
\mathbb{E}\left[\left\|\Delta_{\Omega} \circ \Xi\right\|^{\theta}\right] & \leq \mathrm{C}\left(\mathbb{E} \max _{1 \leq i \leq d_{1}}\left(\sum_{j=1}^{d_{2}}\left(\xi_{i j} \Delta_{i j}\right)^{2}\right)^{\theta / 2}+\mathbb{E} \max _{1 \leq j \leq d_{2}}\left(\sum_{i=1}^{d_{1}}\left(\xi_{i j} \Delta_{i j}\right)^{2}\right)^{\theta / 2}\right) \\
& =\mathrm{C}\left(\mathbb{E} \max _{1 \leq i \leq d_{1}}\left(\sum_{j=1}^{d_{2}} \Delta_{i j}\right)^{\theta / 2}+\mathbb{E} \max _{1 \leq j \leq d_{2}}\left(\sum_{i=1}^{d_{1}} \Delta_{i j}\right)^{\theta / 2}\right) \tag{15}
\end{align*}
$$

Fix i. By Bernstein's inequality, for all $t>0$,

$$
\operatorname{Pr}\left(\left|\sum_{j=1}^{d_{2}}\left(\Delta_{i j}-\frac{n}{d_{1} d_{2}}\right)\right|>t\right) \leq 2 \exp \left(\frac{-t^{2} / 2}{n / d_{1}+t / 3}\right) .
$$

When $t \geq \frac{6 n}{d_{1}}$, the above reduces to

$$
\operatorname{Pr}\left(\left|\sum_{j=1}^{d_{2}}\left(\Delta_{i j}-\frac{n}{d_{1} d_{2}}\right)\right|>t\right) \leq 2 \exp (-t)
$$

Suppose that $W_{1}, \ldots, W_{d_{1}}$ are i.i.d. exponential random variables with $\operatorname{pdf} \exp (-t)$. Then it follows that

$$
\operatorname{Pr}\left(\left|\sum_{j=1}^{d_{2}}\left(\Delta_{i j}-\frac{n}{d_{1} d_{2}}\right)\right|>t\right) \leq 2 \operatorname{Pr}\left(W_{i} \geq t\right)
$$

On the other hand, we have

$$
\begin{aligned}
\left(\mathbb{E} \max _{1 \leq i \leq d_{1}}\left(\sum_{j=1}^{d_{2}} \Delta_{i j}\right)^{\theta / 2}\right)^{1 / \theta} & \leq \sqrt{\frac{n}{d_{1}}}+\left(\mathbb{E} \max _{1 \leq i \leq d_{1}}\left|\sum_{j=1}^{d_{2}}\left(\Delta_{i j}-\frac{n}{d_{1} d_{2}}\right)\right|^{\theta / 2}\right)^{1 / \theta} \\
& \stackrel{\underline{\zeta_{1}}}{\underline{\frac{n}{d_{1}}}}+\left(\int_{0}^{+\infty} \operatorname{Pr}\left(\max _{1 \leq i \leq d_{1}}\left|\sum_{j=1}^{d_{2}}\left(\Delta_{i j}-\frac{n}{d_{1} d_{2}}\right)\right|^{\theta / 2} \geq t\right)^{1 / 2} d t\right)^{1 / \theta} \\
& \leq \sqrt{\frac{n}{d_{1}}}+\left(\left(\frac{6 n}{d_{1}}\right)^{\theta / 2}+\int_{\left(6 n / d_{1}\right)^{\theta / 2}}^{+\infty} \operatorname{Pr}\left(\max _{1 \leq i \leq d_{1}}\left|\sum_{j=1}^{d_{2}}\left(\Delta_{i j}-\frac{n}{d_{1} d_{2}}\right)\right|^{\theta / 2} \geq t\right)^{2} d t\right)^{1 / \theta} \\
& \leq \sqrt{\frac{n}{d_{1}}}+\left(\left(\frac{6 n}{d_{1}}\right)^{\theta / 2}+2 \int_{\left(6 n / d_{1}\right)^{\theta / 2}}^{+\infty} \operatorname{Pr}\left(\max _{1 \leq i \leq d_{1}} W_{i}^{\theta / 2} \geq t\right) d t\right)^{1 / \theta} \\
& \leq \sqrt{\frac{n}{d_{1}}}+\left(\left(\frac{6 n}{\zeta_{1}}\right)^{\theta / 2}+2 \mathbb{E} \max _{1 \leq i \leq d_{1}} W_{i}^{\theta / 2}\right)^{1 / \theta} \\
& \leq(1+\sqrt{6}) \sqrt{\frac{n}{d_{1}}}+2^{1 / \theta}\left(\mathbb{E} \max _{1 \leq i \leq d_{1}} W_{i}^{\theta / 2}\right)^{1 / \theta} .
\end{aligned}
$$

Here, ζ_{1} and ζ_{2} use the identity $\mathbb{E} x=\int_{0}^{+\infty} \operatorname{Pr}(x \geq t) d t$ for any positive random variable x. It remains to bound $\mathbb{E} \max _{1 \leq i \leq d_{1}} W_{i}^{\theta / 2}$. Using the fact that W_{i} is exponential, we have

$$
\mathbb{E} \max _{1 \leq i \leq d_{1}} W_{i}^{\theta / 2} \leq\left|\max _{1 \leq i \leq d_{1}} W_{i}-\log d_{1}\right|^{\theta / 2}+\log ^{\theta / 2} d_{1} \leq 2((\theta / 2)!)+\log ^{\theta / 2} d_{1} \leq 2(\theta / 2)^{\theta / 2}+\log ^{\theta / 2} d_{1}
$$

where we apply Stirling's approximation in the last inequality. Thus,

$$
2^{1 / \theta}\left(\mathbb{E} \max _{1 \leq i \leq d_{1}} W_{i}^{\theta / 2}\right)^{1 / \theta} \leq 2^{1 / \theta}\left(\sqrt{\log d_{1}}+2^{1 / \theta} \sqrt{\theta / 2}\right)
$$

Picking $\theta=2 \log \left(d_{1}+d_{2}\right)$ gives

$$
2^{1 / \theta}\left(\mathbb{E} \max _{1 \leq i \leq d_{1}} W_{i}^{\theta / 2}\right)^{1 / \theta} \leq(2+\sqrt{2}) \sqrt{\log \left(d_{1}+d_{2}\right)}
$$

Putting pieces together, we obtain

$$
\left(\mathbb{E} \max _{1 \leq i \leq d_{1}}\left(\sum_{j=1}^{d_{2}} \Delta_{i j}\right)^{\theta / 2}\right)^{1 / \theta} \leq(1+\sqrt{6}) \sqrt{\frac{n}{d_{1}}}+(2+\sqrt{2}) \sqrt{\log \left(d_{1}+d_{2}\right)}
$$

Likewise, we can show that

$$
\left(\mathbb{E} \max _{1 \leq j \leq d_{2}}\left(\sum_{i=1}^{d_{1}} \Delta_{i j}\right)^{\theta / 2}\right)^{1 / \theta} \leq(1+\sqrt{6}) \sqrt{\frac{n}{d_{2}}}+(2+\sqrt{2}) \sqrt{\log \left(d_{1}+d_{2}\right)}
$$

Note that \sqrt{x} is a concave function. Hence, Jensen's inequality implies that (15) can be bounded as follows:

$$
\begin{aligned}
\left(\mathbb{E}\left[\left\|\Delta_{\Omega} \circ \Xi\right\|^{\theta}\right]\right)^{1 / \theta} & \leq \mathrm{C}^{1 / \theta}\left((1+\sqrt{6}) \sqrt{\frac{2 n\left(d_{1}+d_{2}\right)}{d_{1} d_{2}}}+(2+\sqrt{2}) \sqrt{\log \left(d_{1}+d_{2}\right)}\right) \\
& \leq \mathrm{C}^{1 / \theta} 2(1+\sqrt{6}) \sqrt{\frac{n\left(d_{1}+d_{2}\right)+d_{1} d_{2} \log \left(d_{1}+d_{2}\right)}{d_{1} d_{2}}}
\end{aligned}
$$

Plugging this back to (14), we have

$$
\left(\mathbb{E}\left[\sup _{X \in \mathcal{S}}\left|\bar{L}_{\Omega, Y^{\prime}}(X)-\mathbb{E} \bar{L}_{\Omega, Y^{\prime}}(X)\right|^{\theta}\right]\right)^{1 / \theta} \leq \mathrm{C}^{1 / \theta} 8(1+\sqrt{6}) \alpha \rho_{\gamma}^{+} \sqrt{r} \sqrt{n\left(d_{1}+d_{2}\right)+d_{1} d_{2} \log \left(d_{1}+d_{2}\right)}
$$

Therefore, (13) is upper bounded by

$$
\mathrm{C}\left(\frac{8(1+\sqrt{6})}{\mathrm{C}_{0}}\right)^{2 \log \left(d_{1}+d_{2}\right)} \leq \frac{\mathrm{C}}{d_{1}+d_{2}}
$$

as soon as we choose $\mathrm{C}_{0} \geq 8(1+\sqrt{6}) \sqrt{e}$.

B. 2 Proof for Theorem 1

We need the following result in our proof.
Proposition 10. Assume same conditions as in Theorem 1 but with a slightly more general assumption that $\|M\|_{\infty} \leq \gamma$ in place of $\|M\|_{\infty} \leq \alpha$. Then, with probability at least $1-\mathrm{C}_{1} /\left(d_{1}+d_{2}\right)$, the follows holds:

$$
d_{H}^{2}(g(\widehat{M}), g(M)) \leq \mathrm{C}_{2} \rho_{\gamma}^{+} \alpha \sqrt{\frac{r\left(d_{1}+d_{2}\right)}{n}} \sqrt{1+\frac{\left(d_{1}+d_{2}\right) \log \left(d_{1} d_{2}\right)}{n}}
$$

where C_{1} and C_{2} are absolute constants.
Proof. For any matrix $X \in \mathbb{R}^{d_{1} \times d_{2}}$, we have

$$
\begin{align*}
\mathbb{E}\left[\bar{L}_{\Omega, Y^{\prime}}(X)-\bar{L}_{\Omega, Y^{\prime}}(M)\right] & =\mathbb{E}\left[L_{\Omega, Y^{\prime}}(X)-L_{\Omega, Y^{\prime}}(M)\right] \\
& =\mathbb{E}\left[\sum_{i, j} \mathbf{1}_{\{(i, j) \in \Omega\}}\left(\mathbf{1}_{\left\{Y_{i j}^{\prime}=1\right\}} \log \frac{g\left(X_{i j}\right)}{g\left(M_{i j}\right)}+\mathbf{1}_{\left\{Y_{i j}^{\prime}=-1\right\}} \log \frac{1-g\left(X_{i j}\right)}{1-g\left(M_{i j}\right)}\right)\right] \\
& =\mathbb{E}\left[\sum_{i, j} \frac{n}{d_{1} d_{2}}\left(g\left(M_{i j}\right) \log \frac{g\left(X_{i j}\right)}{g\left(M_{i j}\right)}+\left(1-g\left(M_{i j}\right)\right) \log \frac{1-g\left(X_{i j}\right)}{1-g\left(M_{i j}\right)}\right)\right] \\
& =-n D(g(M) \| g(X)) . \tag{16}
\end{align*}
$$

On the other hand, for the optimum \widehat{M}, it holds that

$$
\begin{aligned}
\bar{L}_{\Omega, Y^{\prime}}(\widehat{M})-\bar{L}_{\Omega, Y^{\prime}}(M)= & \mathbb{E}\left[\bar{L}_{\Omega, Y^{\prime}}(\widehat{M})-\bar{L}_{\Omega, Y^{\prime}}(M)\right]+\left(\bar{L}_{\Omega, Y^{\prime}}(\widehat{M})-\mathbb{E}\left[\bar{L}_{\Omega, Y^{\prime}}(\widehat{M})\right]\right) \\
& +\left(\mathbb{E}\left[\bar{L}_{\Omega, Y^{\prime}}(M)-\bar{L}_{\Omega, Y^{\prime}}(M)\right)\right. \\
\leq & \mathbb{E}\left[\bar{L}_{\Omega, Y^{\prime}}(X)-\bar{L}_{\Omega, Y^{\prime}}(M)\right]+2 \sup _{X \in \mathcal{S}}\left|\bar{L}_{\Omega, Y^{\prime}}(X)-\mathbb{E}\left[\bar{L}_{\Omega, Y^{\prime}}(X)\right]\right|
\end{aligned}
$$

where we recall that \mathcal{S} was defined in Lemma 3. Since \widehat{M} also maximizes $\bar{L}_{\Omega, Y^{\prime}}(X)$, we obtain

$$
-\mathbb{E}\left[\bar{L}_{\Omega, Y^{\prime}}(X)-\bar{L}_{\Omega, Y^{\prime}}(M)\right] \leq 2 \sup _{X \in \mathcal{S}}\left|\bar{L}_{\Omega, Y^{\prime}}(X)-\mathbb{E}\left[\bar{L}_{\Omega, Y^{\prime}}(X)\right]\right|
$$

This together with (16) and Lemma 3 imply that

$$
D(g(M) \| g(\widehat{M})) \leq 2 \mathrm{C}_{0} \alpha_{0} \rho_{\gamma}^{+} \sqrt{\frac{r\left(d_{1}+d_{2}\right)}{n}} \sqrt{1+\frac{\left(d_{1}+d_{2}\right) \log \left(d_{1} d_{2}\right)}{n}}
$$

holds with probability at least $1-\mathrm{C}_{1} /\left(d_{1}+d_{2}\right)$. Since the Hellinger distance is upper bounded by the KL divergence, we complete the proof.

Now we are in the position to prove Theorem 1. In fact, Theorem 1 follows immediately from Prop. 10 and Lemma 7

B. 3 Proof for Theorem 2

Proof. Without loss of generality, suppose that $d_{1} \leq d_{2}$. Let

$$
\epsilon^{2}=\min \left\{\frac{1}{1024}, \mathrm{C} \alpha \sqrt{\frac{\rho_{0.75 \alpha}^{-} r d_{2}}{n}}\right\}
$$

Pick

$$
\frac{4 \sqrt{2} \epsilon}{\alpha} \leq \nu \leq \frac{8 \epsilon}{\alpha}
$$

It is easy to see that

$$
\frac{r \alpha^{2}}{64 \epsilon^{2}} \leq \frac{r}{\nu^{2}} \leq \frac{r \alpha^{2}}{32 \epsilon^{2}}
$$

The length of this interval is $\frac{r \alpha^{2}}{64 \epsilon}$, which is larger than 1 since $\alpha \geq 1, r \geq 16$ and $\epsilon^{2} \leq 1 / 1024$. Hence, it is possible to pick a proper ν such that $\frac{r}{\nu^{2}}$ is an integer. Also, the assumption that $\epsilon^{2} \geq O\left(r \alpha^{2} / d_{1}\right)$ suggests $r / \nu^{2} \leq d_{1}$. Hence we have found an appropriate ν for Lemma 9 .
Let $\mathcal{X}_{\alpha / 2, \nu}^{\prime}$ be a set that satisfies all the properties in Lemma 9 with parameter $\alpha / 2$. Let

$$
\mathcal{X}=\left\{X^{\prime}+\alpha\left(1-\frac{\nu}{2}\right) U: X^{\prime} \in \mathcal{X}_{\alpha / 2, \nu}^{\prime}\right\}
$$

where all the entries of U equal one.
First, we verify that each component in \mathcal{X} satisfies (A2) and (A3). It is easy to see that for any $X \in \mathcal{X},\left|X_{i j}\right|$ either equals α or $(1-\nu) \alpha$, i.e., $\|X\|_{\infty} \leq \alpha$ since $\nu<1$. In addition,

$$
\left\|X^{\prime}+\alpha\left(1-\frac{\nu}{2}\right) U\right\|_{*} \leq\left\|X^{\prime}\right\|_{*}+\alpha\left(1-\frac{\nu}{2}\right)\|U\|_{*} \leq \frac{\alpha}{2} \sqrt{r d_{1} d_{2}}+\alpha\left(1-\frac{\nu}{2}\right)\|U\|_{F}
$$

Since $\nu \in(0,1)$ and $r \geq 16$, we have $2-\nu \leq \sqrt{r}$, which together with $\|U\|_{F}=\sqrt{d_{1} d_{2}}$ imply that $\|X\|_{*} \leq \alpha \sqrt{r d_{1} d_{2}}$ for all $X \in \mathcal{X}$.

We prove the theorem by showing that its converse is false. That is, suppose that there exists an algorithm such that for any $M \in \mathcal{X}$ (which satisfies (A2) and (A3), with probability at least $1 / 4$, its output \widehat{X} satisfies

$$
\begin{equation*}
\frac{1}{d_{1} d_{2}}\|\widehat{X}-M\|_{F}^{2}<\epsilon^{2} \tag{17}
\end{equation*}
$$

Let $X^{*} \in \mathcal{X}$ be the closest member to \widehat{X}. For any $\widetilde{X} \neq M \in \mathcal{X}$, it follows that

$$
\begin{equation*}
\|\tilde{X}-\widehat{X}\|_{F} \geq\|\tilde{X}-M\|_{F}-\|\widehat{X}-M\|_{F}>2 \epsilon \sqrt{d_{1} d_{2}}-\epsilon \sqrt{d_{1} d_{2}}=\epsilon \sqrt{d_{1} d_{2}} \tag{18}
\end{equation*}
$$

where the last inequality follows from (17) and the fact that for any $X, \widetilde{X} \in \mathcal{X}$,

$$
\|X-\widetilde{X}\|_{F}^{2} \geq \frac{\alpha^{2} \nu^{2} d_{1} d_{2}}{8} \geq 4 d_{1} d_{2} \epsilon^{2}
$$

The first inequality above uses the third property in Lemma 9 and the second inequality follows from our choice of ν.
On the other hand, since X^{*} is the closest one to \widehat{X}, we have

$$
\begin{equation*}
\left\|X^{*}-\widehat{X}\right\|_{F} \leq\|M-\widehat{X}\|_{F} \leq \epsilon \sqrt{d_{1} d_{2}} \tag{19}
\end{equation*}
$$

Combining (18) and (19), we obtain

$$
\left\|X^{*}-\widehat{X}\right\|_{F}<\|\widetilde{X}-\widehat{X}\|_{F}, \forall \tilde{X} \neq M
$$

which implies $X^{*}=M$. Since (17) holds with probability at least $1 / 4$,

$$
\begin{equation*}
\operatorname{Pr}\left(X^{*} \neq M\right) \leq \frac{3}{4} \tag{20}
\end{equation*}
$$

From a variant of Fano's inequality,

$$
\begin{equation*}
\operatorname{Pr}\left(X^{*} \neq M\right) \geq 1-\frac{1+d_{1} d_{2} \max _{X \neq \widetilde{X}} D\left(Y_{\Omega}^{\prime}\left|X \| Y_{\Omega}^{\prime}\right| \tilde{X}\right)}{\log |\mathcal{X}|} \tag{21}
\end{equation*}
$$

Denote

$$
D=d_{1} d_{2} D\left(Y_{\Omega}^{\prime}\left|X \| Y_{\Omega}^{\prime}\right| \tilde{X}\right)=\sum_{(i, j) \in \Omega} D\left(Y_{i j}^{\prime}\left|X_{i j} \| Y_{i j}^{\prime}\right| \widetilde{X}_{i j}\right)
$$

For each $(i, j) \in \Omega, D\left(Y_{i j}^{\prime}\left|X_{i j} \| Y_{i j}^{\prime}\right| \widetilde{X}_{i j}\right)$ is either $0, D\left(g(\alpha) \| g\left(\alpha^{\prime}\right)\right)$ or $D\left(g(\alpha) \| g\left(\alpha^{\prime}\right)\right)$, where $\alpha^{\prime}=(1-\nu) \alpha$ and we recall that $X_{i j}, \widetilde{X}_{i j}$ can only take value from $\left\{\alpha, \alpha^{\prime}\right\}$. It thus follows from Lemma 8 that

$$
D\left(Y_{i j}^{\prime}\left|X_{i j} \| Y_{i j}^{\prime}\right| \widetilde{X}_{i j}\right) \leq \frac{\left(g(\alpha)-g\left(\alpha^{\prime}\right)\right)^{2}}{g\left(\alpha^{\prime}\right)\left(1-g\left(\alpha^{\prime}\right)\right)}
$$

since $\alpha^{\prime}<\alpha$. Now using the mean value theorem, we obtain

$$
D \leq n\left(g^{\prime}(\theta)\right)^{2} \frac{\left(\alpha-\alpha^{\prime}\right)^{2}}{g\left(\alpha^{\prime}\right)\left(1-g\left(\alpha^{\prime}\right)\right)}, \text { for some } \theta \in\left[\alpha^{\prime}, \alpha\right]
$$

As we assumed that $\nabla g(x)$ is decreasing in $(0,+\infty)$, we get

$$
D \leq \frac{n(\nu \alpha)^{2}}{\rho_{\alpha^{\prime}}^{-}} \leq \frac{64 n \epsilon^{2}}{\rho_{\alpha^{\prime}}^{-}}
$$

Due to the construction, the cardinality of \mathcal{X} equals to that of $\mathcal{X}_{\alpha / 2, \nu}^{\prime}$. Hence, combining (20) and (21), we can show

$$
\begin{equation*}
\frac{1}{4} \leq \frac{D+1}{\log |\mathcal{X}|} \leq \frac{16 \nu^{2}}{r d_{2}}\left(\frac{64 n \epsilon^{2}}{\rho_{\alpha^{\prime}}^{-}}+1\right) \leq \frac{1024 \epsilon^{2}}{\alpha^{2} r d_{2}}\left(\frac{64 n \epsilon^{2}}{\rho_{\alpha^{\prime}}^{-}}+1\right) \tag{22}
\end{equation*}
$$

Note that when $64 n \epsilon^{2} \leq \rho_{\alpha^{\prime}}^{-}$, we have

$$
\frac{1}{4} \leq 1024 \frac{2048 \epsilon^{2}}{\alpha^{2} r d_{2}}
$$

implying $\alpha^{2} r d_{2} \leq 8$ due to the definition of ϵ. This contradicts our assumption that $\alpha^{2} r d_{2} \geq \mathrm{C}_{0}$ if we specify $\mathrm{C}_{0}>8$.
When $64 n \epsilon^{2}>\rho_{\alpha^{\prime}}^{-}$, then (22) suggests

$$
\frac{1}{4} \leq \frac{1024 \times 128 \times n \epsilon^{4}}{\rho_{\alpha^{\prime}}^{-} \alpha^{2} r d_{2}}
$$

which gives

$$
\epsilon^{2}>\frac{\alpha \sqrt{\rho_{\alpha^{\prime}}^{-}}}{1024} \sqrt{\frac{r d_{2}}{n}}
$$

Picking $\mathrm{C}_{2}=1 / 1024$ in the definition of ϵ and noting $\rho_{\alpha^{\prime}}^{-} \geq \rho_{0.75 \alpha}^{-}$yields a contradiction.
Therefore, (17) fails to hold with probability at least $3 / 4$.

