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Abstract

For constrained nonconvex minimization prob-
lems, we propose a meta stochastic projection-
free optimization algorithm, named Normal-
ized Frank Wolfe Updating, that can take any
Gradient Estimator (GE) as input. For this
algorithm, we prove its convergence rate, re-
gardless of the choice of GE. Using a sophisti-
cated GE, this algorithm can significantly im-
prove the Stochastic First order Oracle (SFO)
complexity. Further, a new second order GE
strategy is proposed to incorporate curvature
information, which enjoys theoretical advan-
tage over the first order ones. Besides, this
paper also provides a lower bound of Linear-
optimization Oracle (LO) queried to achieve
an approximate stationary point. Simulation
studies validate our analysis under various
parameter settings.

1 Introduction

We consider the constrained minimization problem

min
x∈C

f(x) =
1

n

n∑
i=1

fi(x), (1)

where each fi : C 7→ R is an L-smooth but poten-
tially nonconvex component function and C ⊆ Rd is
a compact convex feasible set. The goal is to find an
ε-approximate first-order stationary point x such that

VC(x; f) = max
u∈C
〈∇f(x),x− u〉 ≤ εD, (2)

where D is the diameter of C.
Many important modern applications can be cast into
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the form of (1), for example robust lower rank matrix
recovery (Qu et al., 2017), non-monotone submodular
maximization (Bian et al., 2017), multiple sequence
alignment (Alayrac et al., 2016), and multi-object track-
ing (Chari et al., 2015). These applications of interest
have two important characteristics:
(i) The number of component functions n is large and
hence stochastic methods are preferable to determinis-
tic ones due to their low per-iteration cost. Note that
the number of component function gradient evaluations
∇fi(·) is used as a cost measurement and is referred as
the Stochastic First-order Oracle (SFO) complexity.
(ii) Solving linear optimization over the feasible set C

LC(c) := argmin
x∈C

c>x (3)

is more efficient than projecting on C. Therefore the
linear optimization based methods (also known as
projection-free) have their natural advantage over the
projection-based ones. Further, the amount of linear op-
timizations solved during the optimization procedure is
used as another efficiency measurement and is referred
as the Linear-optimization Oracle (LO) complexity.

The Frank-Wolfe (FW) algorithm and its stochastic
variants are perhaps the most noteworthy methods
that exploit the above problem structures (Frank and
Wolfe, 1956; Clarkson, 2010; Jaggi, 2013; Hazan and
Luo, 2016). These methods typically alternate between
the following two steps in each iteration:
(i) computing vt = LC(g

t) by querying the linear op-
timization oracle, where gt is some estimation of the
full gradient ∇f(xt),
(ii) updating the iterate xt+1 as the convex combina-
tion of xt and vt.
While originally designed for convex programming, a
few attempts are made to generalize FW to the case
with no convexity assumption. Lacoste-Julien (2016)
shows that, by appropriately choosing parameters, the
vanilla FW method solves nonconvex problem (1) at
the cost of O(n/ε2) SFO queries and O(1/ε2) LO eval-
uations. Lafond et al. (2015) provide an online version
FW in a full informational setting and obtain the simi-
lar SFO and LO complexity to achieve (2). Recently,
Reddi et al. (2016) propose a variance reduced stochas-
tic variant of FW, namely Stochastic Variance Reduced
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Frank Wolfe (SVRFW), to reduce the SFO complexity
to O(n2/3/ε2) at the same LO cost.
Despite the progress, the projection-free optimization
for nonconvex problems remains largely unexplored:
(1) In the unconstrained setting, Fang et al. (2018) show
that O(n1/2/ε2) SFO queries are sufficient to obtain a
point such that ‖∇f(xt)‖ ≤ ε. Can the same complex-
ity be achieved for the projection-free optimization?
(2) While the current methods only use the gradient
information, how can we incorporate second order in-
formation into the Frank-Wolfe method?
(3) Existing methods all have the consensus O(1/ε2)
LO cost. Is it improvable or is it optimal already?

To answer these questions, we first design a meta-
algorithm that takes the Gradient Estimation (GE)
strategy as input and accepts existing methods are its
instantiations. For this meta-algorithm, a unified con-
vergence rate is obtained regardless of the GE choice.
This constitutes the first contribution of this paper.

[C1] We formalize the aforementioned two-step update
into a meta-algorithm named Normalized Frank Wolfe
Update (NFWU), which takes the gradient estimator
as an input. We show O(1/ε2) iterations of NFWU are
sufficient to find an ε-approximate first-order stationary
point if the gradient estimator meets some accuracy
criterion. Plugging in a more sophisticated estimator
named Stochastic Path-Integrated Differential Estima-
toR (SPIDER)1 (Fang et al., 2018), we derive an FW
variant that achieves the O(n1/2/ε2) SFO cost.

Fang et al. (2018) show that the O(n1/2/ε2) SFO com-
plexity is already optimal among the first-order meth-
ods. However, when second order information is avail-
able, we can further reduce the SFO complexity by
designing a curvature aided gradient estimator, whose
development is the second contribution of this paper:

[C2] We construct curvature aided gradient estima-
tors that further improve the overall SFO complexity
to O(max{n0.75/ε1.5, 1/ε2}). For the robust low rank
matrix recovery problem, we analyze the computation
complexity of the newly proposed estimators and show
that the only additional cost is a matrix-vector product.

While the former discussions are primarily about im-
proving the efficiency of projection-free algorithms, this
paper also analyzes the hardness of Problem (1) from
the perspective of the inevitable LO complexity, which
leads to our third contribution:

[C3] We show that the O(1/ε2) is the LO query lower
bound to achieve (2) using only first-order oracle.

A simulation study on Robust Low Rank Matrix Re-
covery in conducted to validate our analysis and to

1We note that such estimator is also known as SARAH
and appears in Nguyen et al. (2017).

show the advantage of curvature-aided estimators. The
results are promising.

2 Related Work and Preliminaries

2.1 Projection-free Strategies

For various important feasible sets, linear programming
LC(·) is significantly more efficient than the projection
operation PC(·), as the latter is in essence a convex
quadratic program over the domain. For example:

• When C = {X ∈ RM×N : ‖X‖∗ ≤ B}, the nu-
clear norm ball, the projection operation PC(Y)
computes the expensive singular value decompo-
sition (SVD) of the M ×N sized matrix Y. On
the other hand, the linear optimization LC(Y) :=
argminX∈C tr{Y>X} amounts to finding only the
top singular vectors, which is much cheaper (Can-
dès and Recht, 2009; Freund et al., 2017).

• When C is a structured polytope arising in combi-
natorial optimization, e.g. the unit flow polytope
of a graph, the perfect matching polytope of a
bipartite graph, and the base polyhedron of a ma-
troid, highly efficient combinatorial algorithms ex-
ist for linear optimization (Schrijver, 2003). How-
ever, the projection operation would require gen-
eral interior point solvers that neglect the specific
structure of the feasible set and is hence inefficient.

We now give a concrete constrained nonconvex mini-
mization problem with C being the nuclear norm ball.

Example (Low Rank Matrix Recovery (LRMR)).
LRMR plays a key role in solving many important
learning tasks, such as collaborative filtering (Koren
et al., 2009), dimensionality reduction (Weinberger and
Saul, 2006), and multi-class learning (Xu et al., 2013).
The loss of LRMR writes

min
X∈RM×N

∑
(i,j)∈Ω

ψ(Xij −Yij)

s.t. ‖X‖∗ ≤ B,
(4)

where ψ : R→ R is the potentially nonconvex empirical
loss function, Xij is the i, j th element of matrix X,
and Ω is the set of observed indices in target matrix
Y ∈ RM×N . Here we focus on a robust version of
LRMR with the loss ψ being:

ψ(z;σ) = 1− exp(−z2/2σ), (5)

where σ is a tunable parameter. Loss (5) is less sen-
sitive to the discrepancy Xij − Yij compared to the
common least square loss ψ(z) = z2/2, and hence is
robust to adversarial outliers (Qu et al., 2017).
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2.2 Non-convex Projection-Free Methods

Here we briefly review the nonconvex projection-free
methods. As far as we know, there are two lines of re-
search: one that follows the Frank-Wolfe (FW) method,
and the other that is based on the Conditional Gradient
Sliding (CGS) methods Lan and Zhou (2016).

While mainly developed for convex programming, there
are only two stochastic nonconvex FW variants, namely
SFW and SVRFW (Reddi et al., 2016). They share the
two-step update structure discussed in Section 1 and dif-
fer only in their construction of the gradient estimator
gt: SFW uses the vanilla mini-batch stochastic gradi-
ent to approximate the full gradient; SVRFW utilizes
the variance reduced gradient estimator SVRG pro-
posed in (Johnson and Zhang, 2013). For a uniformed
exposition, we will describe the detailed estimator con-
struction in Section 3.1. In terms of the oracle complex-
ities, O(1/ε4) and O(n2/3/ε2) SFO queries are required
by SFW and SVRFW to achieve the ε-approximate
first-order stationarity respectively.

CGS type methods converge to a stationary point in a
different sense from (2) and hence are not the focus of
this paper. Specifically, they terminate the procedure
when change between two consecutive iterations are
small, E‖xt+1 − xt‖2 = O(ε2). Additionally, in their
analysis, higher LO complexity (O(1/ε4) in general) is
demanded to reach such goal, (Qu et al., 2017).

Assumptions and Notations

We now list the assumptions used in this paper.
(Finite function value) The objective function is
bounded from below in C: for all x ∈ C,

f(x)−min
y∈C

f(y) ≤ ∆, (6)

with ∆ being some non-negative constant.
(First-order smoothness) We assume fi(·) has L-
Lipschitz continuous gradient in expectation:

Ei‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖. (7)

(Second-order smoothness) To analyze the curva-
ture aided estimator, we assume the Hessian of each
component function to be L2-Lipschitz in expectation:

Ei‖∇2fi(x)−∇f2
i (y)‖ ≤ L2‖x− y‖. (8)

We now define the notations of expectations. E0:t

denotes the expectation w.r.t. all the randomness until
iteration t. Et denotes the expectation w.r.t. only the
randomness in iteration t. E[i] denotes the expectation
w.r.t. the randomness in the output of Algorithm 1.

Algorithm 1 Normalized Frank-Wolfe Update
Input: initialization x0, domain size D, step size ηt,

max iteration T , gradient estimator GE;
1: for t = 0 to T − 1 do
2: compute gradient estimator gt using GE;
3: compute vt = LC(g

t) using LO
4:

xt+1 = xt +
ηt

D
(vt − xt)

5: end for
Output: xt0 with t0 uniformly sampled from [T ];

3 Normalized Frank-Wolfe Update

We describe our meta-algorithm, namely the Normal-
ized Frank Wolfe Update (NFWU), in Algorithm 1.
NFWU accepts the gradient strategy as input and
shares the two-step update structure: in line 3, it com-
putes vt by querying the LO and in line 4, it updates
the variable xt+1 by a convex combination. A slight but
important difference from the standard Frank-Wolfe
mthod is that NFWU explicitly normalizes the up-
date vt − xt to ensure that the distance xt travels
per-iteration is precisely controlled by the step-size
parameter ηt. Such normalization turns out to be
critical to the convergence analysis and the amortized
per-iteration SFO cost of efficient variance reduced es-
timators. The following theorem depicts the number
of iterations NFWU takes to obtain an ε-approximate
first-order stationary point, under the premise that gt
is sufficiently accurate.

Theorem 3.1 (Convergence in Expectation). Recall
the definition of the expectations E0:t, Et, and E[i]. In
Algorithm 1, by setting η = ε/L and assuming that

E0:t[‖∇f(xt)− gt‖2] ≤ ε2/4, (9)

we have the convergence in expectation

E[t0][E0:t0−1[VC(x
t0 ; f)]] ≤ 5ε, (10)

where t0 is uniformly sampled from [T ] = {1, . . . , T}
with T = L(f(x1)− f(x∗))/ε2.

Theorem 3.1 enables us to analyze the overall SFO
complexity of any instantiation of NFWU in two steps:
(1) calculating the per-iteration amortized SFO cost
to compute a qualified gradient estimator gt and (2)
multiplying such amortized cost with O(1/ε2). We
leave the task of analyzing the amortized SFO cost
for specific gt constructions to the following sections.
Additionally, under Theorem 3.1, O(1/ε2) LO accesses
are required to achieve (2). This matches existing
results in DFW, SFW, and SVRFW, and is shown to
be optimal among first-order methods in Section 5.
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Proof of Theorem 3.1. From the smoothness of f

f(xt+1) ≤ f(xt) + 〈∇f(xt),xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= f(xt) + 〈gt,xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

+ 〈∇f(xt)− gt,xt+1 − xt〉

= f(xt)− η

D
〈gt,xt − vt〉+

Lη2

2D2
‖ut − xt‖2

+
η

D
〈∇f(xt)− gt,vt − xt〉

≤ f(xt)− η

D
〈gt,xt − vt〉+

Lη2

2D2
‖ut − xt‖2

+ 2η‖∇f(xt)− gt‖.

Denoting v+ = argmaxv∈C〈∇f(xt),xt − v〉, we have

VC(x
t; f) = 〈∇f(xt)− gt,xt − v+〉+ 〈gt,xt − v+〉

≤ ‖∇f(xt)− gt‖‖xt − v+‖+ 〈gt,xt − vt〉.

These two bound together gives

η

D
VC(x

t; f) ≤ f(xt)−f(xt+1)+4η‖∇f(xt)−gt‖+2Lη2.

From the choice of step-size η = ε/L and accuracy
requirement on the gradient estimator E0:t[‖∇f(xt)−
gt‖2] ≤ ε2/4, we have for t ≥ 1

ε

L
E0:t−1[VC(x

t; f)]

≤ E0:t−1[f(xt)]− E0:t[f(xt+1)] + 2Lη2

+ 4ηE0:t[‖∇f(xt)− gt‖]
≤ E0:t−1[f(xt)]− E0:t[f(xt+1)] + 4ε2/L.

Sum the above inequalities from t = 1 to T to obtain

T∑
t=1

ε

L
E0:t−1[VC(x

t; f)] ≤ f(x1)− f(x∗) + T · 4ε2

L
.

Hence, by sampling t0 from [T ] uniformly, we have

E[t0][E1:t0−1[VC(x
t; f)]] ≤ L(f(x1)− f(x∗))

Tε
+ 4ε,

and thus when T = L(f(x1)− f(x∗))/ε2, we have
E[t0][E1:t0−1[VC(x

t; f)]] ≤ 5ε.

Remark 3.1 (Convergence with High Probabil-
ity). We derive the iteration complexity to obtain
a high-probability convergence result. Denote X =
VC(x

t0 ; f)/10, where xt0 is the output of NFWU. We
have X ≥ 0 and E[X] ≤ ε/2 under the setting of Theo-
rem 3.1. Using the Markov’s Inequality, we obtain

Pr[X ≥ 2E[X]] ≤ 0.5.

GE 1 SG(|St|)
1: sample |St| i.i.d. component functions uniformly;
2: gt = 1

|St|
∑
i∈St ∇fi(xt);

GE 2 SVRG(p, |St|)
1: if mod(t, p) = 0

x̃ = xt, g̃ = ∇f(x̃);
2: sample |St| i.i.d. component functions uniformly;
3: gt = 1

|St|
∑
i∈St [∇fi(xt)−∇fi(x̃)] + g̃;

Let {Xi}ki=1 be a set of k i.i.d. samples of X. We
have Pr[miniXi ≥ 2E[X]] ≤ 0.5k. Thus, by setting
k = O(log(1/δ)), we derive

Pr[min
i
Xi ≤ 2E[X] ≤ ε] ≥ 1− δ,

where δ is the failure probability. This means at least
one of Xi satisfies (2).
Therefore, to find a point xδ such that with high prob-
ability 1− δ, VC(xδ; f) ≤ ε, we take O(log(1/δ)) inde-
pendent NFWU trials, each of which consist O(1/ε2)
iterations, and pick the output with minimum VC value
among all these trials. The overall iterations will be
O(log(1/δ)/ε2) at the additional cost O(n log(1/δ)).

3.1 SFW and SVRFW

SFW and SVRFW can be regarded as instantiations of
NFWU that use the vanilla Stochastic Gradient (SG)
and Stochastic Variance Reduced Gradient (SVRG) as
gradient estimator respectively. We recover their SFO
complexities using Theorem 3.1.

SFW = NFWU+SG:
With St being an index set uniformly drawn from [n],
the simplest mini-batch stochastic gradient writes

gt =
1

|St|
∑
i∈St

∇fi(xt). (11)

Using the smoothness assumption (7) and the bounded-
ness of domain C, we have Ei‖∇fi(x)‖2 ≤ L2D2 def

= G2

for all x ∈ Rd, and, if we have |St| = G2/ε2, we obtain

EtS‖gt −∇f(xt)‖2 =
1

|St|
Ei‖∇fi(xt)−∇f(xt)‖2

≤ 1

|St|
Ei‖∇fi(xt)‖2 ≤

G2

|St|
= ε2,

We conclude that the overall SFO complexity using the
SG approximation is O(1/ε4).

SVRFW = NFWU+SVRG:
Following the strategy in (Johnson and Zhang, 2013),
SG approximation can be improved by the variance
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GE 3 SPIDERG(p, |St|)
1: if mod(t, p) = 0

gt = ∇f(xt);
2: else

sample |St| i.i.d. component functions uniformly;
gt = 1

|St|
∑
i∈St

[
∇fi(xt)−∇fi(xt−1)

]
+ gt−1;

reduction technique. The SVRG strategy maintains a
reference vector x̃ and a fixed reference gradient g̃ in
an epoch-wise manner. Between each update to x̃ and
g̃, p iterations are conducted. The details are given in
Algorithm 2. Under the assumption 7, we bound

E0:t[‖gt −∇f(xt)‖2]

= E0:t−1[ESt [‖gt −∇f(xt)‖2|xt]]

= E0:t−1

[
1

|St|
Ei[‖∇fi(xt)−∇fi(x̃s)‖2|xt]

]
≤ L2

|St|
E0:t−1[‖xt − x̃s‖2] ≤ p2ε2

|St|
,

where the last inequality is from the choice of η = ε/L in
Theorem 3.1. By setting |St| = n2/3 and p = n1/3, we
have E0:t[‖gt−∇f(xt)‖2] ≤ ε2 and the SFO complexity
in the entire epoch is n + |St| × p = 2n. Hence, we
conclude the amortized per-iteration cost of SVRG is
2n/p = 2n2/3, and the overall SFO complexity using
the SVRG approximation in NFWU is O(n2/3/ε2).
Remark 3.2. We note a method named SAGAFW
is proposed in Reddi et al. (2016) and is claimed to
achieve the O(n1/3/ε2) SFO complexity. We find some
errors in their proof and exclude it from comparison.
See a detailed discussion in the Appendix 7.2.

3.2 Acceleration with SPIDERG

We now integrate the Stochastic Path-Integrated Differ-
ential EstimatoR Gradient (SPIDERG) into NFWU to
accelerate the nonconvex projection-free optimization.
SPIDERG is originally designed for unconstrained non-
convex problem in (Fang et al., 2018).
In a similar epoch-wise manner, SPIDERG utilizes gt−1

as a dynamic reference gradient rather than the fixed
reference gradient g̃ as SVRG. See the details in Algo-
rithm 3. The variance of SPIDERG can be bounded
by the following recursion, for mod(t, p) 6= 0:

E0:t[‖gt −∇f(xt)‖2]

= E0:t−1[ESt [‖gt −∇f(xt)‖2|xt]]

= E0:t−1

[
1

|St|
Ei[‖∇fi(xt)−∇fi(xt−1)‖2|xt]

]
+ E0:t−1[‖gt−1 −∇f(xt−1)‖2]

≤ L2

|St|
· ε

2

L2
+ E0:t−1[‖gt−1 −∇f(xt−1)‖2].

GE 4 CASVRG(p, |St|)
1: if mod(t, p) = 0

x̃ = xt, g̃ = ∇f(x̃), Ũ = ∇2f(x̃);
2: sample |St| i.i.d. component functions uniformly;
3: ct = [Ũ− 1

|St|
∑
i∈St ∇2fi(x̃)](xt − x̃);

4: gt = 1
|St|

∑
i∈St [∇fi(xt)−∇fi(x̃))] + g̃ + ct;

Since we have gt̄ = ∇f(xt̄) for every t̄ such that
mod(t̄, p) = 0, repeating the above recursion mod(t, p)
times gives the bound on E0:t[‖gt −∇f(xt)‖2] as

E0:t[‖gt −∇f(xt)‖2] ≤ pε2

|St|
,

where the inequality follows since mod(t, p) ≤ p.
By taking |St| =

√
n and p =

√
n, we have E0:t[‖gt −

∇f(xt)‖2] ≤ ε2. In the meantime, the SFO complexity
in each epoch is still 2n, and hence the amortized per-
iteration cost is 2n/p = 2

√
n. We conclude that the

overall SFO complexity using the SPIDERG approxi-
mation in NFWU is O(n1/2/ε2).

4 New Curvature Aided Estimators

The availability to high order gradient, e.g. the Hes-
sian, allows the algorithms to exploit extra curvature
information, which is shown to accelerate the conver-
gence for projection based method, e.g. (Nesterov and
Polyak, 2006). In this section, we show that variance
reduced gradient estimators like SVRG and SPIDERG
also benefit from such high order information and hence
the SFO complexity can be further reduced. The fol-
lowing analyses require the second-order smoothness
assumption (8). Additionally, we define the Stochastic
Second-order Oracle (SSO) complexity as the number
of component Hessian evaluations.

Curvature Aided SVRG (CASVRG)
The intuition behind boosting the estimation accuracy
of SVRG with curvature is the Mean Value Theorem

∇fi(xt)−∇fi(x̃) = ∇2fi(x̄
t),

with x̄t = αt · xt + (1−αt) · x̃ for some αt ∈ [0, 1], and
we have under the Hessian smoothness assumption

‖∇fi(xt)−∇fi(x̃)−∇2fi(x̃)(xt− x̃)‖ = O(‖xt− x̃‖2).

From the previous discussion, we see that the distance
‖xt − x̃‖2 is well-controlled by the normalization in
NFWU and the choice of step-size in Theorem 3.1.
Therefore, the bound on the variance can be improved.
Specifically, CASVRG adds a correction term

ct = − 1

|St|
∑
i∈St

∇2fi(x̃)(xt − x̃) +∇2f(x̃)(xt − x̃)
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Table 1: Per-iteration oracle complexities. The overall complexity can be obtained by multiplying 1/ε2. We
emphasize that, while CASVRG appears in (Gower et al., 2018), they only obtain local convergence in convex
unconstrained setting. Instead, we prove the global convergence in nonconvex constrained case.
Gradient Estimator SFO Component Hessian LO From

SG O(ε−2) - 1 (Reddi et al., 2016)
SVRG O(n2/3) - 1 (Reddi et al., 2016)

SPIDERG O(n1/2) - 1 (Fang et al., 2018) (unconstrained)
CASVRG O(max{n0.8ε0.4, 1}) O(max{n0.8ε0.4, 1}) 1 (Gower et al., 2018) (convex)

CASPIDERG O(max{n0.75ε0.5, 1}) O(max{n0.75ε0.5, 1}) 1 this paper

to the original SVRG estimator, as detailed in Algo-
rithm 4. Assuming Lipschitz continuity of the Hessian
of fi, we bound the variance of gt conditioned on xt

by (the condition is omitted for notation simplicity)

ESt [‖gt −∇f(xt)‖2]

≤ 1

|St|
Ei[‖∇fi(xt)−∇fi(x̃s)−∇2fi(x̃

s)(xt − x̃s)‖2]

=
1

|St|
Ei[‖∇2fi(x̄

t)(xt − x̃s)−∇2fi(x̃
s)(xt − x̃s)‖2]

=
L2

2

|St|
‖x̄t − x̃s‖2 · ‖xt − x̃s‖2 ≤ L2

2

|St|
· p

4ε4

L2
,

where we use ‖x̄t − x̃s‖2 ≤ p2ε2 in the last inequality.
To achieve the best possible amortized SFO cost, we
solve the following problem

min
|St|∈Z+, p∈Z+

|St|+ n

p

s.t. |St| ≥ L2
2/L

2 · p4ε2.

Consequently, we set p = L0.4L−0.4
2 n0.2ε−0.4 and

|St| = L0.4
2 L−0.4n0.8ε0.4 for ε ≥ n−2L/L2. In this way,

we have p × |St| = n and E[‖gt − ∇f(xt)‖2] ≤ ε2

in the meantime, and the amortized SFO cost is
2n/p = 2L0.4

2 L−0.4n0.8ε0.4.
In the other case when ε ≤ L/(L2n

2), we set |St| = 1
since L0.4

2 L−0.4n0.8ε0.4 ≤ 1 and set p = L0.5L0.5
2 ε−0.5

such that the requirement (9) is met. Therefore
p × |St| ≥ n and hence the amortized SFO cost is
no more than 2|St| = 2.
In conclusion, the overall SFO complexity of
NFWU using the CASVRG approximation is
O(max{n0.8/ε1.6, 1/ε2}). Such complexity improves
over the O(

√
n/ε2) result from SPIDERG when ε =

O(n−0.75). Surprisingly, it also indicates that when the
target accuracy is high (ε is small) a single component
gradient with Hessian correction is sufficient to approx-
imate the full gradient (|St| = 1).
However, such reduction to SFO comes at the cost of
O(max{n0.8/ε1.6, 1/ε2}) SSO which potentially does
more harm than good to the optimization procedure.
Interestingly, in the robust low rank matrix recovery,
the computational cost to evaluate SSO and SFO are
the same as discussed at the end of this section.

Remark 4.1. We note that such curvature aiding strat-
egy appears in (Gower et al., 2018). However, their
work focuses on the convex unconstrained setting and
only has local convergence. In contrast, our method
converge globally for general nonconvex problems.

Curvature Aided SPIDERG (CASPIDERG)
We now accelerate SPIDERG with the aforementioned
curvature aiding technology. A slightly different cor-
rection term is used:

ct = [∇2f(x̃)− 1

|St|
∑
i∈St

∇2fi(x̃)](xt − xt−1). (12)

The detailed estimator is given in Algorithm 5.

Assuming the Lipschitz continuity of the Hessian of fi,
we bound the variance of gt conditioned on xt by (the
condition is omitted for notation simplicity)

ESt [‖gt −∇f(xt)‖2|xt]

=
1

|St|
Ei[‖∇fi(xt)−∇fi(xt−1)−∇2fi(x̃

s)(xt − xt−1)‖2

+ ‖gt−1 −∇f(xt−1)‖2

=
1

|St|
Ei[‖∇2fi(x̄

t)(xt − xt−1)−∇2fi(x̃
s)(xt − xt−1)‖2]

+ ‖gt−1 −∇f(xt−1)‖2

=
L2

2

|St|
‖x̄t − x̃s‖2 · ‖xt − xt−1‖2 + ‖gt−1 −∇f(xt−1)‖2

≤ L2
2

|St|
· p

2ε4

L2
+ ‖gt−1 −∇f(xt−1)‖2,

where x̄t = αtxt + (1 − αt)xt−1 for some αt ∈ [0, 1]
is obtained from the Mean Value Theorem. Since we
have gt̄ = ∇f(xt̄) for every t̄ such that mod(t̄, p) = 0,
repeating the above recursion mod(t, p) times gives the
bound on E0:t[‖gt −∇f(xt)‖2] as

E0:t[‖gt −∇f(xt)‖2] ≤ L2
2

|St|
· p

3ε4

L2
≤ ε2. (13)

Having such constraint on the choice of p and |St|, we
solve the following problem to obtain the best achiev-
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GE 5 CASPIDERG(p, |St|)
1: if mod(t, p) = 0

gt = ∇f(xt), x̃ = xt, Ũ = ∇2f(x̃);
2: else

sample |St| i.i.d. component functions uniformly;
ct = [Ũ− 1

|St|
∑
i∈St ∇2fi(x̃)](xt − xt−1);

gt = 1
|St|

∑
i∈St

[
∇fi(xt)−∇fi(xt−1)

]
+gt−1+ct;

able amortized per-iteration cost

min
|St|∈Z+, p∈Z+

|St|+ n

p

s.t. |St| ≥ L2
2/L

2 · p3ε2.

For ε ≥ n−1.5L/L2, we set |St| = L−0.5L0.5
2

√
ε · n0.75

and p = L0.5L−0.5
2 n0.25/

√
ε to arrive at the 2|St| =

2L−0.5L0.5
2

√
ε · n0.75 average cost.

For ε ≤ n−1.5L/L2, we set |St| = 1 and p =

ε−2/3L
−2/3
2 L2/3. Since n/p ≤ |St|, the average cost

is no more than 2|St| = 2.
In conclusion, the overall SFO complexity is
O(max{n0.75/ε1.5, 1/ε2}). Such complexity further im-
proves the result of CASVRG and outperforms SPIDER
when ε = O(n−0.5). The additional SSO complexity is
O(max{n0.75/ε1.5, 1/ε2}) for CASPIDERG.
Remark 4.2. While the curvature aided methods re-
duce the SFO complexity, the evaluation of SSO is
usually expensive for general problem. However, these
methods are particularly suited for the important Robust
Low Rank Matrix Recovery problem (RLRMR), as both
SFO and SSO can be evaluated in O(1). Hence the only
additional cost using the curvature aided estimators is
the matrix-vector product.

5 Lower Bound of LO Complexity
Among First-order Methods

For a convex objective f(·), Jaggi (2013) shows that
O(1/ε) LO queries are necessary to obtain an ε sub-
optimal point x ∈ C, i.e. f(x) ≤ minx∈C f(x)+ε. Such
LO lower bound is absent in the nonconvex setting.

In this section, we establish the Linear Oracle (LO)
lower bound for a broad class of first-order projection
free methods to satisfy the optimal condition (2). We
do this by exploiting the difficulty in f(·) itself, because
we make the same convexity assumption on the feasible
set. The single component (n = 1) case of Problem
(1) is considered and hence there is no randomness
in component function query. Clearly, hard instance
construction in this special case provides an LO lower
bound for the general problem (n 6= 1).

We specify the class of algorithms under consideration.
Let xk and uk be the iterate and the output of the LO

produced by the algorithm at iteration k. We put no
restriction on the input to LO, but require

xk = Ak(u0, . . . ,uk−1), (14)

where Ak is a deterministic mapping from Rk×d to Rd.
Such requirement is met by many projection-free meth-
ods like Frank-Wolfe, Block-Frank-Wolfe, Conditional
Gradient Sliding, etc..

Theorem 5.1. For any deterministic projection-free
algorithm satisfying (14), there is an instance of Prob-
lem (1) with f being L-smooth and bounded from below
f(0) − minx∈C f(x) ≤ ∆, such that it takes at least
Ω(L∆/ε2) LO queries to obtain a point x such that
VC(x; f) ≤ εD, where D is the diameter of C.

The intuition behind our argument is that when the
iterate x is close to the origin and hence distant
from the boundary of C, the suboptimality VC(x; f)
is Ω(‖∇f(x)‖) which is large due to the hardness from
the non-convexity of f(·); when x is far from the origin
and hence is possibly close to the boundary, our con-
struction ensures that 〈∇f(x),x〉 is large, which is a
nature lower bound of VC(x; f) by taking u to be the
origin. The detailed proof borrow ideas from (Carmon
et al., 2017) and is deferred to the appendix 7.1.

6 Experiment

Under the framework of Normalized Frank Wolfe Up-
date, we compare the efficiency of listed stochastic
gradient estimators, namely SG, SVRG, SPIDERG,
CASVRG, and CASPIDERG. We focus on the simula-
tion studies of the Robust Low Rank Matrix Recovery
problem discussed in Section 2.1. The parameter σ is
fixed to 1 in all settings.

In each trial, we first generate an underlying matrix M
of size 200× 200 and rank γ ∈ Z+, where γ takes value
ranging from 5 to 15. The singular values of M are
set as 2[γ]/2γ × 50 and hence ‖M‖∗ ≤ C = 100, where
[γ] = {1, . . . , γ}. We then inject adversarial noise into
M by (1) uniformly sampling 5% of the entries in M
and (2) adding random noise uniformly sampled from
[−ρ, ρ] to each selected entry, where the noise level ρ
ranges from 0 to 10. Denote M̂ as the matrix after
noise injection. We uniformly sample 10% of the entries
in M̂ to obtain the observations, i.e. Yij . Hence |Ω|,
the number of observation is M ×N × 10% = 4, 000.
In terms of algorithmic parameter setting, we vary
the mini-batch size |St| from |Ω|/10 to |Ω|/50 and set
p = |Ω|/|St| correspondingly. The number of epoch T
is set to 20 for all cases, and the convex combination
parameter ηt is set to p/T in all cases for all methods.
With underlying rank being 5 and noise scale being
10, we present the comparison of listed methods using
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Figure 1: Each column reports the VC(·; f) value, the Root Mean Square Error (RMSE), and ‖gt −∇f(xt) value
under a single parameter setting. We vary the mini-batch size in each column from n/10 to n/50 with the
underlying matrix rank γ being 5 and adversarial noise level ρ being 10.

different minibatch sizes in Figure 1. More comparisons
under different parameter settings are deferred to the
appendix. We did not plot the result of SG as its
performance is always significantly worse than other
methods. In the first row, we compare the first-order
suboptimality VC(·; f). We can see that the curvature
aided methods always outperforms the first-order ones
by a large amount. In the second row, we compare
the testing error by measuring the Root Mean Square
Error (RMSE) between the prediction matrix and the
underlying matrix. The curvature aided methods show
their advantages on these plots as well. In the third
row, we compare accuracy of gradient estimation ‖gt−
∇f(xt)‖. CASVRG and CASPIDER has significantly
less approximation error than SVRG and SPIDER
in all settings. While the performance of SVRG and
SPIDERG are close in the graph, SPIDERG is generally
slightly better than SVRG in our experiments. All

these results validate our analysis.

Conclusion
We design a projection-free meta-algorithm named
NFWU that accepts gradient estimator (GE) as in-
put and derive its unified convergence regardless of the
choice of GE. By plugging SPIDERG into NFWU, we
obtain the optimal SFO complexity for first-order meth-
ods. We then propose new curvature-aided estimators
to further reduce the SFO cost. Finally, we provide a
hard case to show that the O(1/ε2) LO complexity is
optimal among first-order methods.
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7 Appendix

7.1 Proof of Theorem 5.1

Proof of Theorem 5.1. Consider the problem

min
x∈C

f(x) =
1

10
‖x‖2 +

{
G(x)

def
= HT (V>x)

}
where we define HT (y) =

∑T
i=2[Ψ(−yi−1)Φ(−yi)−Ψ(yi−1)Φ(yi)]−Ψ(1)Φ(y1) with

Ψ(y) =

{
0 y ≤ 1/2

exp(1− 1
(2y−1)2 ) y > 1/2

,

Φ(y) =
√
e

∫ y

−∞
e−

1
2 t

2

dt,

(15)

V = [v1, . . . ,vT ] ∈ Rd×T ,V>V = IT , and C = {x ∈ Rd : ‖x‖ ≤ R} with R = 230
√
T .

HT (y) was originally constructed by Carmon et al. (2017) to show the lower bound of finding a first-order
stationary point (‖f(x)‖ ≤ ε) for unconstrained smooth nonconvex minimization problem. In their paper, the
following properties are established.

Lemma 7.1. The function HT (y) satisfies:

1. (large gradient) If |yi| < 1 for any i ≤ T , then there exists j ≤ i such that |yj | < 1 and |[∇HT (y)]j | > 1;

2. (bounded value) HT (0)−miny∈RT HT (y) ≤ 12T ;

3. (bounded gradient) For all y, ‖∇HT (y)‖ ≤ 23
√
T ;

4. (smoothness) HT is `-Lipschitz smooth with ` = 315 being a constant independent of T .

We construct the columns of V based on the classical "resisting oracle" strategy (Nemirovskii et al., 1983): for
every k, we let vk be orthogonal to all {vr}k−1

r=1 and {xr}kr=0. When the problem dimension d is sufficiently large,
the adversary can make such construction by simulating the whole optimization procedure of the deterministic
algorithm.

From such construction, we always have x>t vT = 0 for any t ≤ T . Using the "large gradient property" in Lemma
7.1, there exists j ≤ T such that

|v>j xt| < 1 and |v>j ∇G(xt)| > 1, (16)

where the second inequality is from |v>j ∇G(xt)| = |v>j V∇HT (V>xt)| = |[∇HT (V>xt)]j ] > 1.

We now show that VC(xt; f) is large for all t.
For ‖xt‖ ≤ 2√

5
R, we have VC(xt) ≥ ‖∇f(xt)‖(1 − 2√

5
)R, hence we only need to show ‖∇f(xt)‖ is sufficiently

large:

‖∇f(xt)‖ ≥ |v>j ∇f(xt)| = |v>j ∇G(xt) +
1

5
v>j xt|

≥ |v>j ∇G(xt)| − |
1

5
v>j xt| > 4/5.

Therefore we have VC(xt; f) ≥ (1− 2√
5
)R · 4/5 ≥ 0.08R.

For R ≥ ‖xt‖ ≥ 2√
5
R, we have VC(xt; f) ≥ x>t ∇f(xt),

x>t ∇f(xt) =
1

5
‖xt‖2 + x>t ∇G(xt) ≥

1

5
‖xt‖2 − ‖xt‖‖∇G(xt)‖ ≥

3

50
R2 ≥ 13.8R,

where we use ‖∇G(xt)‖ = ‖V∇HT (V>xt)‖ = ‖∇HT (V>xt)‖ ≤ 23
√
T = R/10.

In conclusion, we always have VC(xt; f) = Ω(R).
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We rescaled f to obtain our hard instance. Define

f̄(x) =
Lµ2

`
f(x/µ), (17)

where µ ∈ R is the scaling factor. We need to ensure the following properties.

1. f̄ is L-Lipschitz smooth.

2. f̄ is bounded from below: f̄(0)−minx∈C f̄(x) ≤ ∆.

3. VC(xt; f̄) ≥ εD for all xt, t < T .

The first requirement is met by the "smoothness" property in Lemma 7.1. For the second and third requirements,
we set

Lµ2

`
c1T = ∆,

Lµ

`
· c2D = εD, (18)

and hence we set µ = `ε
c2L

and T =
c22
`c1
· L∆
ε2 . In such case, D = R · µ = c

√
∆/L, with c being some constant.

7.2 A Discussion about SAGAFW in Reddi et al. (2016)

We find the proof of their SAGAFW algorithm was wrong. When bounding RT on the top of page 12, it is
claimed that

∑T
t=1 ct ≤ LDγ

√
n/(ρ

√
b). However, this statement is incorrect: the right hand side is merely a

bound on c0, instead of an upper bound on the whole sum. Hence the O(n1/3/ε2) result is invalid. In fact it
contradicts with a new lower bound on the unconstrained (and hence easier) non-convex infinite sum minimization
problem which states that O(

√
n/ε2) is necessary Fang et al. (2018).

7.3 More Experiments
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Figure 2: Each column reports the VC(·; f) value, the Root Mean Square Error (RMSE), and ‖gt −∇f(xt) value
under a single parameter setting. We vary the mini-batch size in each column from n/10 to n/50 with the
underlying matrix rank γ being 10 and adversarial noise level ρ being 10.
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Figure 3: Each column reports the VC(·; f) value, the Root Mean Square Error (RMSE), and ‖gt −∇f(xt) value
under a single parameter setting. We vary the mini-batch size in each column from n/10 to n/50 with the
underlying matrix rank γ being 15 and adversarial noise level ρ being 10.
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Figure 4: Each column reports the VC(·; f) value, the Root Mean Square Error (RMSE), and ‖gt −∇f(xt) value
under a single parameter setting. We vary the mini-batch size in each column from n/10 to n/50 with the
underlying matrix rank γ being 10 and adversarial noise level ρ being 5.
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