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S1 Real world corpora

We use 4 datasets and apply different filtering strate-
gies yielding 8 different real world corpora each with D
documents, N tokens, and C category labels, as shown
in Table S1.

S2 Topic model algorithms

We use the following topic modeling algorithms (shown
in Table S2) with default parameter settings unless
stated otherwise.

LDA requires hyperparameter values for the topic-
document distribution, a Ka-dimensional vector α⃗ =
(αj)j=1,...,Ka (where Ka is the assumed number of top-
ics), and the word-topic distribution, a V -dimensional

vector β⃗ = (βw)w=1,...,V (where V is the size of the vo-
cabulary). We assume symmetric priors, i.e. αj = α
and βw = β, such that the hyperparameters are fully
determined by the scalar parameters α and β. For
LDAVB we use the default values of the gensim imple-
mentations. For LDAGS we use the default values of
the gensim-wrapper of the mallet implementation.

S3 Usage of synthetic corpora in
previous studies

Different types of synthetic corpora in previous stud-
ies are given in Table S3. As we can see, in previous
research a large portion of synthetic corpora are gen-
erated directly from LDA.

S4 Document classification

In practical applications, topic models are often used
to find documents of similar topical content in an un-
supervised fashion. In this spirit we quantify the per-

formance of topic models by checking how much the
inferred topic distributions reflect the assignment of
human-labeled categories in real world corpora.

More specifically, we fit a topic model to the entire
corpus and obtain the inferred topic-distribution of
each document, P (t|d). Identifying each topic with a
category, we predict the category-membership of each
document, sd, from the topic with maximum proba-
bility (Xie and Xing, 2013)

sd = argmax
t

P (t|d) (S1)

Comparing this with the given metadata-category, rd,
we can construct a confusion matrix

ps,r ≡ 1

D

∑
d

δs,sd · δr,rd , (S2)

which yields the fraction of documents that have
metadata-category r and predicted category s. With
confusion matrix ps,r, we can quantify the performance
of the topic model in the classification task using the
normalized mutual information.

S5 Generation of synthetic
benchmark corpora

With the distributions P (w|t) and P (t|d) described
in the main text Sec. 3.1, we can generate the syn-
thetic benchmark corpora from distributions P (w|t)
and P (t|d) according to the generative process. One
major advantage of our work is that our approach al-
lows for the inclusion of many realistic features, such
as Zipfian distribution, stopword, and burstiness, as
described below.

Zipfian word-frequency distribution. One of the
most well-known statistical laws in language is the so-
called Zipf’s law (Zipf, 1936), which states that the
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Table S1: Details for Real-world Corpora.

Dataset Variation Filtering Characteristics
Reuters-21578 (Hettich and
Bay, 1999)

1 Only documents from the 10
largest categories

D=7,518; N=775,771; C=10

2 Only documents from cate-
gories with more than 10 doc-
uments

D=8,559; N=936,004; C=41

RCV1 (Lewis et al., 2004) 1 Only documents with one cat-
egory label; subsample 10%
of documents from the largest
category

D=3,070; N=574,249; C=4

2 Only documents with two cat-
egory labels; subsample 10% of
documents

D=20,474; N=2,917,939;
C=54

Web of Science (Lancichinetti,
2016)

1 None D=40,526; N=3,828,735; C=7

2 Only keep the first 20 tokens of
each document

D=40,526; N=808,672; C=7

20 News Group (Cachopo,
2007)

1 Remove all words with less
than 3 characters

D=18,803; N=3,831,559;
C=20

2 Same as in variation 1 and
remove all stopwords from
list given in Ref. (McCallum,
2002)

D=18,799; N=2,654,710,
C=20;

frequency f of the r-th most frequent word is given by
a power-law with exponent γ > 1:

f(r) ∝ r−γ (S3)

We incorporate a Zipfian distribution by accommo-
dating any global word-frequency distribution P (w) as
an average over all topics, i.e. P (w) =

∑
t P (w, t) =∑

t P (w|t)P (t) where P (t) is the size of topic t.

Stopwords. An important statistical property of
real texts is the generic appearance of stopwords.
While there is no general agreed-upon definition, in
the context of topic modeling this usually refers to very
common words (such as “the,” “and,” etc.) which are
considered not informative in inferring topical struc-
ture related to semantics. In practice, these words are
typically removed from a corpus using a pre-specified
list of stopwords, however, there exist differing opin-
ions on the effect of stopwords in the result of the
quality of inferred topic models (Zaman et al., 2011;
Schofield et al., 2017).

We model stopwords as words which have the same
probability of appearance in any topic, i.e. P (w|t) =
P (w). Varying the fraction of stopwords (of unique
words in the vocabulary) by a parameter Ps ∈ [0, 1]
allows us to investigate the robustness of a topic model
with respect to these non-informative words.

Burstiness. The phenomenon of burstiness refers to
non-stationarity in the usage of words (Katz, 1996;
Altmann et al., 2009), that is a word is more likely to
occur in a text after its first occurrence.

We incorporate burstiness following approaches pro-
posed in Refs. (Madsen et al., 2005; Doyle and Elkan,
2009) using Dirichlet-distributions. Given a topic t, in-
stead of drawing from a fixed word-topic distribution
P (w|t), we obtain a different word-topic distribution in
each document which is drawn from a V -dimensional
Dirichlet distribution with concentration parameter
ac, i.e. Pd(w|t) ∼ DirV (ac · P (w|t)). This means
that the smaller ac the more “bursty” the synthetic
corpora. For example, in the limiting case ac → 0
(ac → ∞) the word-topic distribution in each docu-
ment will contain only one word with non-zero proba-
bility (the original global word-topic distribution from
the non-bursty case).

S6 Supplementary figures

As an example in Fig. S1, consider two planted classes
in the synthetic benchmark, where 50% of the tokens
belong to each planted class, we obtain different values
Î depending on the inferred structure: (1) If all tokens
are correctly assigned into two inferred classes yielding
a perfectly diagonal confusion matrix pt,t′ , this leads
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Table S2: Details for topic modeling algorithms.

Topic Model Implementation Default hyperparameter values
Gibbs Sampling LDA (LDAGS)
(Griffiths and Steyvers, 2004)

Mallet (McCallum, 2002) α = 5/Ka, β = 0.01

Variational Bayes LDA (LDAVB)
(Blei et al., 2003)

gensim (Řeh̊uřek and Sojka, 2010) α = 1/Ka, β = 1/Ka

Hierarchical Dirichlet Processes
(HDP) (Teh et al., 2006)

From work of Wang (2010) n.a.

TopicMapping (TM)
(Lancichinetti et al., 2015) From work of Lancichinetti (2016) n.a.

to I = log(2) and Î = 1; (2) In case one of the inferred
classes gets split into two equal-sized classes, we get
the same I, but a smaller value for Î; (3) If one of the
smaller inferred classes is uninformative with respect
to the planted classes, this leads to a further reduction
of I and Î; (4) If the tokens are just randomly assigned
to two inferred classes, this yields I = 0 and Î = 0.

In Fig. S2 we show the resulting synthetic corpora for
the random (c = 0), mixed (c = 0.5), and ordered
(c = 1) case. While for c = 0 the topics are not dis-
tinguishable in the ground truth topic distributions,
c > 0 yields a block-diagonal structure (Fig. S2A).
Looking at the empirically observed corpus in the form
of the counts n(d,w), i.e., the number of times word
w appears in document d, words are distributed ran-
domly across all documents for c = 0, while increasing
c leads to a higher concentration of words in certain
documents reflecting the increasing degree of structure
(Fig. S2B).

For algorithms such as LDA one needs to specify the
number of topics for fitting the topic model. While
in the synthetic corpus we know the true number of
topics, in practice, this value is unknown. Therefore,
we investigate the effect of over- and under-fitting by
varying the assumed number of topics, Ka, for LDA
in a synthetic corpus with 10 planted topics (Fig. S3).

Fig. S4 compares the reproducibility of HDP and TM.
There are 10 repetitions for each data points. In each
repetition, only one synthetic benchmark corpus is
generated. A topic model will be run on this corpus
twice. The inferred token topics form the two experi-
ments of the topic model will be compared.

In Fig. S5, we show the planted and inferred P (t|d) and
P (w|t) by the implementation of different algorithms
for LDA, using Ka = 100 as the assumed number of
topics.

In Fig. S6 and Fig. S7, we confirm that the solutions
for LDA obtained in Fig. 4 and Fig. S5 have converged
with respect to the number of iterations in each topic

model.

In Fig. S8 we compare the planted and inferred topic
distributions P (t|d) and P (w|t) and show how they
provide a more detailed view on the performance of a
topic model than obtained from document classifica-
tion tasks.

In Fig. S9 we show that the results from Fig. 5 (B,
C) investigating the effect of stopwords on the per-
formance of topic models in synthetic corpora remain
qualitatively similar when varying the parameter of
the degree of structure, c.

In Fig. S10 we show differences between the planted
and inferred topic distributions P (t|d) and P (w|t) for
synthetic corpora in the case of stopwords.

In Fig. S11 we show that the results from Fig. 5 (E,
F) investigating the effect of document length on the
performance of topic models in synthetic corpora re-
main qualitatively similar when varying the parameter
of the degree of structure, c.
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Figure S1: Quantifying overlap using the normalized mutual information. Unnormalized, I, and nor-
malized mutual information, Î, for different examples of confusion matrices pt,t′ (cases 1-4). Number indicate
the values of the confusion matrix according to color.

Table S3: Usage of Synthetic Corpora in Previous studies.

Reference Synthetic Corpora Corresponding evaluation metric
Mukherjee and Blei (2009) Generated from LDA Likelihood; Variational free energy
Newman et al. (2009) Generated from LDA L1-norm between true and inferred

word-topic distribution
Wallach et al. (2009) Generated from LDA Held-out likelihood
Mimno and Blei (2011) Generated from LDA Check hypothesis that words and

documents are independent given
the topic using mutual information

Taddy (2012) Generated from LDA Compare entries (and residuals) in
θk (defined as the distribution over
words for each topic) between true
topics and inferred topics

Tang et al. (2014) Generated from LDA Posterior contraction analysis of
the topic polytope

Hsu and Poupart (2016) Generated from LDA Use the synthetic corpora to test
inferred number of topics

Minka and Lafferty (2002) Multinomial with 5 equiprobable
words

Likelihood; Classification

Griffiths and Steyvers (2004) Bar-data (5x5 grid) Visual comparison
Andrzejewski et al. (2009) Small size synthetic corpora based

on their proposed topic model
(LDA with Dirichlet Forest Priors)

Visual inspection of the word-
document matrix

AlSumait et al. (2009) Small size synthetic corpora: 6
samples of 16 documents from
three static equally weighted topic
distributions. On average, the doc-
ument size was 16 words.

Topic signficance score (similar to
topic coherence)

Arora et al. (2013, 2016) Semi-synthetic data (train param-
eters of a model on a real cor-
pus, then use the model to gener-
ate synthetic data)

Training time; L1-error between
true and inferred matrix A (defined
as the word-topic matrix).

Lancichinetti et al. (2015) Language data with non-
overlapping topics

L1-norm between true and inferred
p(d|t)

This work A flexible framework that could in-
clude a range of topic structure and
realistic features

Measure the overlap between the
planted and the inferred topic la-
bels on the token level
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Figure S2: Synthetic benchmarks with known ground truth from the generative process of topic
models. Three synthetic benchmark corpora with equal size but different degrees of structure c ∈ {0, 0.5, 1}
(left, middle, right column). (A) Ground truth topic distributions P (t|d) and P (w|t). (B) Resulting observable
corpus showing the number of times word w appears in document d, n(d,w). For all panels, the number of topics
is K = 5; there are V = 100 words in the vocabulary; and each corpus contains D = 1, 000 document with length
of md = 100.
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the assumed number of topics Ka ∈ {5, 10, 20, 50, 100}. (A) Gibbs Sampling LDA. (B) Variational Bayes
LDA. For the synthetic benchmark corpora, we set the planted number of topics as K = 10, the vocabulary as
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Figure S5: Hyperparameters bias the inferred topic structure of different algorithms of LDA models.
Comparison of topic distributions P (t|d) (top row) and P (w|t) (bottom row) from the planted and inferred
structure from LDAGS and LDAVB using two different sets of hyperparameters: original defaults as defined in
each implementation (middle panels) and defaults from the other implementation, respectively (right panels).
Same parameters as in Fig. 3 fixing c = 0.7 and using Ka = 100.
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Figure S6: Topic models converge with the default iteration setting for Ka = 10. Inferred topic
distributions P (t|d) and P (w|t) as in Fig. 4 for Gibbs Sampling LDA and Variational Bayes LDA with different
hyperparameter settings comparing the case where we use the default number of iterations (top two columns)
with the case where we increase the number of iterations 10-fold (bottom two columns).
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Figure S7: Topic models converge with the default iteration setting for Ka = 100. Inferred topic
distributions P (t|d) and P (w|t) as in Fig. 4 for Gibbs Sampling LDA and Variational Bayes LDA with different
hyperparameter settings comparing the case where we use the default number of iterations (top two columns)
with the case where we increase the number of iterations 10-fold (bottom two columns).
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Figure S8: Document classification overlooks information of the inferred topic structure. Comparison
of the topic-document distribution P (t|d) (top row), the word-topic distribution P (w|t) (middle row), and the
predicted topic in unsupervised document classification argmax

t
P (t|d) (bottom row) for three cases: Ground

truth as planted in the synthetic corpus (left column), inferred from Gibbs Sampling LDA (middle column), and
inferred from Variational Bayes LDA (right column). For the synthetic benchmark corpora, we set parameters
as K = 10 topics, D = 10, 000 documents each of length md = 100, V = 103 as vocabulary size, and c = 0.5 for
the degree of structure. For LDA models, we use Ka = 100 as the assumed number of topics.
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Figure S10: Different LDA models lead to qualitatively different solutions in the case of stopwords.
Comparison of the topic-document distribution (top row), P (t|d) , word-topic distribution (middle row), P (w|t),
and predicted topic in unsupervised document classification (bottom row), argmax

t
P (t|d) for three cases: Ground

truth as planted in the synthetic corpus (left column), inferred from Gibbs Sampling LDA (middle column), and
inferred from Variational Bayes LDA (right column). Same parameters as in Fig. 5 (E, F) setting the fraction
of stopwords Ps = 0.65 and the degree of structure c = 0.7.
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Figure S11: Varying the degree of structure does not effect results on document length dependency
in synthetic corpora. Normalized mutual information, Î, as measured by structure overlap (left column) and
unsupervised document classification (right column) as in Fig. 5 (B, C) varying the degree of structure: c = 0.6
(top row), c = 0.7 (middle row), and c = 0.8 (bottom row).
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