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Supplement to

“Data-Driven Approach to Multiple-Source Domain Adaptation"

This supplementary material provides the proofs and some details which are omitted in the

submitted paper. The equation numbers in this material are consistent with those in the paper.

6 DERIVATIONS OF ALGORITHM AND RECONSTRUCTION OF JOINT
DISTRIBUTION

We now expand the squares of equations (11) and (12) to express the objective only in terms of kernel Gram
matrices:
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where kµ corresponds to the Gaussian kernel function used to perform Kernel PCA, and (RA):,i denotes the
i-th column of RA. We observe that kµ(µ̂new

X|Y , µ̂
new
X|Y ) = 1, so we omit this term as well. Here, nd represents the

number of dimensions we use to reconstruct �(µ̂new
X|Y=c) on the low-dimensional manifold. For completeness, we

fully expand the regularization term:
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For simplicity, we assume binary classification and we differentiate with respect to one of the columns of A (ex.
the second row corresponding to the label 1, denoted by a1). To maintain clarity, we denote the above terms as
T1,..,4 and we will differentiate each w.r.t a1. For the first two terms T1 and T2 we have:
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We now address the second two terms (T3 and T4) that correspond to the regularizer:
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where:
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Here, Kt is the Gram matrix for the kernel mean embedding kernel of the target data, and K

i,c
1 is the cross-kernel

matrix between the target-domain data, and the data of source i with label 1. nt is the number of samples in the
target domain, and n

i
1 is the number of samples in the i-th source domain that have a label 1. Furthermore, for

the mean embeddings of conditional distributions conditioned on discrete labels, we have:
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6.1 Vectorization of Objective

We rewrite the objective function in terms of matrix operations:
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where Fj,j0 = (RA)T:,j [(K1)� (RA):,j0 ]. R(A) represents a regularization term, now given by a summation over
labels:
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Now we write down the derivatives in vectorized form:
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Having the first derivatives of the objective with respect to colums of A is sufficient for implementing a barrier
method using most packages (we used fmincon() in MATLAB), which then use the first derivatives to approximate
the second derivatives during optimization.

7 PROOFS OF THEOREMS AND LEMMATA

7.1 Proof of Lemma 2

We restate the lemma here: Let points �1, ...,�M , be p-dimensional vectors (where p could be infinite). Let

�1, ...,�q be the set of all non-zero eigenvalues after performing PCA on these vectors. If P�(�i) is the projection
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7.2 Proof of Theorem 2

We restate the theorem here:
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8 HYPERPARAMETER TUNING

Here we describe the hyperparameter settings in the baselines and the proposed method in the experiments. For
the "poolSVM" method, we tuned the slackness parameter and the kernel width using 5-fold cross-validation on
the pooled training data. For the "marg-kernel" method, we used the optimal slackness and kX kernel width
according to cross-validation via "poolSVM". For the kP kernel, we varied the kernel width on a grid of values
proportional to the median pairwise distance of the training data pooled together. For each dataset, we present
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the results with a kP kernel width with the best average performance. For the methods "dist-weight" and
"dist-comb", for all kernel mean embeddings we also tried several different values proportional to the median
pairwise distance of the training data, and we report the results corresponding to the kernel width with best
average performance for each respective baseline.

For our method, we set the kernel mean embedding kernel widths corresponding to k and kµ, in the same manner
as "dist-weight" and "dist-comb",with the only difference that we used only 5 percent of the experiments in each
dataset in order to pick kernel widths with the best average performance, and then report the accuracies for
all experiments using the selected kernel widths. Regarding the other hyperparameters of our method, in all
experiments we fixed �B to the median pairwise distance of the data in the target domain. We kept �f = 1 and
�R = 0.1.
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