Supplement

In Section A we prove our remark on the validity of the Bernstein condition for higher-order derivatives in the case of kernels with faster spectral decay. The result extends the example of Gaussian kernels detailed in the main part of the paper.

A BERNSTEIN CONDITION FOR HIGHER-ORDER DERIVATIVES

We prove that in the case of kernels with spectral density decaying as $f_{\Lambda}(\omega) \propto e^{-\omega^{2 \ell}}\left(\ell \in \mathbb{N}^{+}\right)$, the Bernstein condition (15) holds for $r \leq 2 \ell$-order derivatives. This example extends the case of Gaussian kernels where $\ell=1$ and $r \leq 2$. Let $\ell \in \mathbb{N}^{+}$and the spectral measure associated with kernel k be absolutely continuous w.r.t. the Lebesgue measure with density

$$
f_{\Lambda}(\omega)=c_{\ell} e^{-\omega^{2 \ell}}
$$

for some $c_{\ell}>0 . f_{\Lambda}$ is positive and we determine c_{ℓ} as:

$$
\begin{aligned}
1 & =\int_{\mathbb{R}} f_{\Lambda}(\omega) \mathrm{d} \omega=\int_{\mathbb{R}} c_{\ell} e^{-\omega^{2 \ell}} \mathrm{~d} \omega=2 c_{\ell} \int_{0}^{\infty} e^{-\omega^{2 \ell}} \mathrm{~d} \omega \\
& =\frac{c_{\ell}}{\ell} \int_{0}^{\infty} e^{-y} y^{\frac{1}{2 \ell}-1} \mathrm{~d} y=\frac{c_{\ell}}{\ell} \Gamma\left(\frac{1}{2 \ell}\right) \Rightarrow \\
c_{\ell} & =\frac{\ell}{\Gamma\left(\frac{1}{2 \ell}\right)}
\end{aligned}
$$

where we used $y=\omega^{2 \ell}, \omega=y^{\frac{1}{2 \ell}}, \mathrm{~d} \omega=\frac{1}{2 \ell} y^{\frac{1}{2 \ell}-1} \mathrm{~d} y$ and the pdf of the Gamma distribution $\left(b=1, a=\frac{1}{2 \ell}\right)$ $g(y ; a, b)=\frac{b^{a}}{\Gamma(a)} y^{a-1} e^{-b y},(y>0, a>0, b>0)$ from which it follows that

$$
\begin{equation*}
\int_{0}^{\infty} y^{a-1} e^{-b y} \mathrm{~d} y=\frac{\Gamma(a)}{b^{a}} \tag{24}
\end{equation*}
$$

Consequently, one obtains
$A_{r, n}=A_{r, n}(\Lambda)=\frac{\int_{\mathbb{R}}|\omega|^{r n} \mathrm{~d} \Lambda(\omega)}{\left[\sqrt{\int_{\mathbb{R}}|\omega|^{2 r} \mathrm{~d} \Lambda(\omega)}\right]^{n}}=\frac{\frac{\Gamma\left(\frac{r n+1}{2 \ell}\right)}{\Gamma\left(\frac{1}{2 \ell}\right)}}{\left[\frac{\Gamma\left(\frac{2+1}{2 \ell}\right)}{\Gamma\left(\frac{1}{2 \ell}\right)}\right]^{\frac{n}{2}}}$ by using (24) with $b=1, a=\frac{r+1}{2 \ell}$ and the value of c_{ℓ} :

$$
\begin{aligned}
& \int_{\mathbb{R}}|\omega|^{r} \mathrm{~d} \Lambda(\omega)=\int_{\mathbb{R}}|\omega|^{r} c_{\ell} e^{-\omega^{2 \ell}} \mathrm{~d} \omega \\
& \quad=2 c_{\ell} \int_{0}^{\infty} \omega^{r} e^{-\omega^{2 \ell}} \mathrm{~d} \omega=\frac{c_{\ell}}{\ell} \int_{0}^{\infty} e^{-y} y^{\frac{r}{2 \ell}} y^{\frac{1}{2 \ell}-1} \mathrm{~d} y \\
& \quad=\frac{c_{\ell}}{\ell} \Gamma\left(\frac{r+1}{2 \ell}\right)=\frac{\Gamma\left(\frac{r+1}{2 \ell}\right)}{\Gamma\left(\frac{1}{2 \ell}\right)}
\end{aligned}
$$

Next we assume that $r \leq 2 \ell$ is fixed and apply induction to prove (15).

- For $n=2$, by definition $A_{r, 2}=1\left(\forall r \in \mathbb{N}^{+}\right)$.
- The induction argument is as follows. By the inductive assumption it is sufficient to show the existence of $K_{r} \geq 1$ such that

$$
\begin{equation*}
B_{r, n}:=\frac{A_{r, n+1}}{A_{r, n}} \leq(n+1) K_{r} \tag{25}
\end{equation*}
$$

since $A_{r, n} \leq \frac{n!}{2} K_{r}^{n-2}$ and $\frac{A_{r, n+1}}{A_{r, n}} \leq(n+1) K_{r}$ imply $A_{r, n+1} \leq \frac{(n+1)!}{2} K_{r}^{n+1-2}$. By defining $c_{r}:=\frac{\Gamma\left(\frac{2 r+1}{2 \ell}\right)}{\Gamma\left(\frac{1}{2 \ell}\right)}$, we obtain

$$
\begin{aligned}
B_{r, n} & =\frac{\Gamma\left(\frac{r(n+1)+1}{2 \ell}\right)}{\Gamma\left(\frac{1}{2 \ell}\right)\left(c_{r}\right)^{\frac{n+1}{2}}} \frac{\Gamma\left(\frac{1}{2 \ell}\right)\left(c_{r}\right)^{\frac{n}{2}}}{\Gamma\left(\frac{r n+1}{2 \ell}\right)}=\frac{\Gamma\left(\frac{r(n+1)+1}{2 \ell}\right)}{\sqrt{c_{r}} \Gamma\left(\frac{r n+1}{2 \ell}\right)} \\
& =\frac{\Gamma\left(\frac{r n+1}{2 \ell}+\frac{r}{2 \ell}\right)}{\sqrt{c_{r}} \Gamma\left(\frac{r n+1}{2 \ell}\right)} \leq D_{r, n} \frac{\Gamma\left(\frac{r n+1}{2 \ell}+\frac{2 \ell}{2 \ell}\right)}{\sqrt{c_{r}} \Gamma\left(\frac{r n+1}{2 \ell}\right)} \\
& \stackrel{(b)}{=} D_{r, n} \frac{1}{\sqrt{c_{r}}} \frac{r n+1}{2 \ell} \stackrel{(c)}{\leq} D_{r, n} \frac{1}{\sqrt{c_{r}}} \underbrace{\frac{2 \ell n+1}{2 \ell}}_{n+\frac{1}{2 \ell}} \\
& <D_{r, n} \frac{n+1}{\sqrt{c_{r}}} .
\end{aligned}
$$

Indeed,

- (a): The Gamma function has a global minima on the positive real line at $z_{\min } \approx 1.46163$, it is strictly monotonically decreasing on $\left(0, z_{\text {min }}\right)$ and strictly monotonically increasing on $\left(z_{\text {min }}, \infty\right)$. The latter implies

$$
\begin{equation*}
\Gamma\left(z_{1}\right) \leq \Gamma\left(z_{2}\right) \text { for } z_{\min } \leq z_{1} \leq z_{2} \tag{26}
\end{equation*}
$$

Let us choose $z_{1}=\frac{r n+1}{2 \ell}+\frac{r}{2 \ell}$ and $z_{2}=\frac{r n+1}{2 \ell}+$ $\frac{2 \ell}{2 \ell} . z_{1} \leq z_{2}$ since $r \leq 2 \ell$. With this choice (26) guarantees (a) with $D_{r, n}=1$ if

$$
\begin{aligned}
z_{\min } & \stackrel{(d)}{\leq} \frac{n+2}{2 \ell}=\frac{r n+1}{2 \ell}+\left.\frac{r}{2 \ell}\right|_{r=1} \leq \\
& \leq \frac{r n+1}{2 \ell}+\frac{r}{2 \ell}=z_{1}
\end{aligned}
$$

If $n_{s}:=\left\lceil 2 \ell z_{\text {min }}-2\right\rceil \leq n$, then (d) holds. This means that (a) holds with

$$
D_{r, n}=1 \quad \text { if } n_{s} \leq n
$$

For the remaining $n=2, \ldots, n_{s}-1$ values, (a) is fulfilled with equality using $D_{r, n}:=\frac{\Gamma\left(\frac{r n+1}{2 \ell}+\frac{2 \ell}{2 \ell}\right)}{\Gamma\left(\frac{r n+1}{2 \ell}+\frac{r}{2 \ell}\right)}$.

- (b): We applied the $\Gamma(z+1)=z \Gamma(z)$ property.
- (c): It follows from $r \leq 2 \ell$.

To sum up, we got that

$$
\begin{aligned}
& B_{r, n} \leq \frac{D_{r, n}}{\sqrt{c_{r}}}(n+1), \text { with } \\
& D_{r, n}= \begin{cases}1 & \text { if } n_{s} \leq n \\
\frac{\Gamma\left(\frac{r n+1}{2 \ell}+\frac{2 \ell}{2 \ell}\right)}{\Gamma\left(\frac{r n+1}{2 \ell}+\frac{r}{2 \ell}\right)} & n=2, \ldots, n_{s}-1\end{cases}
\end{aligned}
$$

Thus, one can choose

$$
K_{r}=\max \left(\frac{D_{r, 2}}{\sqrt{c_{r}}}, \ldots, \frac{D_{r, n_{s}-1}}{\sqrt{c_{r}}}, \frac{1}{\sqrt{c_{r}}}, 1\right)
$$

in (25).

