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Supplement

In Section A we prove our remark on the validity of the
Bernstein condition for higher-order derivatives in the
case of kernels with faster spectral decay. The result
extends the example of Gaussian kernels detailed in
the main part of the paper.

A BERNSTEIN CONDITION FOR
HIGHER-ORDER DERIVATIVES

We prove that in the case of kernels with spectral den-

sity decaying as fΛ(ω) ∝ e−ω2`

(` ∈ N+), the Bernstein
condition (15) holds for r ≤ 2`-order derivatives. This
example extends the case of Gaussian kernels where
` = 1 and r ≤ 2. Let ` ∈ N+ and the spectral mea-
sure associated with kernel k be absolutely continuous
w.r.t. the Lebesgue measure with density
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for some c` > 0. fΛ is positive and we determine c` as:
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Next we assume that r ≤ 2` is fixed and apply induc-
tion to prove (15).

• For n = 2, by definition Ar,2 = 1 (∀r ∈ N+).
• The induction argument is as follows. By the induc-

tive assumption it is sufficient to show the existence
of Kr ≥ 1 such that
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Indeed,
– (a): The Gamma function has a global minima

on the positive real line at zmin ≈ 1.46163, it is
strictly monotonically decreasing on (0, zmin) and
strictly monotonically increasing on (zmin,∞).
The latter implies

Γ(z1) ≤ Γ(z2) for zmin ≤ z1 ≤ z2. (26)
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If ns := d2`zmin − 2e ≤ n, then (d) holds. This
means that (a) holds with

Dr,n = 1 if ns ≤ n.
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– (b): We applied the Γ(z + 1) = zΓ(z) property.
– (c): It follows from r ≤ 2`.

To sum up, we got that

Br,n ≤
Dr,n√
cr

(n+ 1), with

Dr,n =

1 if ns ≤ n
Γ( rn+1

2` + 2`
2` )

Γ( rn+1
2` + r

2` )
n = 2, . . . , ns − 1

.



On Kernel Derivative Approximation with Random Fourier Features

Thus, one can choose
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