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A Prior model

This section describes our choice of the prior model parameters, and details of their initializations.

A.1 Prior over basis-axis scales

We assign a product of zero-mean Gaussian densities conditional on the basis-axis scale-precision
variables as the prior over basis-axis scales,

p(a | r) =
m∏
j=0

|T (j)|∏
l=1

p∏
i=1

N

a
(j)
i,l ; 0,

 ri

S(j)
(√

λ
(j)
i (τ

(j)
l )
)


−1 , (A.1)

where S(j)
(
·
)

is the spectral density of the covariance function and λ
(j)
i (τ

(j)
l ) is the eigenvalue

of the basis function φ
(j)
i (·) at resolution j. There are various choices of covariance functions [12].

Among them, we are interested in those for which S(ν)→0 for all ν→∞, that is the case for most
classes of covariance functions, including Matérn and exponentiated quadratic covariance functions.
We have indicated spectral densities with indexing on j, as in general, we are free to choose different
covariance functions at different resolutions. Similarly, there are various choices of basis functions
which are interpretable as GPs. As discussed in the paper, the choice of basis functions can in general
be resolution-specific.

Our choice of prior implies that a(j)i,l are resolution-region specific, which means that regardless of
the resolution or the region the prior must be initialized with zero-mean even though the posterior
mean is non-zero.

A.2 Prior over basis axes

Considering the possible index permutation across resolutions, we assign a product of independent
Bingham densities [3; 11], conditional on the binary index-mapping matrix Γ, as the prior over basis
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Here, B′
k = M′

k × diag[κ′
k]×M′

k
>, and the pair of M′

k = (µ′
k1, . . . ,µ

′
kdy

), µ′
kdy

∈ Sdy−1,
κ′
k = (κ′

k1, . . . , κ
′
kdy

)> are given by the eigendecomposition of B′
k and C(κ′

k) is the Bingham
normalization factor, which is algebraically problematic, but the saddle-point approximation [9]
provides an accurate numerical result.

Notice that, at resolution j > 0, B′
k is given by the posterior hyper-parameter from the previous

resolution j − 1. At resolution j = 0, we set simply B′
k = B0 = 0.

A.3 Prior over basis-axis scale-precision

Considering the possible index permutation across resolutions, we express the prior over precision of
the basis scales as conditional on the binary index-mapping matrix Γ using Gamma densities

p(r | Γ) =
p∏

i=1

p∏
k=1

[
G
(
ri; α

′
k, β

′
k

)]Γik , (A.3)

where α′
k and β′

k are the Gamma densities shape and inverse scale hyper-parameters. At resolution
j > 0, α′

k and β′
k are the posterior hyper-parameters computed from resolution j − 1. At j = 0, in

absence of prior data, non-informative distributions may be assigned with α′
k → 0, but β′

k may still
be assigned an informative value. Values of β′

k for which α′
k/β

′
k → 0 reduces the overall influence

of the prior toward a non-regularized basis function expansion.

A.4 Prior over basis-axis index mapping

As discussed earlier, the index-mapping binary matrix Γ has exactly one element Γik = 1 in each row
and each column, indicating that the basis axis identified by index k in the previous resolution j − 1
is identical to the basis axis denoted by index i at the current resolution j. The prior probability mass
for these index-mapping variables is assigned as totally non-informative, except for the uniqueness
requirement

p∑
k=1

p(Γik = 1) = 1, ∀i ∈ {1, . . . , p}, (A.4a)

p∑
i=1

p(Γik = 1) = 1, ∀k ∈ {1, . . . , p}. (A.4b)

A.5 Prior over overall bias and residual noise precision

We assign product of Gaussian-Gamma densities over the joint distribution of the overall bias and the
residual noise precision as

p(b, γ) =

m∏
j=0

|T (j)|∏
l=1
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b
(j)
l ;ν0

(j)
l ,

1

ϑ0
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)
. (A.5)

In the absence of prior information, a non-informative prior must be applied by setting ν0
(j)
l = 0

and ϑ0
(j)
l → 0. The hyper-parameters c0

(j)
l and d0

(j)
l are shape and inverse scale parameters of

the corresponding Gamma distributions. In the absence of prior information, a noninformative
distribution is assigned by c0

(j)
l → 0 , but d0

(j)
l may still be assigned an informative value to indicate

the most likely value (mode), d0
(j)
l /(c0

(j)
l + 1), for the residual variance which has an inverse-gamma

distribution.
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B Posterior model

In this section, we summarize the optimized posterior distribution which is obtained by maximizing
the lower bound L in (8). For ease of notation, we use: 〈 · 〉q(·) ≡ 〈 · 〉 wherever possible. Descriptive
statistics of the posterior distributions are summarized in Appendix C.

B.1 Conditional posterior over basis-axis scales

Optimized conditional posterior distribution of q(a |U) is given by the following product of Gaussian
densities
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with the mean value m
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The seemingly complicated form of this result makes intuitively good sense: The conditional expected
value of the basis-axis scale variables, given by m

(j)
i,l (ui), is determined by the mean predictions

from the previous resolution plus the remaining part of the observed (or latent for j > 0) vector that
is not already explained by its components along the other basis axes. The conditional expected value
is scaled by ζ

(j)
i,l , which is the currently estimated proportion of the variance of the observed data (or

latent variables for j > 0) that is explained by the basis-axis scale variables in the ith axis, in relation
to the total variance that also includes the residual noise component along this axis.

B.2 Posterior over basis axes

Given a posterior distribution q(a
(j)
l | U) and using q(a

(j)
l ,U) = q(U)q(a

(j)
l | U), it can be shown

that the optimized posterior distribution q(U) is given by the product of Bingham densities

q(U) =
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,

where as before the pair of κi and Mi are eigenvalues and the corresponding eigenvectors of
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Note the first term where Bingham’s posterior hyper-parameter from the previous resolution, B′
k,

has been weighted by 〈Γik〉. This ensures that the axis indices remain aligned throughout and hence
allows for recursive (successive) learning of these parameters.

B.3 Posterior over basis-scale precision

The optimized posterior distribution of the latent variables r is given by the product of Gamma
densities as

q(r) =

p∏
i=1

G
(
ri; αi, βi

)
,

where αi and βi are the shape and inverse scale posterior hyper-parameters of Gamma density given
by

αi =
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l )
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where α′
k and β′

k are posterior hyper-parameters from the previous resolution, k, weighted by the
posterior mean of the basis-axis index-mapping variable, 〈Γik〉.

B.4 Posterior over basis-axis index mapping

The optimized posterior distribution of the latent variables q(Γ) is given by q(Γ) =
∏p

i=1

∏p
k=1 ω

Γik

ik ,
where the probability parameters are normalized using scale factors ηi and ηk as

ωik = ηiηkω̃ik,

such that :

{ ∑p
k=1 ωik = 1, ∀i ∈ {1, . . . , p}∑p
i=1 ωik = 1, ∀k ∈ {1, . . . , p} ,

to satisfy the prior requirements, Eq. (A.4), with

log ω̃ik =
〈
u>
i B

′
kui

〉
− log C(B′

k) + α′
k log β

′
k − logz(α′

k) + (α′
k − 1) 〈log ri〉 − β′

k 〈ri〉 ,

where z(·) denotes the digamma function. We may view log ω̃ik as a logarithmic similarity measure
between the kth prior axes at the previous resolution and ith posterior axes at the current resolution.

B.5 Posterior distribution of the latent remainder term

The optimal posterior distribution of q(zT ) is given by
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m∏
j=1

|T (j)|∏
l=1

∏
t∈T (j)

l

N
(
z
(j)
t,l ;
〈
z̄
(j)
t,l

〉
,
〈
γ(j)
〉−1 )

,

〈
z̄
(j)
t,l

〉
=

j−1∑
j′=0

f̄ j
′

t,l +
〈
b
(j)
l

〉
+

p∑
i=1

〈
a
(j)
i,l ui

〉
φ
(j)
i (xt, τ̂

(j)
l ).

B.6 Posterior distribution of overall bias and residual noise precision

The optimized posterior of the joint distribution of the mean vector and the residual noise is given by
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,
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with the posterior hyper-parameters given by
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l = ϑ0

(j)
l + |T (j)

l |,

ν
(j)
l =

1

ϑ
(j)
l

(
ϑ0

(j)
l ν0

(j)
l + ν̄

(j)
l

)
,

c
(j)
l = c0

(j)
l +

dy
2
|T (j)

l |,

d
(j)
l = d0

(j)
l +

1

2
d̄
(j)
l ,

where ν̄(0) and d̄(0) are given by

ν̄(0) =
∑

t∈T (0)

(
yt −

p∑
i=1

〈aiui〉φ(0)
i (xt, τ̂

(0))

)
,

d̄(0) = ϑ0
(0)‖ν0

(0)
∥∥2 − ϑ(0)‖ν(0)

∥∥2+
+
∑

t∈T (0)

(∥∥∥yt −
p∑

i=1

φ
(0)
i (xt, τ

(0)) 〈aiui〉
∥∥∥2 + p∑

i=1

(
φ
(0)
i (xt, τ

(0))
)2 〈∥∥aiui − 〈aiui〉

∥∥2〉).
and similarly ν̄

(j)
l and d̄

(j)
l , ∀j ≥ 1, are given by

ν̄
(j)
l =

∑
t∈T (j)

l

(〈
z
(j)
t,l

〉
−

j−1∑
j′=0

f̄
(j′)
t,l −

p∑
i=1

〈
a
(j)
i,l ui

〉
φ
(j)
i (xt, τ̂

(j)
l )

)
,

d̄
(j)
l = ϑ0

(j)
l ‖ν0

(j)
l

∥∥2 − ϑ
(j)
l ‖ν(j)

l

∥∥2+
+
∑

t∈T (j)
l

(∥∥∥〈z(j)
t,l

〉
−

p∑
i=1

φ
(j)
i (xt, τ

(j)
l )

〈
a
(j)
i,l ui

〉
−

j−1∑
j′=0

f̄
(j′)
t,l

∥∥∥2

+

〈∥∥∥z(j)
t,l −

〈
z
(j)
t,l

〉∥∥∥2〉+

j−1∑
j′=0

E
[ ∥∥∥f (j′)t,l − f̄

(j′)
t,l

∥∥∥2 ]

+

p∑
i=1

(
φ
(j)
i (xt, τ

(j)
l )
)2 〈∥∥a(j)i,l ui −

〈
a
(j)
i,l ui

〉∥∥2〉).
Estimating the noise precision at resolution j ≥ 1 also includes the second central moments of the
predictive processes and the latent remainder terms at the previous resolutions.

C Descriptive statistics

Descriptive statistics of the posterior distributions q(ri), q(a
(j)
i,l | ui), and q(zT (j)) are conveniently

given by the known statistics of the Gamma and Gaussian distributions. For q(Γ), we have the
standard result of 〈Γik〉 = ωik. With a special notational treatment for j = 0, the required statistics
for the joint posterior q(ui, a
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i,l ), ∀j, are summarized as
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where ρid(κi) is the d-th element of ρi(κi) given by

ρi(κi) =
∂ log C(κi)

∂κi
, ∀i ∈ P.

The saddle-point approximation of Kume and Wood [9] is used to calculate the derivatives above.

The mean and the second central moment of the predictive processes can be computed using Eq. (D.1c)
and (D.1d),

E
[
f
(j)
t,l

]
≡ f̄

(j)
t,l = f̄

(j)
l (xt),

E
[∥∥f (j)t,l − f̄

(j)
t,l

∥∥2] = trace
[
F̄

(j)
l (xt)

]
, ∀xt ∈ T (j)

l .

D Predictive process

For a new test input x∗, we shall first determine if we know to which region it belongs in each
resolution. If such information is available the required statistics of the approximate predictive
process at x∗ can be computed from the sum of their contributions across all resolutions, as

E
[
p(f(x∗) | x∗,xT ,yT , zT )

]
=

m∑
j=0

f̄ (j)(x∗), (D.1a)

Cov
[
p(f(x∗) | x∗,xT ,yT , zT )

]
=

m∑
j=0

F̄(j)(x∗), (D.1b)

where f̄
(j)
l (x∗) and F̄

(j)
l (x∗) are given by
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+
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(j)
i,l ui
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(j)
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b
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b
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+

+
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)2〉〈
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>
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〉
−
〈
a
(j)
i,l ui

〉〈
a
(j)
i,l ui

〉> ]
. (D.1d)

In many applications however we may indeed not know the position of x∗ in the training index sets,
T (j),∀j,—in other words we may not know to which region x∗ belongs at a given resolution. In such
cases, since the basis axes are shared across all resolutions and learnt in a group fashion, predictions
are made only from j = 0,

E
[
p(f(x∗) | x∗,xT ,yT , zT )

]
= f̄ (0)(x∗), (D.2a)

Cov
[
p(f(x∗) | x∗,xT ,yT , zT )

]
= F̄(0)(x∗). (D.2b)

We emphasize that, among others, this is one of the advantages of the conditional independence over
models with full independence.

E Optimization of basis interval variables

The basis interval variables τ
(j)
l = (τ

(j)
1,l , . . . , τ

(j)
dx,l

)> are optimized using maximum likelihood
estimation, as an analytical solution within our standard variational inference may not exist in general
form for various choices of basis functions and spectral densities. The optimized point estimate
values are given from

τ̂
(j)
d,l = argmax

τ
(j)
d,l
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(j)
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s.t. L
(j)
dx,l
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+
p
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(j)
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,
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where L
(j)
dx,l

is the input range at (j, l), and

h(τ
(j)
d,l ) ∝ hprior(τ

(j)
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d,l ) includes all relevant terms from the prior,
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)
,

and hlikelihood(τ
(j)
d,l ) includes all relevant terms in the likelihood term,
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l
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+
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k
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l
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+
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2
z
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S
(j)
d,l,i(τ
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i (τ
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d,l ) + λ̃

(j)
i,d,l
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,

X(x
(j)
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(j)
i (xt,d, τ

(j)
d,l ),

λ̃
(j)
i,d,l =

dx∑
k 6=d

λ
(j)
i (τ̂ ′
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k,l),

φ̃
(j)
i,d,l,t =

dx∏
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φ
(j)
i (xt,k, τ̂ ′
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k,l),

where τ̂ ′
(j)

k,l are the previous optimized values. The optimization problem is solved numerically.

F Algorithm

• Initialize the basis intervals τ (j)l .
1. Assign priors

– Initialize the resolution-region-specific prior distributions p(a | r), p(b, γ) by setting
their hyperparameters to the default values according to Appendices A.1, A.5. During
recursive learning the prior hyperparamters remain unaltered and will not be updated.

– Initialize shared prior distributions p(U | Γ), p(r | Γ), p(Γ) according to Appen-
dices A.2, A.3, A.4. During recursive learning at resolution j>1, the posterior hyper-
parameters from the previous resolution j−1 are used as the prior hyperparameters for
the current resolution j.

2. Update posteriors
– Resolution-region-specific posteriors q(a | U), q(b, γ) are updated according to Ap-

pendices B.1, B.6.
– Shared posteriors q(U), p(r), p(Γ) are updated according to Appendices B.2, B.3, B.4.

3. If necessary, update the basis intervals according to Appendix E.
• Repeat steps 1 to 3 until convergence criteria are met.
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G Experiment details

This section provides further details on the experiments in Sec. 5.

G.1 Datasets

G.1.1 oes10 and oes97

The datasets oes10 and oes97 were obtained from [13]. The Occupational Employment Survey
(OES) datasets contain records from the years of 1997 (OES97) and 2010 (OES10) of the annual
Occupational Employment Survey compiled by the US Bureau of Labor Statistics. As described
in [13], "each row provides the estimated number of full-time equivalent employees across many
employment types for a specific metropolitan area". We selected the same 16 target variables as listed
in [13, Table 5]. The remaining 298 and 263 variables serve as the inputs in the case of oes10 and
oes97, respectively. Data samples were randomly divided into training and test sets (refer to Table 1).

G.1.2 atp1d and atp7d

The datasets atp1d and atp7d were obtained from [13]. The Airline Ticket Price (ATP) dataset
includes the prediction of airline ticket prices. As described in [13], the target variables are either
the next day price, atp1d, or minimum price observed over the next seven days atp7d for 6 target
flight preferences listed in [13, Table 5]. There are 411 input variables in each case. The inputs for
each sample are values considered to be useful for prediction of the airline ticket prices for a specific
departure date, for example, the number of days between the observation date and the departure date,
or the boolean variables for day-of-the-week of the observation date. Data samples were randomly
divided into training and test sets (refer to Table 1).

G.1.3 scm1d, scm1d-a and scm20d

The datasets scm1d and scm20d were obtained from [13]. The Supply Chain Management (SCM)
datasets are derived from the Trading Agent Competition in Supply Chain Management (TAC SCM)
tournament from 2010. As described in [13], each row corresponds to an observation day in the
tournament. There are 280 input variables in these datasets which are observed prices for a specific
tournament day. The datasets contain 16 regression targets, where each target corresponds to the next
day mean price scm1d or mean price for 20 days in the future scm20d for each product [13, Table 5].
Dataset scm1d-a is a subset of scm1d which includes the first 3000 samples. Data samples were
randomly divided into training and test sets (refer to Table 1).

G.1.4 naval

The dataset naval [4] was obtained from UCI Machine Learning Repository1. The input variables
are 16-dimensional feature vectors containing the gas turbine (GT) measures at steady state of the
physical asset, for example, GT rate of revolutions, and Gas Generator rate of revolutions. The targets
are two dimensional vectors measuring GT Compressor decay state coefficients and GT Turbine
decay state coefficients. Data samples were randomly divided into training and test sets (refer to
Table 1).

G.1.5 vicon

The dataset vicon contains measurements recorded from a magnetic field which maps a 3-dimensional
(3D) position to a 3D magnetic field strength [8]2. The inputs are (x, y, z)-coordinates and the
responses measured at there different heights are the target values. Data samples were randomly
divided into training and test sets (refer to Table 1).

1http://archive.ics.uci.edu/ml/datasets/condition+based+maintenance+of+naval+propulsion+plants
2More information about data can be found in [8]. The data is available from

https://github.com/carji475/linearly-constrained-gaussian-processes
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G.1.6 hrtf

The dataset hrtf was obtained from the CIPIC HRTF database [1] which is a public-domain database
of high-spatial-resolution head-related transfer function (HRTF) measurements3. We used the datasets
of 37 subjects divided into training and test sets (refer to Table 1). Data for each subject includes
200-dimensional measurements of head-related impulse responses (HRIRs) and 8 input variables
which are in fact the anthropometric parameters considered to have strong direct physical effect
on HRIRs. The objective is to predict the HRIRs of the test subjects given their individualized
anthropometric parameters4.

G.1.7 nengo

The dataset nengo for this analysis was generated using The neural engineering object (Nengo)
simulator [2; 14]. The generated time series data is constructed from a Nengo-based spiking model
of action selection in the cortex-basal ganglia-thalamus circuit with timing predictions that are
well matched to both single-cell recordings in rats and psychological paradigms in humans. Target
measurements here are ensembles of leaky integrate-and-fire neurons comprised from seven nodes
of the basal ganglia circuit (namely: globus pallidus internal, globus pallidus external, subthalamic
nucleus, striatum D1, striatum D2; thalamus; motor cortex). Measurements from these 7 nodes are
the target outputs. The advantage of using the Nengo neural simulator in the regression task is that
we also have access to the ground-truth, the function generating the noisy target measurements at
each node. Data samples5 were randomly divided into training and test sets (refer to Table 1).

G.1.8 lorenz96

The synthetic dataset lorenz96 was generated using the Lorenz model [10, Eq. 3.2]. Using a locally
defined notation, consider the Lorenz model of

∂xk

∂t
= −xk−1(xk−2 − xk+1)− xk + F, ∀k ∈ K,

where xk represent the state of the system and F is the forcing constant. In our simulation, we let
K = 20 and set F = 8, which cause chaotic behavior. The initial state was set to equilibrium and a
small perturbation was given to a randomly selected state. A small amount of noise was added to the
resulting dy = 20 dimensional feature vector. For the input ranging from 0 to 8, 1000 samples were
collected on a linear space from the system. The objective is to identify the latent function generating
data and perform predictions at 105locations in this interval, [0, 8].

G.2 Datasets used in the illustrative experiment in Section 5, Figure 2.

G.2.1 ToyData

The synthetic dataset ToyData for the regression task in Figure 2-(a) is generated using the following
nonlinear functions

f1(x) = exp {sin(cos(x)) sin(log(1 + |x2 − 3x|))},
f2(x) = log(| tan(−2x) cos(2x) + 1|) sin(x).

We generated 32 noisy samples for input values in the range of x ∈ [0, 12]. The objective is to
estimate the latent functions and perform predictions at 105 locations in this interval, [0, 12].

G.2.2 vicon2

The dataset vicon2 is a subset of the vicon dataset (G.1.5) which includes 6000 samples from which
5000 randomly selected samples are used in the test set and 1000 samples in the training set. vicon2
is used in our numerical simulation presented in Figure 2-(b).

3Details of the database can be found at: https://www.ece.ucdavis.edu/cipic/spatial-sound/hrtf-data/.
4The preprocessed data can be obtained from our GitHub page: <GitHub link to data>.
5Data can be downloaded from our GitHib page: <GitHub link to data>.
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G.3 Methods

G.3.1 SGPMC

MCMC for Variational Sparse Gaussian Processes (SGPMC) model of [7] using GPflow implemen-
tation6 with RBF-ARD kernels, Gaussian likelihood, and 1000 pseudo inputs.

G.3.2 SVGP

The scalable variational Gaussian process (SVGP) model of [6] using a GPflow implementation with
RBF-ARD kernels, Gaussian likelihood, and 1000 pseudo inputs.

G.3.3 SVIGP

Stochastic variational GP (SVIGP) model of [5] using a GPy7 implementation with RBF-ARD
kernels, Gaussian likelihood, and 1000 pseudo inputs.

6https://github.com/GPflow
7https://github.com/SheffieldML/GPy
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