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Abstract

The multiresolution Gaussian process (GP)
has gained increasing attention as a viable
approach towards improving the quality of
approximations in GPs that scale well to
large-scale data. Most of the current con-
structions assume full independence across
resolutions. This assumption simplifies the
inference, but it underestimates the uncer-
tainties in transitioning from one resolution
to another. This in turn results in models
which are prone to overfitting in the sense of
excessive sensitivity to the chosen resolution,
and predictions which are non-smooth at the
boundaries. Our contribution is a new con-
struction which instead assumes conditional
independence among GPs across resolutions.
We show that relaxing the full independence
assumption enables robustness against overfit-
ting, and that it delivers predictions that are
smooth at the boundaries. Our new model
is compared against current state of the art
on 2 synthetic and 9 real-world datasets. In
most cases, our new conditionally indepen-
dent construction performed favorably when
compared against models based on the full
independence assumption. In particular, it
exhibits little to no signs of overfitting.

1 INTRODUCTION
There is a rich literature on methods designed to avoid
the computational bottleneck incurred by the vanilla
Gaussian process (GP), including sub-sampling [30],
low rank approximations [9], covariance tapering [14],
inducing variables [29; 32], predictive processes [3], and
multiresolution models [31; 28], to name just a few.
Here, we focus mainly on the low rank approximations.
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Many existing GP models assume certain smoothness
properties which can be counterproductive when it
comes to representing abrupt local changes. Although
some less smooth kernel choices can be helpful at times,
they assume stationary processes that do not adapt
well to varying levels of smoothness. The undesirable
smoothness characteristic of the traditional GPs could
further get pronounced in approximate GP methods in
general and rank-reduced approximations in particular
[36]. A way to overcome the limitations of low rank
approximations is to recognize that the long-range de-
pendencies tend to be of lower rank when compared
to short-range dependencies. This idea has previously
been explored in the context of hierarchical matrices
[16; 4; 2] and in multiresolution models [31; 28; 21].

Multiresolution GPs, seen as hierarchical models, con-
nect collections of smooth GPs, each of which is de-
fined over an element of a random nested partition
[15; 12; 11]. The long-range dependencies are captured
by the GP at the top of hierarchy while the bottom-
level GPs capture the local changes. We can also view
the multiresolution GPs as a hierarchical application
of predictive processes—approximations of the true
process arising from conditioning the initial process on
parts of the data [3; 29]. The use of such models has
recently been exploited in spatial statistics [31; 28; 21]
for modeling large spatial datasets. Refer to [12] and
[21] for overviews of these applications.

The existing multiresolution models are based on pre-
dictive processes and event though they are efficient
in terms of computational complexity, they do assume
full independence across the different resolutions. This
independence assumption results in models which are
inherently susceptible to the chosen resolution and
approximations which are non-smooth at the bound-
aries. The latter problem stems from the fact that the
multiresolution framework, e.g., [21], recursively split
each region at each resolution into a set of subregions.
As discussed by Katzfuss and Gong [22], since the re-
mainder process is assumed to be independent between
these subregions, which can give rise to discontinuities
at the region boundaries. A heuristic solution based on
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tapering functions is proposed in [22] which employs
Kanter’s function as the modulating function to address
this limitation. The sensitivity to the chosen resolution
is partly due to the nature of the remainder process and
the unconstrained representative flexibility of the GPs
which manifests itself most noticeably at higher reso-
lutions. As the size of the region under consideration
decreases when the resolution increases, the remainder
process may inevitably include certain aspects of data
which might not be the patterns of interest. When all
GPs are forced to be independent, there is no natural
mechanism to constrain the representative flexibility of
the GPs.

These limitations can be addressed naturally by allow-
ing the uncertainty to propagate across the different
resolutions. We achieve this by conditioning the GPs
on each other. Thus, here, we propose a new model
which unlike the previous models that impose full in-
dependence among resolutions, instead assumes con-
ditional independence. Relaxing the full independence
assumption is shown to result in models that are ro-
bust to overfitting in the sense of reduced sensitivity
to the chosen resolution—that is regardless of the ex-
tra computational complexity, arbitrary increasing the
resolution only has a small effect on the optimal model
performance. Furthermore, it results in predictions
which are smooth at the boundaries. This is facilitated
by constructing a low-rank representation of the GP
via a Karhunen-Loève expansion with the Bingham
prior model that consists of basis axes and basis-axis
scales. Our multiresolution model ties all GPs, across
all resolutions, to the same set of basis axes. These
axes are learned successively in a Bayesian recursive
fashion. We consider a fully Bayesian treatment of
the proposed model and derive a structured variational
inference based on a partially factorized mean-field
approximation1.

The idea of using conditional independence in the con-
text of multiresolution GPs has previously been studied
by Fox and Dunson [12]. The two models differ in their
underlying generative models and in their inference.
While the computational complexity of the proposed
model scales linearly with respect to the number of
samples, Fox & Dunson’s model scales cubically and
relies on MCMC inference which may further limit its
application to large datasets.

Our main contribution is to develop the conditionally
independent multiresolution GP model and to derive a
variational inference method to learn this model from
data. The Bingham distribution [6] is an important
distribution in directional statistics [26] where it is
commonly used for shape analysis where the inference

1An implementation of the model is available at:
https://github.com/jtaghia/ciMRGP

is typically based on MLE [24], MAP [27], and MCMC

[25]. Hence, our use of the Bingham distribution and
the corresponding variational inference solution for this
model might also appeal to researchers in directional
statistics.

2 KARHUNEN-LOÈVE
REPRESENTATION OF THE GP

Consider a minimalistic model of GP regres-
sion, yt = f(xt) + b+ et,∀t ∈ T = {1, . . . , n}, where
f ∼ GP(·) denotes a zero-mean GP prior, b denotes a
constant bias, et ∼ N (0, γ−1I) denotes Gaussian noise
with zero mean and variance γ−1, xt ∈ Rdx denotes
the input variables, and yt ∈ Rdy denotes the measure-
ments, dx, dy ∈ N≥1. The standard solution involves
inversion of a Gram matrix which is an O(n3) operation
in general. In the following, we consider low rank repre-
sentations of the GP enabled via the Karhunen-Loève
expansion theorem.

Gaussian Model For a dx-dimensional
input variable xt on the interval
[−L1, L1]× . . .× [−Ldx

, Ldx
] ∈ Rdx , the GP can

be represented using the (truncated) Karhunen-Loève
expansion according to [34],

f(xt)≈
p∑

i=1

wiφi(xt, τ ), ∀ wi∼N (0, S(
√
λi(τ ))I), (1)

where wi = (wi1, . . . , widy
)> denotes the basis vec-

tors of the series expansion, τ = (τ1, . . . , τdx
)> denotes

the basis intervals such that τd > Ld,∀d ∈ {1, . . . , dx},
φi(xt, τ ) denotes the orthogonal eigenfunctions (basis
functions) with the corresponding eigenvalues λi(τ ),
and S(·) denotes the spectral density of the covariance
function. Note that, unlike the minimalistic representa-
tion used by Solin and Särkkä [34], we have explicitly
included the basis intervals τ in the representation,
which are treated as random variables. Their specific
values are found using maximum likelihood estimation.

To ensure that the representation satisfies the dual
orthogonality requirement of the Karhunen-Loève ex-
pansion, all the basis vectors wi must be zero-mean.
Normally, we would assign a zero-mean Gaussian
distribution over wi, or alternatively we could as-
sign a zero-mean matrix-normal distribution over
W = (w1, . . . ,wp) as was done by Svensson and Schön
[37]. The choice of zero-mean Gaussian priors over the
basis vectors would lead to Gaussian posteriors with
non-zero means. In our multiresolution model, as we
shall see later in Sec. 3, the basis vector posterior needs
to be learned in a recursive fashion such that the poste-
rior from the current resolution is used as the prior for
the resolution in the next level of the hierarchy. Now,
as the expansion requires the prior to be zero-mean, we
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would then need a posterior over basis vectors which
is zero-mean by construction. If we were going to use
Gaussian priors, the result would be a multiresolution
model where all GPs must be fully independent.

To address this issue, we now separate the basis vec-
tors into two parts: basis axes and basis-axis scales.
The basis axis vectors are defined to be antipodally
symmetric—meaning that for a random variable ϑ,
p(ϑ) = p(−ϑ)—and thus zero-mean by construction.
They primarily carry information about the direction
and we can for that reason without loss of generality
assume them to be on the unit sphere. The axes will
be shared across resolutions such that given the axes,
all GPs are independent. Although the GPs are tied to
the same set of axes, they will be scaled by resolution-
specific variables, namely the basis-axis scales. The
axial distributions from directional statistics [26] make
for a perfect fit in modeling these axes. In the follow-
ing we consider a very specific choice of prior model,
namely the Bingham distribution, since it conveniently
allows for the design of a conditionally independent
multiresolution model.
Bingham Model Let Sd−1 = {z ∈ Rd : z>z =
1, d ∈ N>1} denote the unit sphere. Further-
more, let wi := aiui such that ui =

wi

‖wi‖ ∈ Sdy−1 and
ai = ‖wi‖ denote the basis axes and the basis-axis
scales, respectively. Without loss of generality, we can
now express the noisy measurements in (1) as

yt =

p∑
i=1

aiuiφi(xt, τ ) + b+ et, ∀t ∈ T . (2)

The basis axes U = (u1, . . . ,up) are modeled as Bing-
ham distributions [6] according to

p(U) =

p∏
i=1

p(ui), ∀ ui ∼ B(Bi),

where B(Bi) denotes the Bingham distribution param-
eterized with a real-symmetric matrix Bi—the matrix
Bi is often presented using the notion of an eigendecom-
position as: Bi = Mi × diag[κi]×Mi

> with Mi and
κi being the eigenvectors and the eigenvalues of the
decomposition. It is straightforward to show that ui

satisfies the Karhunen-Loève expansion requirements.
Importantly, the Bingham distribution is antipodally
symmetric, which in turn implies that E[ui] = 0 by con-
struction [26, Ch. 9.4]. We can then assign zero-mean
Gaussian distributions as priors over the basis-axis scale
variables {ai}pi=1. Assuming et ∼ N (0, γ−1I), and us-
ing ‖ui‖ = 1, this choice of prior over ui and ai is
conveniently conjugate to the data likelihood.

The main constraint enforced by our choice of the
Bingham prior model is the implicit requirement of
dy > 1, as the Bingham density is defined on Sdy−1. For
the case of dy = 1, if we assume ui = 1, the Bingham

model reduces to a multiresolution architecture with
fully independent GPs. Other prior models should be
considered for the special case of dy = 1. One possible
choice is provided by the one-parameter version of the
Bingham model [23] for modeling axes concentrated
asymmetrically near a small circle. As the objective of
this work is to show the advantage of the conditional
independence over the full independence, we restrict
our theoretical discussion to the Bingham prior model
and cases where dy > 1.

3 MODEL

Notation Consider a recursive partitioning of the
index set T = {1, . . . , n} across m resolutions. At each
resolution j ∈ {1, . . . ,m}, T is partitioned into a num-
ber of non-overlapping regions. The partitioning of T
can be structured or random. Without loss of generality,
consider a uniform subdivision of the index set across
resolutions by a factor of q, such that T is first parti-
tioned into q regions, each of which is then partitioned
into q subregions. The partitioning continues until
resolution m where the index sets at various resolution
are denoted by T (0) := T , T (1) = {T (0)

1 , . . . , T (0)
q },

and similarly by T (m) = {T (m−1)
1 , . . . , T (m−1)

q }, where
|T (0)| = 1, |T (1)| = q, and |T (m)| = qm. An exam-
ple of such a partitioning by a factor of q = 2 is
shown in Fig. 1-a. As a convention, we will use
the notation T (j)

l to indicate the l-th element of the

set T (j) = {T (j)
l }|T

(j)|
l=1 , which corresponds to the in-

dex set related to region l at resolution j. We also
define xT (0) := xT and xT (j) = {xT (j)

l

}|T
(j)|

l=1 , where

xT (j)
l

= {xt | ∀t ∈ T (j)
l }.

Generative Model As before, let f(·) be the
stochastic process of interest. Once the process is ob-
served at xT , it gives rise to the noisy observations yt.
By making use of a Gaussian process as the prior over
f(·), the observations yt at resolution j = 0 are mod-
eled according to (2). In a multiresolution setting based
on the hierarchical application of predictive processes,
we approximate f(·) according to

f(·) = f̂ (0)(·) + f (1)(·),

where f̂ (0) is the approximate predictive process at
resolution j = 0, and f (1)(·) is the so-called remainder
process. Let z

(1)
t,l indicate the noisy instantiations of

the latent process f (1)(·) at xT (1) . We will treat z
(1)
t,l

as a latent variable, and model it using a conditionally
independent GP prior, for all xt ∈ xT (1)

l

,

z
(1)
t,l =

p∑
i=1

a
(1)
i,l uiφ

(1)
i (xt, τ

(1)
l ) + b

(1)
l + e

(1)
t,l ,
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where the basis axes ui are shared among all the
processes while the basis-axis scales a

(1)
i,l are re-

gion specific. At the higher resolution, j = 2, the
latent process f (1)(·) is in turn approximated by
f (1)(·) = f̂ (1)(·) + f (2)(·). In general, for resolution j
we have

f (j)(·) = f̂ (j)(·) + f (j+1)(·),

where f (j+1)(·) is the remainder process at resolution
j + 1 whose noisy instantiations on T (j+1) are modeled
according to, ∀xt ∈ xT (j+1)

l

:

z
(j+1)
t,l =

p∑
i=1

a
(j+1)
i,l uiφ

(j+1)
i (xt, τ

(j+1)
l )+b

(j+1)
l +e

(j+1)
t,l .

Throughout, ui has been written without indexing
w.r.t. l and j. This is to emphasize that these are
shared across all resolutions and regions such that in
transition from one resolution to another, the axes of
the basis vectors remain the same but they may be
scaled differently via a region-specific and resolution-
specific variable a

(j)
i,l . The noise variable is indexed

w.r.t. both l and j, but we could alternatively assume
the noise to be a resolution-specific variable. In a mul-
tiresolution model, bias may not be simply removed as
a part of the preprocessing step, as the bias at each
resolution carries uncertainties from the previous reso-
lutions. These parameters are expressed using indexing
on both j and l. We have indicated the basis functions
with indexing on j, as generally one might consider
a different choice of basis functions at different reso-
lutions. The basis interval variables τ

(j)
l are learned

from data and expressed with both j and l.

The recursive procedure continues until resolution
j = m is reached. By assuming that the latent re-
mainder process at j = m+ 1 approaches zero, we can
approximate f(·) as the sum of the predictive processes
from all resolutions,

f(·) = f (m+1)(·) +
m∑
j=0

f̂ (j)(·) ≈
m∑
j=0

f̂ (j)(·),

where f̂ (0) captures global patterns and finer details
are captured at higher resolutions.

4 BAYESIAN INFERENCE

Notation Let yT (0) := yT where
yT = {yt | ∀t ∈ T } denote the set of noisy observa-
tions, and zT (j) = {zT (j)

l

}|T
(j)|

l=1 denote the set of latent

variables for j ≥ 1, where zT (j)
l

= {z(j)
t,l | ∀t ∈ T (j)

l }.
We denote the latent function instantiations at xT (j)

l

by fT (j)
l

= {f (j)l (xt) ≡ f
(j)
l,t | ∀xt ∈ xT (j)

l

}. Similarly,

let fT (j) = {fT (j)
l

}|T
(j)|

l=1 . Furthermore, to keep the
notation uncluttered, let:

zT = {zT (j)}mj=1,

xT = {xT (j)}mj=0,

fT = {fT (j)}mj=0, f̃
(j)

= {fT (j′)}j−1
j′=0,∀j ≥ 1,

a =
{
{a(j)

l }|T
(j)|

l=1

}m

j=0
, a(0) ≡ a,

γ =
{
{γ(j)

l }|T
(j)|

l=1

}m

j=0
, γ(0) ≡ γ,

b =
{
{b(j)l }|T

(j)|
l=1

}m

j=0
, b(0) ≡ b,

θ =
{
{θ(j)

l }|T
(j)|

l=1

}m

j=0
, θ

(j)
l ={a(j)

l ,U, b
(j)
l ,γ

(j)
l }.

We first discuss the design of a fully independent model
and its limitation. We then introduce the case of the
conditionally independent model.

4.1 Fully Independent MRGP

Joint Distribution The joint distribution of all ob-
servations and all latent variables is expressed as

p
(
yT , zT , fT , fT (m+1) ,xT ,θ

)
= p(yT | fT (1)

l

,xT ,θ
(0))p(θ(0))

×

[
m∏
j=1

|T (j)|∏
l=1

p(zT (j)
l

| fT (j+1)
l

, f̃
(j)

l ,xT (j)
l

,θ
(j)
l )p(θ

(j)
l )

]

×

[
m∏
j=1

|T (j)|∏
l=1

p(fT (j)
l

|zT (j)
l

)

]
p(fT (m+1)). (3)

The corresponding graphical representation of the
model is shown in Fig 1-b, for the special case of m = 2.

Variational Inference Using variational inference
[20; 7], the goal is to find a tractable approximation of
the true posterior distribution. Consider a variational
posterior in the form of:

q(zT , fT , fT (m+1) ,θ) =

[
m∏
j=0

|T (j)|∏
l=1

q(θ
(j)
l )

]

×

[
m∏
j=1

|T (j)|∏
l=1

q(zT (j)
l

)q(fT (j)
l

|zT (j)
l

)

]
q(fT (m+1)). (4)

Using the mean-field assumption and choosing con-
jugate priors, it is possible to find tractable expres-
sions for q(θ

(j)
l ) and q(zT (j)

l

). However, q(fT (m+1))

and q(fT (j)
l

| zT (j)
l

) can still be intractable. Follow-
ing a similar approach as in [13] and [10], we can
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T (0) = T = {1, . . . , n}

T (1)
1 T (1)

2

T (2)
1 T (2)

2 T (2)
3 T (2)

4

t1 t2 t3 t4 t5 t6 t7 t8

t1 t2 t3 t4 t5 t6 t7 t8

t1 t2 t3 t4 t5 t6 t7 t8

(a)
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
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fT (j)
l

= {f (j)l (xt) ⌘ f (j)l,t | 8xt 2 xT (j)
l

}. Similarly, let

fT (j) = {fT (j)
l

}
|T (j)|
l=1 . To keep the notation uncluttered, let:

zT = {zT (j)}
m
j=1 ,

fT = {fT (j)}
m
j=0 ,

ef
(j)

= {fT (j0)}
j�1
j0=0, 8j = 1, . . . ,m ,

xT = {xT (j)}
m
j=0 ,

a =
n
{a(j)

l }
|T (j)|
l=1

om

j=0
, a(0)

⌘ a ,

� =
n
{�(j)

l }
|T (j)|
l=1

om

j=0
, �(0)

⌘ � ,

b =
n
{b(j)l }

|T (j)|
l=1

om

j=0
, b(0) ⌘ b ,

✓ =
n
{✓(j)

l }
|T (j)|
l=1

om

j=0
, ✓(j)

l ={a(j)
l ,U, b(j)l ,�(j)

l }.

Joint distribution. The complete joint distribution of ob-
servations and all variables for a model with resolution m
is expressed as

p
�
yT , zT , fT , fT (m+1) ,xT ,U ,a, b, �,�, r

�
=

= p(yT | fT (1)
l

,xT ,✓
(0))p(✓(0)

|�, r)

⇥

"
mY

j=1

|T (j)|Y

l=1

p(zT (j)
l

| fT (j+1)
l

,ef
(j)

l ,xT (j)
l

,✓(j)
l )p(✓(j)

l ,�,r)

#

⇥ p(fT (m+1))

"
mY

j=1

|T (j)|Y

l=1

p(fT (j)
l

|zT (j)
l

)

#
, (3a)

where the pair of � and r are hierarchical parameters which
shall be discussed shortly. The corresponding graphical
model is shown in Fig. 4.

The prior model parameter in (3) is factorized as

p(✓(j)
l ,�,r)=p(b(j)l |�(j)

l )p(�(j)
l )

⇥p(U |�)p(a(j)
l |r)p(r |�)p(�). (3b)

The conditional distribution of the observations is ex-
pressed by

p(yT | fT (1) ,xT ,✓
(0))=

Y

k2{0,1}

" |T (1)|Y

l=1

Y

t2T (1)
l

p0(ft)

#1�k

⇥

"
Y

t2T (0)

N
�
yt; b+

pX

i=1

aiui�
(0)
i (xt,⌧

(0)), ��1
�
#k

, (3c)

and the conditional distribution of latent variables zT (j)
l

,

yT
zT (1)

l
zT (2)

l

fT (2)
l

fT (1)
l

efT (1)
l

fT (2)
l

efT (2)
l

fT (3)
l

xT xT (1)
l

xT (2)
l

✓ ✓(1)
l ✓(2)

l

yT
zT (1)

l
zT (2)

l

fT (2)
l

fT (1)
l

efT (1)
l

fT (2)
l

efT (2)
l

fT (3)
l

xT xT (1)
l

xT (2)
l

a a(1)
l a(2)

l

U

�

r

zT (j)
l

fT (j)

xT (j)
l

efT (j)

fT (j+1)

a(j)
l

r(j)
l

b(j)
l

�(j)
l

U(j)
l

8j, are expressed by

p(zT (j)
l

| fT (j+1) ,ef
(j)

l ,xT (j)
l

,✓(j)
l ) =

=
Y

k2{0,1}

" |T (j+1)|Y

l=1

Y

t2T (j+1)
l

p0(ft)

#1�k

⇥

"
Y

t2T (j)
l

N
�
z(j)
t,l ; z̄

(j)
t,l , �

(j)
l

�1�
#k

, (3d)

(b) (c)

220
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fT (j)
l

= {f (j)l (xt) ⌘ f (j)l,t | 8xt 2 xT (j)
l

}. Similarly, let

fT (j) = {fT (j)
l

}
|T (j)|
l=1 . To keep the notation uncluttered, let:

zT = {zT (j)}
m
j=1 ,

fT = {fT (j)}
m
j=0 ,

ef
(j)

= {fT (j0)}
j�1
j0=0, 8j = 1, . . . ,m ,

xT = {xT (j)}
m
j=0 ,

a =
n
{a(j)

l }
|T (j)|
l=1

om

j=0
, a(0)

⌘ a ,

� =
n
{�(j)

l }
|T (j)|
l=1

om

j=0
, �(0)

⌘ � ,

b =
n
{b(j)l }

|T (j)|
l=1

om

j=0
, b(0) ⌘ b ,

✓ =
n
{✓(j)

l }
|T (j)|
l=1

om

j=0
, ✓(j)

l ={a(j)
l ,U, b(j)l ,�(j)

l }.

Joint distribution. The complete joint distribution of ob-
servations and all variables for a model with resolution m
is expressed as

p
�
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where the pair of � and r are hierarchical parameters which
shall be discussed shortly. The corresponding graphical
model is shown in Fig. 4.

The prior model parameter in (3) is factorized as

p(✓(j)
l ,�,r)=p(b(j)l |�(j)

l )p(�(j)
l )

⇥p(U |�)p(a(j)
l |r)p(r |�)p(�). (3b)

The conditional distribution of the observations is ex-
pressed by
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and the conditional distribution of latent variables zT (j)
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Figure 1: (a) Recursive partitioning of the index set by a factor of 2 for a model with resolution m = 2. (b) The
graphical representation of the fully independent MRGP (fiMRGP) model using the conventional plate notation.
The boxes indicate |T (j)| replications and the arrows show the dependency between variables. (c) The graphical
representation of the conditionally independent MRGP (ciMRGP) model. Note that, for better readability, we
have not shown noise and bias variables as indicated in (6).

take q(fT (m+1)) and q(fT (j)
l

|zT (j)
l

) to match the prior
model. These difficult-to-compute terms would then
effectively cancel in the optimization when computing
the Kullback-Leibler divergence between the prior and
posterior. This simplifying assumption, in particular
for q(fT (j)

l

|zT (j)
l

), makes the inference tractable but it
comes with the price of severely underestimating un-
certainties which ultimately causes overfitting in terms
of sensitivity to the chosen resolution.

To reduce the implications of this simplification while
maintaining a tractable solution, we will allow the GPs
to share part of the parameter space θ. In the following,
we discuss this model alternative.

4.2 Conditionally Independent MRGP
Joint Distribution The joint distribution of all ob-
servations and all latent variables is given by

p
(
yT , zT , fT , fT (m+1) ,xT ,U ,a, b, γ,Γ, r

)
= p(yT | fT (1)

l

,xT ,θ
(0))p(θ(0) |Γ, r)

×

[
m∏
j=1

|T (j)|∏
l=1

p(zT (j)
l

| fT (j+1)
l

, f̃
(j)

l ,xT (j)
l

,θ
(j)
l )p(θ

(j)
l ,Γ,r)

]

×

[
m∏
j=1

|T (j)|∏
l=1

p(fT (j)
l

|zT (j)
l

)

]
p(fT (m+1)), (5)

where the pair of Γ and r are hierarchical parameters
which will be discussed shortly. The corresponding
graphical model is shown in Fig. 1-c.

The prior model parameter in (5) is factorized as

p(θ
(j)
l ,Γ, r) = p(b

(j)
l | γ(j)

l )p(γ
(j)
l )p(U | Γ)

× p(a
(j)
l |r)p(r | Γ)p(Γ). (6)

To facilitate expressions of the conditional distribu-
tions, let Z

(j)
k ,∀k ∈ {j, j + 1}, indicate a binary switch

parameter such that Z
(j)
k = 1 when k = j and Z

(j)
k = 0

when k = j + 1. The conditional distribution of the
observations is expressed by

p(yT | fT (1) ,xT ,θ) =
∏
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[|T (1)|∏
l=1

∏
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,

and the conditional distribution of the latent variables
zT (j)

l

, ∀j, is expressed by

p(zT (j)
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| fT (j+1) , f̃
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l ,xT (j)
l
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l )

=
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where z̄
(j)
t,l , ∀j ≥ 1, is defined as:

z̄
(j)
t,l =

j−1∑
j′=0

f j
′

t,l + b
(j)
l +

p∑
i=1

a
(j)
i,l uiφ

(j)
i (xt, τ

(j)
l ),

and p0(ft) approaches the Dirac point mass δ(ft).

Role of Hierarchical Parameters As mentioned
earlier, in the expression for the joint distribu-
tion (5) we have introduced hierarchical parameters
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Γ = [Γik], i, k ∈ {1, . . . , p} and r=(r1, . . . , rp)
>, which

are not explicit in the generative model, Fig. 1-b.

The parameters ri represent the precision of the basis-
axis scale parameter a

(j)
i,l and are shared across res-

olutions and regions. These parameters will enable
automatic determination of the effective number of
basis axes, as the posterior will approach zero for axes
that are effectively not used. Thus at each resolution
and in each region, only a subset of the basis axes will
be used and others will have little to no influence.

Furthermore, our recursive framework requires the in-
dexing of the axes of U to be the same across reso-
lutions. More precisely, we shall learn the posterior
distribution over U in a Bayesian recursive fashion such
that the posterior from the previous resolution is used
as the prior for the current resolution. A complication
is that the indexing of {ui}pi=1 might end up being com-
pletely arbitrary at each resolution. This is because ui

is distributed according to a Bingham distribution as
ui ∼ B(Bi), where Bi is expressed via a set of eigenvec-
tors and eigenvalues, Bi = Mi × diag[κi]×Mi

>. The
complication is that the indexing of these eigenvectors
can be completely arbitrary, implying that the neces-
sary one-to-one correspondence between the eigenvec-
tors representing the prior and those representing the
posterior is lost. Our sequential (recursive) learning
however requires a unique one-to-one correspondence.
We might consider to sort the eigenvectors (axes) based
on their corresponding eigenvalues. However, that
would result in sub-optimal performance.

To formally handle the axis-index ambiguity across
resolutions, we have introduced a latent sparse matrix Γ
of binary indicator variables to account for the possible
index permutation between the prior and the posterior
of the basis axes in transitioning from resolution j − 1
to j. A matrix element Γik = 1 indicates that the axis
identified by index k in the posterior model of resolution
j − 1 is identical to the axis denoted by index i in the
current resolution j. In defining the prior, Eq. (A.2)
and Eq. (A.3), we have conditioned both ui and r on Γ
to ensure accumulation of “aligned prior beliefs” of these
parameters across resolutions (see (6) and Fig. 1-c).

The explicit form of the prior distributions over all
variables in (6) is discussed in detail in App. A.
Variational Inference Here, we consider a varia-
tional posterior in the form of:

q(zT , fT , fT (m+1) ,U ,a,Γ, r)=

[
m∏
j=0

|T (j)|∏
l=1

q(θ
(j)
l ,Γ,r)

]

×

[
m∏
j=1

|T (j)|∏
l=1

q(zT (j)
l

)p(fT (j)
l

|zT (j)
l

)

]
p(fT (m+1)),

where the use of a partially factorized mean-field ap-
proximation results in

q(θ
(j)
l ,Γ, r) = q(b

(j)
l | γ(j)

l )q(γ
(j)
l )

× q(a
(j)
l |U)q(U)q(r)q(Γ). (7)

We then take p(fT (m+1)) and p(fT (j) | yT (j)) to match
the ones in the prior model of the joint expression (5)
allowing a tractable solution. Furthermore, notice the
difference in factorization of the prior (6) and the pos-
terior (7). In particular, we have considered a joint pos-
terior over basis axes and their scales, q(ui)q(a

(j)
i,l | ui).

The joint posterior allows us to conveniently use the
posterior q(ui) as the prior in the factorized prior for
the sequential (recursive) learning procedure.

Given the joint distribution and our choice of the vari-
ational posterior distribution, the variational lower
bound is expressed by

L = LyT +

m∑
j=1

LzT (j)
, (8)

where LyT can be written as the sum of the likelihood
and the negative Kullback-Leibler divergence (KLD)
between the posterior and the prior,

LyT =
〈
log p(yT |xT , fT (1) ,θ(0))

〉
q(θ(0))p(fT (1) )

−

〈
log

q(θ(0),Γ, r)

p(θ(0),Γ, r)

〉
q(θ(0),Γ,r)

.

The notation 〈·〉q(·) is used to denote the expectation
with respect to its variational posterior distribution.
Similarly LzT (j)

can be expressed as the sum of the
likelihood and the negative KLD between the poste-
rior and the prior plus the posterior entropy of the
remainder term,

LzT (j)
=

〈
log p(zT (j) | xT (j) , fT (j+1) , f̃

(j)
,θ(j))

〉
q(·)p(·)

−

〈
log

q(θ(j),Γ, r)

p(θ(j),Γ, r)

〉
q(θ(j),Γ,r)

−〈log q(zT (j))〉q(zT (j) )
,

where q(·)p(·) := q(zT (j))q(θ(j))p(f̃
(j)

)p(fT (j+1)). Tak-
ing into account the convenient form of (8), the op-
timal posterior distribution can now be obtained by
maximizing the lower bound using standard variational
inference.

The explicit forms of the optimized variational posterior
distributions are derived in App. B. Descriptive statis-
tics of the posterior distributions are summarized in
App. C. The predictive process is discussed in App. D.
The optimization of the basis interval parameters is dis-
cussed in App. E. Finally, an algorithmic presentation
of the model is described in App. F.
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fiMRGP1 fiMRGP4
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(b) Vicon2
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fiMRGP5

Figure 2: Illustrative comparison of ciMRGP and
fiMRGP at various resolutions on (a) the synthetic
dataset ToyData, App. G.2.1, and (b) the real dataset
vicon2, App. G.2.2. See the text for details.

5 EXPERIMENTS
Throughout this section, we consider spectral densities
of the Matérn class of covariance functions (order 1.5
and length scale 1), [30, ch. 4], and we consider eigen-
functions of the Laplace operator as the basis functions
across all resolutions. Thus, for a dx-dimensional input
variable xt, we choose the basis functions, ∀xt ∈ xT (j)

l

,

φ
(j)
i,l (xt, τ

(j)
l )=

dx∏
d=1

(1/

√
τ
(j)
d,l ) sin(πi(xt,d + τ

(j)
d,l )/2τ

(j)
d,l ),

with λ
(j)
i (τ

(j)
l ) =

∑dx

d=1(πi/2τ
(j)
d,l )

2, ∀i, l, j. The num-
ber of basis functions is set to p = min{n, 100}.

In all experiments, we compare the performance of two
different multiresolution model architectures, the condi-
tionally independent and the fully independent models,
namely ciMRGP and fiMRGP. Note that fiMRGP here
is obtained from ciMRGP by forcing the GPs across
all resolutions to be independent (refer to Fig. 1). For
simplicity, we consider uniform subdivision of the index
set by a factor of q = 2. Finally, for instance, the nota-
tion ciMRGP4 is used to refer to ciMRGP of resolution
m = 4.

Conditional Independence versus Full Indepen-
dence We begin with an illustrative experiment
which demonstrate some limitations of the full indepen-
dence assumption, non-smooth boundaries and overfit-
ting in the sense of sensitivity to the chosen resolution.

For this demonstration, we compare the performance
of ciMRGP and fiMRGP at various resolutions on syn-
thetic data and real data. Figure 2-a presents a regres-
sion task of identifying (2-dimensional) latent functions
from 32 noisy measurements on the ToyData dataset,
App. G.2.1. The dotted lines show the ground-truth
and the solid lines indicate the predictions at 105 test
locations within the input range. At resolution m = 1,
the two models ciMRGP1 and fiMRGP1 perform com-
paratively. However, with increasing resolution, these
models perform very differently. In particular, notice
the non-smooth boundaries in the case of fully inde-
pendent model at the highest resolution, fiMRGP5,
which are almost non-existing in ciMRGP5. Given
that the training set includes n = 32 data samples, at
m = 5 practically every single data point is a region,
|T (5)

l | = 1,∀l. Also notice that fiMRGP5 is closely
following these data points, exhibiting signs of overfit-
ting. The overfitting issue associated with fiMRGP is
partly due to the unconstrained flexibility of the GPs
which manifest itself at the higher resolutions where
the size of the regions under consideration becomes
increasingly smaller. In our experiments on real data,
however, the overfitting even happened at the lower
resolutions. An example on the vicon2 dataset, a sub-
set of data recorded from a magnetic field, App. G.2.2,
is shown in Fig. 2-b. The 3-dimensional noisy mea-
surements are shown by dotted lines and the predicted
strength of the magnetic fields at three different heights
is estimated by each method and shown with solid lines.
At m = 1, both models (ciMRGP1 and fiMRGP1) per-
form equally well, but with the increase of resolution
to m = 2, fiMRGP2 begins to fail which worsens as
the resolution is further increased, while the ciMRGP
family of models remain intact and comparative at all
resolutions.

Regression on Multiple Datasets We now com-
pare the performance of various MRGP models on a
number of datasets in a more structured fashion. As
baselines, we include other scalable GP methods in this
comparison. Key features of the datasets and models
are summarized in Table 1, and they are described in
more details in App. G. The performance is evaluated
in terms of the root-mean-square error (RMSE) and
the mean log-likelihood (MLL) on test sets, shown in
Table 2 and Table 3, respectively. The model ciMRGP8
is only applied to the datasets with larger data samples.
The main results are summarized as follows. In the
case of ciMRGP, increasing the resolution from m = 0
to the higher resolutions, m ≥ 1, resulted in noticeable
improvements in terms of MLL scores. The advantage
is noticeable to a lesser degree in terms of the RMSE
scores. In some cases, fiMRGP showed instabilities in
particular at the higher resolutions m ≥ 2. In other
cases, it only resulted in marginal improvements over
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Table 1: Summary of datasets and methods used in the comparison.
Dataset

Name Source dx dy ntrain ntest Note

oes10 [35] 298 16 302 100 F.1.1

oes97 [35] 263 16 250 83 F.1.1

atp1d [35] 411 6 303 33 F.1.2

atp7d [35] 411 6 221 74 F.1.2

scm1d-a [35] 280 16 2249 750 F.1.3

scm1d [35] 280 16 7352 2450 F.1.3

scm20d [35] 61 16 6724 2241 F.1.3

naval [8] 16 2 8951 983 F.1.4

vicon [19] 3 3 8806 8806 F.1.5

hrtf [1] 8 200 29 8 F.1.6

nengo [5; 38] 1 7 1211 403 F.1.7

lorenz96 synthetic 1 20 1000 105 F.1.8

Method

Name Source Note

MRGP0 this paper m = 0, q = 2
ciMRGP1 this paper m = 1, q = 2
ciMRGP2 this paper m = 2, q = 2
ciMRGP3 this paper m = 3, q = 2
ciMRGP8 this paper m = 8, q = 2
fiMRGP1 this paper m = 1, q = 2
fiMRGP2 this paper m = 2, q = 2
fiMRGP3 this paper m = 3, q = 2
SGPMC [18] F.3.1

SVGP [33] F.3.2

SVIGP [17] F.3.3

Table 2: Average test RMSE for all methods across five repetitions.
Dataset MRGP0 ciMRGP1 ciMRGP2 ciMRGP3 ciMRGP8 fiMRGP1 fiMRGP2 fiMRGP3 SGPMC SVGP SVIGP

oes10 0.784 0.757 0.757 0.758 — 0.785 0.788 0.799 0.775 0.774 0.775
oes97 0.702 0.699 0.697 0.696 — 0.703 0.707 0.720 0.705 0.705 0.705
atp1d 1.334 1.297 1.293 1.291 — 1.313 1.312 1.309 1.039 1.039 1.039
atp7d 1.228 1.231 1.229 1.232 — 1.226 1.222 1.217 1.005 1.005 1.006
scm1d-a 0.887 0.884 0.882 0.880 0.871 large large large 0.994 1.001 1.002
scm1d 1.073 1.052 1.047 1.041 1.021 large large large 1.018 1.018 1.021
scm20d 1.053 1.051 1.048 1.042 0.990 large large large 0.996 0.996 0.997
naval 0.009 0.006 0.005 0.005 0.005 0.004 0.531 large 0.011 0.011 0.019
vicon 0.019 0.018 0.018 0.018 0.017 0.026 large large 0.326 0.325 0.326
hrtf 0.015 0.014 0.014 0.014 — 0.015 0.016 0.019 0.014 0.014 0.014
nengo 0.593 0.574 0.564 0.561 0.552 0.594 0.591 0.603 0.813 0.812 0.824
lorenz96 0.361 0.329 0.329 0.330 0.330 0.433 large large 4.142 4.018 4.121

Table 3: Average test MLL for all methods across five repetitions.
Dataset MRGP0 ciMRGP1 ciMRGP2 ciMRGP3 ciMRGP8 fiMRGP1 fiMRGP2 fiMRGP3 SGPMC SVGP SVIGP

oes10 -9.7 -4.8 -3.9 -3.4 — -9.7 -9.8 -10.1 -5.6 -5.7 -10.4
oes97 -5.0 -2.9 -2.6 -2.5 — -5.0 -5.1 -5.3 -4.8 -4.8 -8.7
atp1d -19.0 -6.7 -3.9 -2.9 — -18.6 -18.5 -18.5 -4.1 -4.1 -7.5
atp7d -11.3 -4.7 -3.3 -2.7 — -11.2 -11.2 -11.1 -3.9 -3.9 -7.1
scm1d-a -56.8 -25.5 -16.9 -12.5 -2.9 -large -large -large -8.8 -8.8 -large

scm1d -98.2 -46.3 -30.8 -22.8 -8.0 -large -large -large -9.2 -9.1 -large

scm20d -92.2 -41.5 -27.9 -20.6 -7.5 -large -large -large -8.9 -8.8 -large

naval 1.8 2.2 2.3 3.3 3.4 3.6 -2497. -large 1.2 -0.9 -47.2
vicon -0.5 -1.2 -0.9 -0.3 -0.2 -4.8 -large -large -14.5 -1.0 -large

hrtf 0.1 -0.0 -0.5 -0.9 — 0.0 0.0 -0.2 -0.9 -0.9 -0.3
nengo -22.6 -7.0 -4.8 -3.6 -2.3 -27.0 -26.4 -25.8 -228. -3.2 -23.4
lorenz96 -139. -30.6 -16.1 -9.3 -3.1 -109. -large large -large -170. -359.

the base model, MRGP0. In comparison to the family
of sparse GP models, ciMRGP at the higher resolu-
tions performed well in terms of RMSE, but resulted
in noticeably higher MLL scores. Generally, in cases
with more data samples, we found it beneficial to in-
crease the resolution to higher values. Consider the
two datasets scm1d and scm20d. We increased the
resolution further to m = 10. The resulting models
ciMRGP10 improved upon previously achieved scores
reaching to RMSE and MLL scores of 0.994 and −6.4
in the case of scm1d, and 0.989 and −4.9 in the case of
scm20d. This additional gain of course comes with the
cost of a longer computational time which may be jus-
tifiable in certain applications and for larger datasets.

6 CONCLUSION

We have derived a multiresolution Gaussian process
model which assumes conditional independence among

the GPs across all resolutions. Relaxing the full inde-
pendence assumption was shown to result in models ro-
bust to overfitting in the sense of reduced sensitivity to
the chosen resolution, and predictions which are smooth
at the boundaries. Although models with high reso-
lutions may safely be used for small amounts of data,
they are most relevant, and computationally justified,
when there are large amounts of data. This property,
combined with the favorable computational advantages
of the low rank representation via the Karhunen-Loève
expansion, could make the proposed model appealing
for large datasets. We conclude the paper by reiterat-
ing that sharing the basis axes is an effective approach
toward creating cross-talk between GPs, an approach
that could be useful for learning deep GPs with condi-
tional independence across layers.
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