
Active Exploration in Markov Decision Processes

A Relaxing assumptions

In this section we review the assumptions used throughout the paper and discuss if and how they could be
relaxed.

A.1 Assumption 1

We consider how to remove Asm. 1. When T⇡,t(s) = 0 we set bµ⇡,t(s) to an arbitrary default value µ1.7 In this
case, the prediction loss becomes
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Asm. 1 makes the simplification that E(⇡, n) = 0. In order to deal with the general case, we need to take care
of the event {9s 2 S, T⇡,n(s) = 0} in which at least one state does not have any sample from which we could
estimate its mean. An alternative is to consider that we initially have a “fictitious” observation equal to a fixed
value at each state, which would introduce a small bias that tends to zero quickly. Another alternative could be
to start by running a policy ⇡0 over the states of the MDP and as soon as each state is visited at least once,
we set the time step equal to 1 and begin our analysis. In the framework of the learning algorithm FW-AME,
Asm. 1 can be easily replaced in practice by considering an adaptive length ⌧1 such that at least one sample of
each state is collected at the end of the first episode (which is what we do in the experiments in Sect. 5). The
length of this phase would be small as the following result applies.

Proposition 4. For any policy ⇡ 2 ⇧SR
, under Asm. 2, the term E(⇡, n) decreases exponentially in n.
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We thus obtain for any stationary policy ⇡ and any budget n > 1/⌘⇡,min
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which proves the result.

A.2 Assumption 3

The reversibility assumption (Asm. 3) can be removed and Prop. 1, Lem. 1 as well as the proof of Thm. 1 could
be easily adjusted to handle the case of non-reversible policies. As a result, the reversibility condition does not
need to hold for the algorithm FW-AME and its vanishing regret guarantees. This can be achieved by replacing
Prop. 1 with a concentration result adapted from Paulin et al. (2015).

Proposition 5 (Thm. 3.10 and Prop. 3.14 from Paulin et al. (2015)). Let us fix a stationary policy ⇡ which

induces a time-homogeneous, ergodic Markov chain. We denote by P its transition matrix and by P̂ the time-

reversal matrix of P . We denote by ⌘⇡,min = mins2S ⌘(s) > 0 and ⌘⇡,max = maxs2S ⌘(s) where ⌘ is the chain’s

7Formally µ1 = +1 yet we can also set it equal to a suitable finite value depending on the distributions. For example,
if the state distributions are Gaussian and the means belong to an interval [�µmax,+µmax], we can fix µ1 = 3�max+µmax,
which ensures that the mean estimate computed from one single sample has an overwhelming probability of being more
accurate than the default value µ1 when there are no samples.

8Here we use the more general result for non-reversible chains reported in Prop. 5.
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stationary distribution. We consider the pseudo-spectral gap �⇡ps = maxk�1 �(P̂ kP k)/k > 0. For a given state s
and for every ✏ > 0
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In Sect. 4, the reversibility condition is intrinsically needed to relate the spectral gap with its spectral norm
formulation, which is not possible for the pseudo-spectral gap. Nonetheless, rather than assuming that all
policies are in the set of reversible stationary randomized policies ⇧SRR, we could focus on computing a policy
⇡?
FMH belonging to the restricted set ⇧SRR, thus replacing the assumption with an additional constrained in the

optimization problem.

A.3 Assumption 4

We can deal with the case when the MDP transition model p is unknown by following an optimistic approach
similar to UCRL (Jaksch et al., 2010). We recall that the optimization problem solved by FW-AME at each

episode is indeed equivalent to solving an MDP with known p and reward function set to r bL+

tk�1
(e�k), which is

already an optimistic evaluation of the true gradient. Whenever p is unknown, but an estimate and a confidence
set are available, we can include the uncertainty of the estimate of p into the optimistic optimization of the
MDP. Let us fix an episode k and t = tk � 1 the time step at the end of the previous episode. We introduce the
following set that is p-dependent and thus unknown
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The aim is the solve the following problem
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If we define over S ⇥ A the (bounded) reward function r = �r bL+

t (e�k), we notice that the above problem can
be reduced to the dual formulation of finding the policy that maximizes the average reward (Sect. 8, Puterman,
1994). As such, it becomes equivalent to solving the following problem

max
⇡2⇤

(p)
⌘

max
p2Ct

⇢⇡(p), (18)

where ⇢⇡(p) is the gain of stationary policy ⇡ in the MDP with transition probability function p. The confidence
set Ct defines a set of plausible transition probability functions at time t. Since the reward function is known,
this corresponds to a set of plausible MDPs. Problem (18) thus returns an optimal policy in the plausible MDP
with the largest gain. Lattimore and Szepesvári (Sect. 38, 2019) explicit the construction of Ct and explain that
the solutions of (18) are guaranteed to exist and can be found e�ciently.9

While a complete derivation of the regret bound for this algorithm is left for future work, we expect the final
result of Thm. 1 to remain unchanged. In fact, the optimal p returned by problem (18) belongs to Ct so it is close
to the real p up to a factor scaling in 1/Tt by construction of Ct. Hence, if the number of visits of any state-action
pair (and not just the number of any state visit as in the case of known p) is enforced to be proportional to the
time step with high probability, then the derivation of the eO(t�1/3) rate in the proof of Prop. 1 (cf. App. D) is
unchanged.

9In a nutshell, the justification comes from introducing the extended Markov decision process fM from Jaksch et al.
(2010) and solving the average reward problem on that specific MDP using Extended Value Iteration. The fact that the

extended action-sets of fM are infinite is not problematic since Ct is a convex polytope and has finitely many extremal
points; as a result restricting the confidence sets to these points makes the extended MDP finite without changing the
optimal policy.
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Algorithm 2 FMH

Require: ⌘? is the optimal stationary distribution of the convex problem (7).
Require: 3 parameters ⇢n, �n and ⌘ (typically set respectively to S/n, 1/n and mins ⌘?(s)/2).

Compute X1 the optimal solution of the convex problem (P1) with parameters ⇢n, �n and ⌘.
Deduce the corresponding state distribution ⌘1: ⌘1(s) =

P
s02S

X(s, s0).
Compute the optimal stationary policy of the convex problem (P2) with ⌘1 as target state distribution.

B Faster-Mixing Heuristic FMH

B.1 Derivation of the two-step method

FMH(⇡?, n) receives as input a budget n and ⇡?, the optimal solution of (7), and returns a stationary policy
⇡?
FMH by solving two convex optimization problems. An outline of FMH is provided in Alg. 2.

Step 1. In this step we first remove the stationarity constraint on ⌘ w.r.t. the MDP dynamics and replace it by
a weaker but easier constraint involving the adjacency matrix of the MDP. Instead of using P as the kernel of
the Markov chain associated to a policy, we consider it as a generic transition matrix that respects the possible
transitions in the MDP, i.e., Pij = 0 if Qij = 0. In this case, problem (11) becomes convex in P for a fixed ⌘ and
convex in ⌘ for a fixed P , yet it is non-convex in both P and ⌘. When P is fixed, ⌘ has no more degree of freedom
(i.e., it can be directly derived from P ), thus any framework of alternate minimization cannot be applied here.
We notice that the constraint of reversibility D⌘P = PTD⌘ is the toughest one to handle, since it involves both
P and ⌘ and is not convex in P and ⌘. This leads us to introduce the matrix variable X = D⌘P 2 RS⇥S (i.e.,
Xij = ⌘iPij). The reversibility constraint on P thus simply translates to a symmetry constraint on X. More
discussion on the characteristics of the matrix X is for example provided in Hsu et al. (2015). We then obtain
the following optimization problem with variable X (and its corresponding ⌘)

minimize
X, ⌘

L0(X) :=
X

s2S

�2(s)

⌘(s)
+ ⇢n

1

1� kD�1/2
⌘ XD�1/2

⌘ �p
⌘
p
⌘T k2

(19)

subject to X � 0, X = XT ,
X

j2S

Xij = ⌘i 8i 2 S, Xij = 0 if Qij = 0, ⌘ � ⌘, ⌘T1 = 1.

This problem is still non-convex in X and ⌘. An idea could be to fix ⌘ and solve the convex problem in X
(or equivalently P ). The most straightforward choice for ⌘ is to use ⌘?, the optimal stationary distribution of
problem (7), and solve the convex problem of finding the fastest mixing Markov chain with stationary distribution
⌘? (Boyd et al., 2004). However the Markov chains whose stationary distributions are ⌘? might all mix poorly.
Leveraging the intuition behind the regularized problem (11), we give more slack to ⌘ in order to find faster
mixing Markov chains, at the cost of having L(⌘) slightly larger than L(⌘?), i.e., at the cost of a slightly worse
asymptotic performance. We formalize this trade-o↵ with the a parameter �n, which represents how close we
allow the stationary distribution ⌘ to be to ⌘? with respect to the `2-norm (we pick the `2-norm in order to
ensure the convexity of the resulting constraint). We thus focus on solving the following surrogate optimization
problem (P1)

minimize
X

L1(X) :=
X
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where the small positive constant ⌘ should satisfy ⌘  mins ⌘?(s). Prop. 6 guarantees the convexity and feasibility
of the optimization problem (P1).

Proposition 6. (P1) is convex in X and well-defined for any �n.
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Proof. The convexity of (P1) is easily obtained from the convexity of the non-regularized problem, the convexity
of the function X 7! 1/(1 � kXk2) and the convexity of all the constraints. There can however exist some

matrices X such that kD�1/2
⌘? XD�1/2

⌘? �
p
⌘?
p
⌘?

T k2 � 1, thus making (P1) either undefined in its objective
function (if the norm is equal to 1) or not satisfying one of the constraints. We thus need to ensure that for

any fixed �n there exists at least one matrix X such that kD�1/2
⌘? XD�1/2

⌘? �
p
⌘?
p
⌘?

T k2 < 1 with the remaining

constraints satisfied. To do so, we introduce the transition matrix M? = (P ? + cP ?)/2 with cP ? the time-reversed
transition matrix of P ? which is the transition matrix of the optimal policy for problem (7). Whereas P ? is not
necessarily reversible w.r.t. ⌘?, it is the case for M?, thus yielding SLEM(M?) < 1. We also define X = D⌘?M?.
By construction of X, we have X � 0, X = XT ,

P
i,j Xij = 1, Xij = 0 if Qij = 0 and

P
j Xij � ⌘. Furthermore,
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= 0 which means that all the

constraints are verified. In addition, since M? is reversible w.r.t. ⌘?, we have kD�1/2
⌘? XD�1/2

⌘? �
p
⌘?
p
⌘?

T k2 =

kD1/2
⌘? M?D�1/2
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T k2 = SLEM(M?) < 1. This proves that (P1) is well-defined.

Solving the convex optimization problem (P1) yields an optimal matrix X1 2 RS⇥S , from which we easily obtain
the associated stationary distribution ⌘1 as well as the transition matrix of the associated Markov chain P1

⌘1(s) =
X

s02S

X1(s, s
0) and P1(s, s

0) =
X1(s, s0)P
s0 X1(s, s0)

.

Step 2. The distribution ⌘1 is stationary w.r.t. the Markov chain P1 (which is expected to have better mixing
properties than P ?), but it may not be feasible w.r.t. the MDP dynamics. As a result, we must now find a
stationary policy ⇡ whose stationary distribution is closest to ⌘1. This is closely linked to the steady-state
control problem from Akshay et al. (2013), where it is proved that for an ergodic MDP the problem of finding
a stationary policy given a target stationary state distribution is e↵ectively decidable in polynomial time. If the
steady-state control problem admits a solution, such a policy can be computed by simply solving a polynomial-
size linear program. More precisely, we seek a policy ⇡ in the set of non-negative reals {⇡s,a|s 2 S, a 2 As} such
that

8s 2 S,
X

s02S,a2As0

⌘1(s
0)p(s|s0, a)⇡s0,a = ⌘1(s) and

X

a2As

⇡s,a = 1.

If the steady-state control problem does not admit a solution, we seek a stationary policy whose stationary state
distribution is closest to ⌘1 w.r.t. the `2-norm by solving the following convex optimization problem (P2) in ⇡

minimize
⇡

X

s

⇣
⌘1(s)�

X

s02S,a2As0

⌘1(s
0)p(s|s0, a)⇡s0,a

⌘2

(P2)

subject to 8s 2 S, ⇡s,a � 0 8a 2 As and
X

a2As

⇡s,a = 1.

Since we do not know in advance if the steady-state control problem admits a solution or not, we directly solve
problem (P2) which encompasses both cases (its optimal value is 0 if the steady-state control problem admits a
solution). This yields a policy denoted ⇡?

FMH.

B.2 A SDP formulation of FMH (FMH-SDP)

We notice that step 1 of FMH is by far the most computationally demanding, due to the complexity of the
objective function and constrained set of problem (P1). Fortunately, the symmetry constraint on X leads to the

symmetry of the matrix D�1/2
⌘? XD�1/2

⌘? �
p
⌘?
p
⌘?

T
, which is a very useful property because it becomes easy to

compute a subgradient of its spectral norm w.r.t. X (see e.g., Boyd et al. (Sect. 5.1, 2004)). We can thus apply
subgradient descent to solve (P1). However a projection on the constrained set is required at each step. We thus
propose an alternative method to solve problem (P1) that is projection-free and hence more computationally
e�cient. Since this approach uses semidefinite programming, the resulting heuristic is called FMH-SDP.

The key observation is that the regularizing term in (P1) partially “takes into account” the non-regularized one
through the last constraint k⌘ � ⌘?k  �n. Furthermore, the regularizing term corresponds (up to composition
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of a non-decreasing function) to minimizing the spectral norm of a symmetric matrix. Drawing inspiration from
Boyd et al. (Sect. 2.3, 2004), we can express it as a semidefinite program (SDP) which can be solved e�ciently
using standard SDP solvers. Introducing a scalar variable s to bound the spectral norm, step 1 of FMH is
replaced by the following SDP problem whose variables are the matrix X and the scalar s

minimize
X,s

s

subject to � sI � D�1/2
⌘? XD�1/2

⌘? �
p
⌘?
p
⌘?

T � sI

X � 0, X = XT , Xij = 0 if Jij = 0
X

(i,j)2S2

Xij = 1,
X

j2S

Xij � ⌘, |
�X

j2S

Xij

�
i
� ⌘?i |  (�n)i.

(20)

FMH-SDP is not only more computationally e�cient due to its SDP formulation but it also loses the dependency
on the hyper-parameter ⇢n as only �n remains.

C Proofs

We first recall the performance loss su↵ered by the continuous relaxation in the bandit case, where the frequency
T⇡,n/n is replaced by an allocation � in the simplex. In order to keep the notation as consistent as possible,

consider a stochastic bandit problem with S arms, let �n = {⌘n 2 [0, 1]S : ⌘n(s) =
Tn(s)

n } and � be the discrete
and continuous simplex over S arms, where ⌘n(s) is the frequency associated to Tn pulls. Since in this case a
policy directly selects arms rather than actions, the objective functions Ln and L coincide and we can write

L(⌘) = 1

S

X

s

�2(s)

⌘(s)
,

where ⌘ may be either a discrete or a continuous allocation. We have the following.

Proposition 7. Let ⌘?n = argmin⌘n2�n L(⌘n) be the optimal discrete allocation. As computing ⌘⇤n is NP hard,

a standard solution is to first compute ⌘? = argmin⌘2� L(⌘) and then round it to obtain e⌘n. If e⌘n is computed

using e�cient apportionment techniques (Chapter 12, Pukelsheim, 2006), then for any budget n > 2S we have

L(e⌘n)� L(⌘?n) 
2

n
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2S

n
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Furthermore, for any n � 4/(S⌘2
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), where ⌘min = mins ⌘?(s) we have
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⌘3
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.

Proof. Using e�cient apportionment techniques for rounding we have (Lem. 12.8, Pukelsheim, 2006)

min
s
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� 1� S

n
, i.e., 8s, e⌘n(s) � ⌘?(s)

⇣
1� S
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which also implies the other direction as
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s0 6=s
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X

s0 6=s

⌘?(s0) +
X

s0 6=s

⌘?(s0)
S

n
 ⌘?(s) +

S

n
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Then we can bound the performance loss of e⌘n as

L(e⌘n)� L(⌘?n) = L(e⌘n)� L(⌘?) + L(⌘?)� L(⌘?n)| {z }
0

 1

S

X
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�2(s)
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� 1

⌘?(s)

⌘
.

Under the assumption that n > 2S, we can bound each of the summands as

1

e⌘n(s)
� 1
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=
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e⌘n(s)⌘?(s)

 ⌘?(s)S/n
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 2S
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which proves the O(1/n) upper bound. Recalling the definition of L(⌘?) we obtain the final statement

L(e⌘n)� L(⌘?n)  2
X

s

�2(s)

⌘?(s)n
=

2S

n
L(⌘?).

An even faster rate can be obtained exploiting the smoothness of L. Let � = {⌘ 2 � : 8s, ⌘(s) � ⌘min/2}. Since
e⌘(s) � ⌘?(s)(1 � S/n), for any any n > 2S we have e⌘n, ⌘? 2 �, hence using the C-smoothness of L on � with

C = 2�2

max

S(⌘min/2)3
, we can write (Thm. 12.10 Pukelsheim, 2006)

L(e⌘n)� L(⌘?n) 
C

2
||e⌘n � ⌘?||2

2
 8�2

max

⌘3
min

n2
,

which corresponds to an asymptotic rate of O(1/n2). Since the multiplicative constants are larger than those of
the O(1/n) rate, the rate O(1/n2) e↵ectively starts when n is big enough. A rough bound on n for the second
bound to be e↵ectively smaller than the first is obtained by upper-bounding L(⌘?)  �2

max
/⌘min as

8�2

max

⌘3
min

n2
 2�2

max
S

⌘minn
() n � 4

S⌘2
min

,

which concludes the proof.

Proof of Proposition 1. The first statement is a direct application of the relationship between mixing and spectral
gap. For any policy reversible and ergodic policy ⇡, any starting state s0 and any state s, we have from Diaconis
et al. (Prop. 3, 1991)

��P⇡(st = s|s1 = s0)� ⌘⇡(s)
��  1

2

s
1� ⌘⇡(s0)

⌘⇡(s0)
(1� �⇡)

t

Then the di↵erence between the expected frequency and the stationary distribution is bounded as

���
E
⇥
T⇡,n(s)

⇤

n
� ⌘⇡(s)

��� 
1

n

nX

t=2

��P⇡(st = s|s1 = s)� ⌘⇡(s)
��

 1

2
p
⌘minn

nX

t=1

(1� �⇡)
t  1

2
p
⌘minn�⇡

.

Proof of Proposition 3. The state-action polytope ⇤ is closed, bounded and convex according to Puterman
(Thm. 8.9.4, 1994). The problem (7) is thus convex in � due to the convexity of the objective function and
constraints. It is straightforward that ⇡�? 2 ⇧SR. From Puterman (Thm. 8.8.1, 1994), the stationary distri-
bution ⌘⇡�? of ⇡�? is the unique solution of the system of equations

P
s0 P⇡�? (s|s0)⌘⇡�? (s0) = ⌘⇡�? (s) (for each

state s) subject to
P

s ⌘⇡�? (s) = 1. Given that
�P

a �
?(s, a)

�
s
is a solution, it corresponds to the stationary

distribution ⌘⇡�? . By contradiction, assume that there exists a policy ⇡ 2 ⇧SR such that L(⇡, ⌘⇡) < L(⇡�? , ⌘⇡�? ).
Then define for every state-action pair (s, a) the quantity �(s, a) = ⌘⇡(s)⇡(a|s). It is evident that � 2 �(S⇥A),
furthermore for every state s, we have

X

s0,a

p(s|s0, a)�(s0, a) =
X

s0,a

p(s|s0, a)⌘⇡(s)⇡(a|s) =
X

s0

⌘⇡(s
0)
X

a

p(s|s0, a)⇡(a|s0)

=
X

s0

⌘⇡(s
0)P⇡(s|s0) = ⌘⇡(s) =

X

a

�(s, a),

since by stationarity of the policy ⇡, the Markov chain transition matrix P⇡ is stationary w.r.t. ⌘⇡. So � satisfies
the constraint of stationarity of (7), and

L(�) =
X

s

�2(s)

⌘⇡(s)
= L(⇡, ⌘⇡) < L(⇡�? , ⌘⇡�? ) =

X

s

�2(s)

⌘⇡�? (s)
=

X

s

�2(s)P
a �

?(s, a)
= L(�?),
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which contradicts the optimality of �? for problem (7) and thus proves that ⇡�? is the optimal solution of the
problem (8). Finally, the upper bound on the smoothness parameter C⌘ on the restricted set ⇤⌘ is derived using
that the maximal eigenvalue of a symmetric block matrix with positive eigenvalues is bounded by above by the
sum of maximal eigenvalues of its diagonal blocks.

Proof of Lemma 1. The proof is a rather direct application of Prop. 1. We first recall the exact formulation of
the term ✏⇡(s, n, �) in Prop. 1 (see e.g., Hsu et al. (Thm. 3, 2015), Paulin et al. (Thm. 3.8, 2015)):

✏⇡(s, n, �) :=

vuut
8⌘⇡(s)(1� ⌘⇡(s))

ln( 1�

q
2

⌘⇡,min

)

�⇡n
+ 20

ln( 1�

q
2

⌘⇡,min

)

�⇡n
.

Let ⌘⇡,n(s) =
T⇡,n(s)

n be the empirical frequency of visits to state s. Since we need all following statements to hold
simultaneously for all states s 2 S and all stationary policies ⇡ 2 ⇧SR, we need to take a union bound over states
and a cover over the action simplex at each state, which leads to tuning � = �0/(SAS) in the high-probability
guarantees of Prop. 1, which then hold with probability 1� �0. Furthermore, we have the following deterministic
bound

���
1

⌘⇡,n(s)
� 1

⌘⇡(s)

���  max{n, 1

⌘⇡(s)
},

where we used Asm. 1 to ensure that 1/⌘⇡,n(s)  n. We introduce the event

E1(s, n, �) = {⌘⇡,n(s) � ⌘⇡(s)� ✏⇡(s, n, �)}.

Then we have
����E
h 1

⌘⇡,n(s)
� 1

⌘⇡(s)

i���� 
����E
h⇣ 1

⌘⇡,n(s)
� 1

⌘⇡(s)

⌘
I{E1(s, n, �)}

i����+
����E
h⇣ 1

⌘⇡,n(s)
� 1

⌘⇡(s)

⌘
I{EC

1
(s, n, �)}

i����


����E
h⇣ 1

⌘⇡,n(s)
� 1

⌘⇡(s)

⌘
I{E1(s, n, �)}

i����+max{n, 1

⌘⇡(s)
}P{EC

1
(s, n, �)}


���E
h⌘⇡(s)� ⌘⇡,n(s)

⌘⇡,n(s)⌘⇡(s)
I{E1(s, n, �)}

i���+max{n, 1

⌘⇡(s)
}�0


��E
⇥
⌘⇡(s)� ⌘⇡,n(s)

⇤��

⌘⇡(s)
�
⌘⇡(s)� ✏⇡(s, n, �)

� +max{n, 1

⌘⇡(s)
}�0

 1

2
p
⌘minn�⇡⌘2⇡(s)

⇣
1 + 2

✏⇡(s, n, �)

⌘⇡(s)

⌘
+max{n, 1

⌘⇡(s)
}�0,

where the last inequality follows from 1/(1 � x)  1 + 2x for 0 < x  1/2 which can be applied due to the
condition that n is big enough so that ✏⇡(s, n, �)  ⌘⇡(s)/2. Since this condition requires n � O(1/⌘2

min
), we can

resolve the maximum in the previous expression as max{n, 1

⌘⇡(s)
}  n. Finally, setting �0 = 1/n2 translates to

the inequality on the objective function

��Ln(⇡)� L(⇡, ⌘⇡)
��  `n(⇡) :=

1

S
p
⌘minn�⇡

X

s2S

�2(s)

⌘2⇡(s)

⇣
1 + 2

✏⇡(s, n, �)

⌘⇡(s)

⌘
,

from which we obtain the final statement as

Ln(⇡�?)� Ln(⇡
?
n)  L(⇡�? , ⌘⇡�? ) + `n(⇡�?)� L(⇡?

n, ⌘⇡?
n
) + `n(⇡

?
n)

 `n(⇡�?) + `n(⇡
?
n).

Proof of Lemma 2. The proof relies on the concentration inequality in Eq. 9. We proceed through the following
inequalities

Ln(⇡
?
reg

)  L(⇡?
reg

, ⌘⇡?
reg

) + `n(⇡
?
reg

)  L(⇡?
n, ⌘⇡?

n
) + `n(⇡

?
n)  Ln(⇡

?
n) + 2`n(⇡

?
n),

where in the first and last inequality we used Eq. 9, and where the second inequality follows from the definition
of ⇡?

reg
as the optimal solution to the regularized problem.
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Proof of Lemma 3. Introducing the term H := Lreg(⇡?
FMH)�Lreg(⇡?

reg
) where Lreg is defined in Eq. 11, we have

Ln(⇡
?
FMH)  Lreg(⇡?

FMH) = H + Lreg(⇡?
reg

)  H + Ln(⇡
?
n) + 2`n(⇡

?
n).

Given the expression of `n(⇡) provided in Lem. 1, we can write

Lreg(⇡, ⌘) = L(⇡, ⌘) + ⇢n

1� kD1/2
⌘ P⇡D

�1/2
⌘ �p

⌘
p
⌘Tk2

+O(n�3/2).

For notational simplicity we denote ⌘fmh = ⌘⇡?
FMH

, Pfmh = P⇡?
FMH

, ⌘reg = ⌘⇡?
reg

and Preg = P⇡?
reg

. We thus have

H =
X

s2S

⇣ �2(s)

⌘fmh(s)
� �2(s)

⌘reg(s)

⌘
+ ⇢n

⇣ 1

�(Pfmh)
� 1

�(Preg)

⌘
+O(n�3/2).

Given that ⌘reg is a stationary state distribution w.r.t. the MDP dynamics, we can write by optimality of ⌘? for
the problem (7)

X

s2S

⇣ �2(s)

⌘fmh(s)
� �2(s)

⌘reg(s)

⌘


X

s2S

⇣ �2(s)

⌘fmh(s)
� �2(s)

⌘?(s)

⌘
 �2

max

⌘2
k⌘fmh � ⌘?k1  �2

max

p
S

⌘2
k⌘fmh � ⌘?k2.

Using successively the triangular inequality, the property guaranteed in (P2) that ⌘fmh minimizes the distance k ·
�⌘1k2 among all the stationary state distributions w.r.t. the MDP dynamics, and finally the property guaranteed
in (P1) of �n-proximity of ⌘1 to ⌘?, we get

k⌘fmh � ⌘?k2  k⌘fmh � ⌘1k2 + k⌘1 � ⌘?k2  2k⌘1 � ⌘?k2  2�n.

We conclude the proof using the fact that �(Pfmh) and �(Preg) are larger than �min.

D Proof of Thm. 1

D.1 Preliminaries

We recall that the notation un = eO(vn) means that there exist c > 0 and d > 0 such that un  c(log n)dvn for
su�ciently large n. By abuse of language we say that a stationary policy ⇡ belongs to ⇤⌘ if 8s 2 S, ⌘⇡ � 2⌘. For
notational convenience we consider throughout the proof that we relax Asm. 1 (cf. App. A.1) and that the initial
state s1 is drawn from an arbitrary initial distribution over states and we collect its observation x1. This leads
to the configuration where at every time t exactly t state samples have been collected. We start our analysis
with the two following technical lemmas.

Lemma 4. Let � 2 (0, 1). For any length ⌧ > 0, the following bound holds simultaneously for any state s and

any policy ⇡ 2 ⇤⌘ with probability at least 1� �

���
P⌧

t=1
I{⇡t = s}
⌧

� ⌘⇡(s)
���  M(⌧, �) :=

s
2B

�min⌧
+

20B

�min⌧
with B = log

⇣SAS

�

s
1

⌘

⌘
.

Proof. Pick any � 2 (0, 1). Let ⇡ be a fixed policy whose stationary distribution is lower-bounded by ⌘⇡,min

and whose associated Markov chain admits �⇡ as spectral gap. For any length ⌧ > 0 and state s, we define
⌫⇡,⌧ (s) =

P⌧
t=1

I{⇡t = s}. From Prop. 1, for a fixed state s 2 S, the following bound holds with probability at
least 1� �

��⌫⇡,⌧ (s)
⌧

� ⌘⇡(s)
�� 

p
8⌘⇡(s)(1� ⌘⇡(s))✏̃+ 20✏̃ where ✏̃ =

log( 1�

q
2

⌘⇡,min

)

�⇡⌧
.

Since we need this statement to hold simultaneously for all states s 2 S and all stationary policies ⇡ 2 ⇤⌘, we
need to take a union bound over states and a cover over the action simplex at each state, which leads to tuning
� = �0/SAS and thus yields with probability at least 1� �

|⌫⇡,⌧ (s)
⌧

� ⌘⇡(s)| 
p
8⌘⇡(s)(1� ⌘⇡(s))✏̃+ 20✏̃ where ✏̃ =

log(SAS

�

q
1

⌘ )

�min⌧
.
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Using the fact that the function x 7! x(1� x) is upper bounded by 1/4 and setting B = log(SAS

�

q
1

⌘ ) yields the

desired high-probability result.

Lemma 5. Let � 2 (0, 1). There exists a length ⌧� > 0 such that for any T � ⌧�, the following inequality holds

simultaneously for any state s and any policy ⇡ 2 ⇤⌘ with probability at least 1� �

TX

t=1

I{⇡t = s} � ⌘T

Proof. Pick any � 2 (0, 1). M(⌧, �) is a decreasing function of ⌧ , hence there exists a length ⌧� such that for any
T � ⌧�, M(T, �)  ⌘. As a result, Lem. 4 guarantees that we have with probability at least 1� � simultaneously
for any state s and any stationary policy ⇡ 2 ⇤⌘

|
PT

t=1
I{⇡t = s}
T

� ⌘⇡(s)|  ⌘,

which yields in particular

PT
t=1

I{⇡t = s}
T

� ⌘⇡(s)� ⌘ � ⌘.

Restricting our attention to increasing episode lengths in FW-AME and using Lem. 5, we deduce the important
property that for any � 2 (0, 1), there exists an episode k� such that for all episodes k succeeding it (and including
it), we have with probability at least 1� �

X

a2A

e�k(s, a) � ⌘, 8s 2 S, 8k � k�. (21)

More specifically, k� is the first episode whose length ⌧k� verifies

M(⌧k� , �) =

s
2B

�min⌧k�

+
20B

�min⌧k�

 ⌘ with B = log
⇣SAS

�

s
1

⌘

⌘
. (22)

We proceed by providing time-dependent lower and upper bounds on the true gradient rL, which is unknown.
We denote by bL+

t the empirical optimistic approximation of L at any time t, i.e.,

bL+

t (�) =
X

s2S

1P
a �(s, a)

h
b�2

t (s) + 5R2

s
log( 4St

� )

Tt(s)

i
= bLt(�) +

X

s2S

↵(t, s, �)P
a �(s, a)

.

Here we used that ⌫(s) is an observation distribution supported in [0, R]. We note that this assumption can
be easily extended to the general case of sub-Gaussian distributions as done in Carpentier et al. (2011). From
Prop. 2, the following inequalities hold with probability at least 1 � � for any �, time t and state-action pair
(s, a)

r bL+

t (�)(s, a) = r bLt(�)(s, a)�
↵(t, s, �)

(
P

b �(s, b))
2
 rL(�)(s, a)  r bLt(�)(s, a) +

↵(t, s, �)

(
P

b �(s, b))
2
. (23)

Finally, let T = tK � 1 be the final budget (i.e., the time at the end of the final episode K � 1). For the sake of
clarity and readability, we make the simplification that the logarithmic term log(T ) behaves as a constant.
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D.2 Core of the proof

We denote by ⇢k+1 the approximation error at the end of each episode k (i.e., at time tk+1 � 1). Recalling that
�k = ⌧k/(tk+1 � 1), we have

⇢k+1 = L(e�k+1)� L(�?) = L
�
(1� �k)e�k + �k e k+1

�
� L(�?).

Let  ?
k+1

= argmin�2⇤⌘
hrL(e�k),�i be the state-action stationary distribution that “exact” FW would return

at episode k. We have the following series of inequality

⇢k+1  L(e�k)� L(�?) + �khrL(e�k), e k+1 � e�ki+ C⌘�
2

k

= L(e�k)� L(�?) + �khrL(e�k), ?
k+1

� e�ki+ C⌘�
2

k + �khrL(e�k), e k+1 �  ?
k+1

i

 L(e�k)� L(�?) + �khrL(e�k),�? � e�ki+ C⌘�
2

k + �khrL(e�k), e k+1 �  ?
k+1

i

 (1� �k)⇢k + C⌘�
2

k + �k hrL(e�k), b +

k+1
�  ?

k+1
i

| {z }
✏k+1

+�k hrL(e�k), e k+1 � b +

k+1
i

| {z }
�k+1

, (24)

where the first step follows from the C⌘-smoothness of L, the second inequality comes from the FW optimization

step and the definition of  ?
k+1

, which gives hrL(e�k), ?
k+1

� e�ki  hrL(e�k),�? � e�ki, the final step follows
from the convexity of L. The term ✏k+1 measures the error due to an inaccurate estimate of the gradient and
the term �k+1 refers to the discrepancy between the stationary state-action distribution b +

k+1
and the empirical

frequency e k+1 of its realization for ⌧k steps.

Step 1 (Bound on error �k+1). For any k � k�, inequality (21) is verified and we can write

hrL(e�k), e k+1 � b +

k+1
i =

X

s

��2(s)
�P

b
e�k(s, b)

�2
X

a

� e k+1(s, a)� b +

k+1
(s, a)

�
 S�2

max

⌘2
k⌫k+1

⌧k
� ⌘b⇡+

k+1

k1.

Let B = log(SAS

�

q
1

⌘ ). From Lem. 4, we have with probability at least 1 � � simultaneously for every state s

and every policy followed during the episode

��⌫k+1(s)

⌧k
� ⌘b⇡+

k+1

(s)
�� 

s
2B

�min⌧k
+

20B

�min⌧k
.

Hence we obtain the following bound on �k+1 with probability at least 1� �

�k+1  S�2

max

⌘2

hs 2B

�min⌧k
+

20B

�min⌧k

i
.

Step 2 (Bound on error ✏k+1). Using inequality (23), we get with probability at least 1� �

hrL(e�k), b +

k+1
i =

X

s,a

b +

k+1
(s, a)rL(e�k)(s, a)


X

s,a

b +

k+1
(s, a)r bLtk�1(e�k)(s, a) +

X

s,a

b +

k+1
(s, a)

↵(tk � 1, s, �)

(
P

b
e�k(s, b))2


X

s,a

b +

k+1
(s, a)r bL+

tk�1
(e�k)(s, a) + 2

X

s,a

b +

k+1
(s, a)

↵(tk � 1, s, �)

(
P

b
e�k(s, b))2

 hr bL+

tk�1
(e�k), ?

k+1
i+ 2

X

s,a

b +

k+1
(s, a)

↵(tk � 1, s, �)

(
P

b
e�k(s, b))2

 hrL(e�k), ?
k+1

i+ 2
X

s,a

b +

k+1
(s, a)

↵(tk � 1, s, �)

(
P

b
e�k(s, b))2

.
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For notational simplicity we denote by Tk(s) = Ttk�1(s) the number of visits of state s until the end of episode
k� 1 (i.e., at time tk � 1). Using inequality (21) and an intersection bound over two high-probability events, we
get with probability at least 1� 2� for any episode k � k�

✏k+1 
X

s,a

b +

k+1
(s, a)

10R2

⌘2

r
log(

4S(tk � 1)

�
)

1p
Tk(s)

 c0
X

s,a

e k+1(s, a)
1p
Tk(s)

| {z }
vk

+ c0
X

s,a

� b +

k+1
(s, a)� e k+1(s, a)

� 1p
Tk(s)

| {z }
⇠k+1

,

where we define c0 =
10R2

⌘2

q
log( 4ST

� ). ⇠k+1 can be bounded in the same vein as �k+1 using Lem. 4. The error

⇠k+1 is of a higher order than �k+1 and for proof simplicity we consider the following loose bound which is
satisfied with probability at least 1� �

⇠k+1  c0
hs 2B

�min⌧k
+

20B

�min⌧k

i
.

Step 3 (putting everything together in (24)). For k � k�, we get with probability at least 1� 2�

�k+1 + ⇠k+1  c1p
⌧k

+
c2
⌧k

with

8
>><

>>:

c1 =
⇣
c0 +

S�2

max

⌘2

⌘r 2B

�min

c2 =
⇣
c0 +

S�2

max

⌘2

⌘ 20B

�min

,

which provides the bound for k � k�

⇢k+1  (1� �k)⇢k + �k
� c1p

⌧k
+

c2
⌧k

�
+ C⌘�

2

k + �kc0vk. (25)

Choosing episode lengths satisfying tk = ⌧1(k � 1)3 + 1 yields

⌧k = tk+1 � tk = ⌧1(3k
2 � 3k + 1) � 3⌧1k

2 and �k =
⌧k

tk+1 � 1
=

3k2 � 3k + 1

k3
2
h1
k
,
3

k

i
.

Consequently we get

�k
� c1p

⌧k
+

c2
⌧k

) + C⌘�
2

k  b�
k2

with b� =

p
3c1p
⌧1

+
c2
⌧1k�

+ 9C⌘. (26)

Hence the recurrence inequality (25) becomes

⇢k+1  (1� 1

k
)⇢k +

b�
k2

+ �kc0vk. (27)

We pick an integer q � (S/⌧1)1/3 + 1 such that ⇢q � 0 is satisfied.10 We define the sequence (un)n�q as uq = ⇢q
and

un+1 =
�
1� 1

n

�
un +

b�
n2

+ �nc0vn,

with b� the fixed positive constant defined in (26). From inequality (27), we have ⇢k  uk for k � k� and an
immediate induction guarantees the positivity of the sequence (un). By rearranging we get

(n+ 1)un+1 � nun =
�un

n
+

b�(n+ 1)

n2
+ (n+ 1)�nc0vn  b�(n+ 1)

n2
+ (n+ 1)�nc0vn.

10Assuming this last condition is sensible since as the number of samples increases, e� gets closer to the stationary set
⇤⌘ whose minimizer of L is �?. The introduction of the term (S/⌧1)

1/3 +1 is motivated by the subsequent analysis of the
series

P
vk in Lem. 6.
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By telescoping and using the fact that �n  3/n  6/(n+ 1), we obtain

nun � quq  2b�

n�1X

i=q

1

i
+ 6c0

n�1X

i=q

vi  2b� log(
n� 1

q � 1
) + 6c0

n�1X

i=q

vi.

Let K � k�. We thus have with probability at least 1� 2�

⇢K  q⇢q + 2b� logK

K
+

6c0
K

K�1X

k=q

vk =
⌧1/3
1

(tK � 1)1/3 + ⌧1/3
1

⇣
q⇢q + 2b� logK + 6c0

K�1X

k=q

vk
⌘
. (28)

We conclude the proof by plugging the result of Lem. 6 into inequality (28) which yields the desired high-

probability bound ⇢K = eO(1/t1/3K ).

Lemma 6. Recalling that vk =
X

s,a

e k+1(s, a)
1p
Tk(s)

, we have
P

vk = eO(1).

Proof. Denoting S = {1, 2, ..., S} and recalling that q � (S/⌧1)1/3 + 1, we have

K�1X

k=q

vk =
K�1X

k=q

X

s,a

e k+1(s, a)
1p
Tk(s)

=
K�1X

k=q

SX

s=1

p
⌫k+1(s)

⌧k

p
⌫k+1(s)p
Tk(s)



vuut
K�1X

k=q

SX

s=1

⌫k+1(s)

⌧2k

vuut
K�1X

k=q

SX

s=1

⌫k+1(s)

Tk(s)
=

vuuuuut

K�1X

k=q

1

⌧k
| {z }

⌃1

vuuuuut

K�1X

k=q

SX

s=1

⇣Tk+1(s)

Tk(s)
� 1

⌘

| {z }
⌃2

,

where the inequality uses the Cauchy-Schwarz inequality on the sum indexed doubly by the episodes and the
states. Since the Riemann zeta function of 2 is upper bounded by 3, we have

⌃1  1

3⌧1

K�1X

k=q

1

k2
 1

⌧1
.

There remains to show that ⌃2 = eO(1). We introduce the following related optimization problem. For any
K � q, we have tK � 1 � S since we chose q � (S/⌧1)1/3 + 1. Let V ?(K) be defined by

V ?(K) = max
K�1X

k=q

SX

s=1

�
hs,k � 1

�
, (29)

s.t. hs,k � 1 and
SX

s=1

K�1Y

k=q

hs,k  tK � 1. (30)

We have for any episode k and state s, Tk+1(s) � Tk(s) and

SX

s=1

K�1Y

k=q

Tk+1(s)

Tk(s)
=

SX

s=1

TK(s)

Tq(s)
 tK � 1.

Hence the sequence
⇣Tk+1(s)

Tk(s)

⌘

s,k
satisfies the constraints (30), thus ⌃2  V ?(K). There remains to solve the

optimization problem (29). Since the variables hs,k play interchangeable roles, there exists h? = hs,k for all s and

k. From the second constraint in (30), we know that h? 
�
(tK�1)/S

�1/(K�q)
. Given that (29) is a maximization

problem that increases proportionally with h?, when tK � 1 � S (so as to satisfy the first constraint), we finally
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have h? =
�
(tK � 1)/S

�1/(K�q)
. Consequently we have

⌃2 
K�1X

k=q

SX

s=1

⇣⇣ tK � 1

S

⌘1/(K�q)
� 1

⌘
=

exp
⇣ 1

K � q
log

�⌧1(K � 1)3

S

�⌘
� 1

1

K � q
log

�⌧1(K � 1)3

S

�

| {z }
�!1 when K�!+1

S log
�⌧1(K � 1)3

S

�

| {z }
= eO(1)

,

which proves that ⌃2 = eO(1). We conclude the proof using that
PK�1

k=q vk+1  1
p
⌧1

p
⌃2.

Algorithm 3 FW-AME w/ FMH-SDP

Input: e�1 = 1/SA, ⌘
for k = 1, 2, ...,K � 1 do

b +

k+1
= argmin�2⇤⌘

hr bL+

tk�1
(e�k),�i

b⇡+

k+1
(a|s) =

b +

k+1
(s, a)

P
b2A

b +

k+1
(s, b)

Compute ⇡?
FMH = FMH-SDP(b⇡+

k+1
, ⌧k) with �⌧k

defined in Eq. (31)
Execute ⇡?

FMH for ⌧k steps, collect the samples

and update e�k+1 as in Alg. 1
end for

Figure 5: Exponent ✓ as a function ofm (cf. App. D.3).

D.3 Optimality of the Episode Length

As explained in Sect. 3.2, an interesting open question is whether the regret bound obtained in Thm. 1 is optimal.
Our analysis however yields the following optimality result: among all the episode lengths such that the time
t is polynomial in the number of episodes k, i.e., among all the integers m � 1 such that t behaves as km, the
value of m that optimizes convergence is m = 3. Indeed, we can apply the Euler method on inequality (25)

which results in solving the di↵erential equation y0 =
�y

x
+

1

x2
+

1

x(m+1)/2
and finding the largest ✓ such that

x✓y(x) = eO(1). ✓ is thus the largest value such that

L(e�k+1)� L(�?) = eO
⇣ 1

t✓

⌘
= eO

⇣ 1

k✓/m

⌘
.

Fig. 5 plots the exponent ✓ as a function of m and shows that ✓ reaches its maximal value of 1/3 for m = 3,
consequently yielding the regret eO(1/t1/3).

D.4 FW-AME w/ FMH-SDP

The variant incorporating the framework of FMH-SDP is presented in Alg. 3 and its di↵erence with Alg. 1 is
highlighted in blue. The regret analysis is the same as in App. D.2 except that the error �k+1 in the recurrence
inequality (24) goes from e k+1 � b +

k+1
to

e FMH
k+1

� b +

k+1
= e FMH

k+1
� b FMH

k+1
+ b FMH

k+1
� b +

k+1
,
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where e FMH
k+1

= FMH-SDP( b +

k+1
, ⌧k) and e FMH

k+1
is its empirical realization for the ⌧k steps of the episode. The

new error �k+1 can thus be decomposed as follows

⌘2�k+1 
X

s

�2(s)
��⌫

FMH
k+1

(s)

⌧k
� ⌘b⇡FMH

k+1

(s)
��+

X

s

�2(s)
��⌘b⇡FMH

k+1

(s)� ⌘b⇡+

k+1

(s)
��,

where the first term is O
⇣
1/
q
�( b FMH

k+1
)⌧k

⌘
and the second term is upper bounded by

P
s �

2(s)�⌧k where �⌧k is

the FMH-SDP parameter from problem (20).

Since w/o FMH-SDP we have �k+1 = O
⇣
1/
q
�( b FMH

k+1
)⌧k

⌘
, this suggests that the slack variable �⌧k can decrease

at least as O(1/
p
⌧k) so as to guarantee that the order of the error �k+1 is unchanged. Furthermore, the

component �⌧k(s) is weighted by �2(s) (which is unknown), hence we are encouraged to set

�⌧k(s) =
b⌃� b�2

tk�1
(s)

(S � 1)b⌃
1

p
⌧k

where b⌃ =
X

s2S

b�2

tk�1
(s). (31)

The regret analysis of FW-AME w/ FMH-SDP is thus unchanged and we recover the final rate in O(t�1/3). In
addition, if the heuristic is able to obtain an improvement in the mixing properties of the episodic policy (i.e.,

�( b FMH
k+1

) bigger than �( b +

k+1
)) that outweighs the error introduced by �⌧k(s), then the regret performance at

episode k of FW-AME w/ FMH-SDP is improved.

E Garnet MDPs

We detail here the process for generating Garnet11 MDPs which we use in Sect. 5. A Garnet instance
G(S,A, b,�2

min
,�2

max
) is characterized by 5 parameters. S and A are the number of states and actions respec-

tively, and b is a branching factor specifying the number of possible next states for each state-action pair, i.e.,
the number of uniformly distributed non-zero entries in each line of the MDP transition matrix. We ensure the
aperiodicity of the MDP by adding a non-zero probability (equal to 0.001) of self-loop for all state-action pairs.
Since the state means are arbitrarily fixed, there remains to uniformly sample the state variances �2(s) between
�2

min
and �2

max
and randomly select two states whose variances are set respectively to �2

min
and �2

max
. We likewise

introduce reversible Garnet MDPs denoted by GR. The generation process of GR is identical to G except that
we set the branching factor to b � 1 and ensure the reversibility of the MDP by randomly picking a 2 A and
q 2 (0, 1) such that p(s|s0, a) = q for every pair (s, s0) such that Q(s, s0) = 1 (and finally normalize to obtain an
admissible p).

We note that the Garnet procedure allows some control over the mixing properties of the MDP. Indeed, when A
and b are small, only a few transitions are assigned significant probabilities so the speed of mixing is generally
slower. For higher values of A and b, all the positive transition probabilities are of similar magnitude so the
speed of mixing is generally faster.

11In full, Generalized Average Reward Non-stationary Environment Test-bench (Bhatnagar et al., 2009).


