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Abstract

We demonstrate that in residual neural networks
(ResNets) dynamical isometry is achievable irre-
spective of the activation function used. We do
that by deriving, with the help of Free Probabil-
ity and Random Matrix Theories, a universal for-
mula for the spectral density of the input-output
Jacobian at initialization, in the large network
width and depth limit. The resulting singular
value spectrum depends on a single parameter,
which we calculate for a variety of popular acti-
vation functions, by analyzing the signal propa-
gation in the artificial neural network. We cor-
roborate our results with numerical simulations
of both random matrices and ResNets applied to
the CIFAR-10 classification problem. Moreover,
we study consequences of this universal behav-
ior for the initial and late phases of the learning
processes. We conclude by drawing attention to
the simple fact, that initialization acts as a con-
founding factor between the choice of activation
function and the rate of learning. We propose
that in ResNets this can be resolved based on our
results by ensuring the same level of dynamical
isometry at initialization.

1 Introduction

Deep Learning has achieved unparalleled success in fields
such as object detection and recognition, language trans-
lation, and speech recognition (LeCun et al., 2015). At
the same time, models achieving these state-of-the-art re-
sults are increasingly deep and complex (Canziani et al.,
2016), which often leads to optimization challenges such as
vanishing gradients. Many solutions to this problem have
been proposed. In particular, Residual Neural Networks

Proceedings of the 22nd International Conference on Artificial In-
telligence and Statistics (AISTATS) 2019, Naha, Okinawa, Japan.
PMLR: Volume 89. Copyright 2019 by the author(s).

remedy this to some extent (He et al., 2016; Veit et al.,
2016) by using skip connections in the network architec-
ture, which improve gradient flow. As a result, Residual
Neural Networks outmatched other competing models in
the 2015 ILSVRC and COCO competitions. Yet another
approach towards solving this problem is to tailor fit the
networks weight initialization to facilitate training, for ex-
ample by ensuring dynamical isometry (Pennington et al.,
2017). In this latter case, the insights are based on an anal-
ysis of the statistical properties of information propagation
in the network and a study of the full singular spectrum
of a particular matrix, namely the input-output Jacobian,
via the techniques of Free Probability and Random Matrix
Theories (FPT & RMT). This perspective has recently led
to successfully training a 10000 layer vanilla convolutional
neural network (Xiao et al., 2018).

RMT is a versatile tool that, since its inception, saw a sub-
stantial share of applications, from the earliest in nuclear
physics (Wigner, 1993) to the latest in game theory (Car-
mona et al., 2018) (see (Akemann et al., 2011) for some
of the use cases discovered in the mean time). It is thus
not surprising that it found its way to be used to understand
artificial neural networks. In particular, to study their loss
surface (Choromanska et al., 2015; Pennington and Bahri,
2017), the associated Gram matrix (Louart et al., 2018;
Pennington and Worah, 2017) and in the case of single
layer networks, their dynamics (Liao and Couillet, 2018).
Our main contribution is extending the theoretical analysis
of (Pennington et al., 2017; Schoenholz et al., 2016; Pen-
nington et al., 2018) to residual networks. In particular, we
find that residual networks can achieve dynamical isome-
try for many different activation functions provided that the
variance of weight initialization scale is inversely propor-
tional to the number of skip-connections. This is in contrast
to feedforward networks, where orthogonal weights and
antisymmetric sigmoidal activation functions (like tanh)
are required. These theoretical results are supported by
an empirical investigation on the popular CIFAR-10 bench-
mark.
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1.1 Related work

The framework of dynamical mean field theory, we will
apply to study signal propagation in neural networks, was
first used in this context in (Poole et al., 2016). There, the
authors showed the existence of an order-to-chaos expres-
sivity transition for deep feedforward neural networks with
random initial weights, on the plane spanned by the vari-
ances of the network weights and biases. This in turn led to
the insight of (Schoenholz et al., 2016), that arbitrary deep
networks can be trained as long as they are close to the
criticality associated with that transition. The techniques
developed in these works, together with methods of FPT
and RMT, allowed, for the first time, to analytically com-
pute the singular value distribution of the input-output Ja-
cobian of a deep feedforward network with nonlinear acti-
vation function and at criticality (Pennington et al., 2017).
Finally, (Pennington et al., 2018) showed, that for feedfor-
ward neural networks, in their large depth limit and at a
special point of the above mentioned critical line, the sin-
gular spectrum of the Jacobian is given by a universal dis-
tribution depending on the form of the activation function
used. In particular they distinguish the Bernoulli and the
smooth universality classes corresponding to piecewise lin-
ear and some nonlinear activation functions. In fact, in this
paper, we take the approach of that last work and apply it to
fully connected residual neural networks. We find a single
universality class for this architecture.

Let us also mention some recent, important developments
in the area of residual neural network initialization. One
of the earlier developments, is the introduction of layer-
sequential unit-variance (LSUV) initialization (Mishkin
and Matas, 2015). The two step process involved normal-
izing the outputs of the neurons on the first forward run and
showed promising results. In another, very relevant paper
(Taki, 2017), analyzing the signal propagation in a similar
manner to that mentioned in the paragraph above, shows for
ResNets, with piecewise linear, symmetric as well as ReLU
activation functions, that the proper variance for network
weight initialization is of order 1

NL , where L is the number
of layers and N the number of neurons in each layer. A sim-
ilar conclusion is reached by (Balduzzi et al., 2017). We
corroborate this result with our analysis. Another contri-
bution shows that adding skip connections to the network,
eliminates the critical behavior described above (Yang and
Schoenholz, 2017). Finally, the importance of initializa-
tion in ResNets is shown by (Zhang et al., 2019), where it
is demonstrated that initializing to a zero function enables
training state of the art residual networks without the use
of batch normalization (Ioffe and Szegedy, 2015). Note
that ResNet with this initialization achieves in fact an ideal
isometry.

When finishing this manuscript, we have learned of a recent
paper tackling the same problem of ResNets initialization
by studying the singular spectrum properties of the Jaco-

bian with the tools of Free Probability. While the analysis
of (Ling and Qiu, 2018) is related, it is crucial to note that
the authors do not observe the universal character of the
singular spectrum - the main result of our paper, and treat
only piecewise linear activation functions. It is also worth
mentioning that, similar to us, they rediscover the impor-
tance of 1

LN scaling of (Balduzzi et al., 2017) and (Taki,
2017).

1.2 Our results

Our contributions are the following. We show that the sin-
gular spectrum of the input-output Jacobian, in the the net-
works large width and depth limit, is given by a univer-
sal formula - with the dependence on the type of activa-
tion function encapsulated in a single parameter. Further-
more, we calculate the layer dependent statistical proper-
ties of the pre-activations for a variety of activation func-
tions. All together, this gives the associated singular spec-
tra of the Jacobian, which we compare with random ma-
trix and artificial neural network numerical simulations cor-
roborating our theoretical results. The singular values of
the input-output Jacobian concentrate around 1 for a wide
range of parameters, which shows that fine-tuning the ini-
tialization is not required for achieving dynamical isome-
try in ResNets. Interestingly, the universal formula for the
singular spectrum of the Jacobian is valid also in the case
when batch normalization is used. Even though the final re-
sults of the theoretical calculations are derived in the limit
L,N → ∞, the numerical experiments match them already
for L = 10 (with N = 500). As a practical application
of our work and the universality property it uncovers, we
propose a framework for setting up weight initialization in
experiments with residual neural networks.

1.3 Structure of the paper

We follow this introductory section by defining the model
of ResNets we will work with and with a short note on the
relevance of the input-output Jacobian. Then, in subsection
3.1, we derive the equation governing the Green’s function
and hence the spectrum of the Jacobian, which depends on
a single parameter, which we denote by c. Proceeding is
the analysis of the propagation of the information in the
network via an analysis of the probability density function
describing the pre-activations across the layers at network
initialization. This allows us to calculate c for many differ-
ent activation functions in Appendix D. We close the sec-
ond section of the paper by revealing the random matrix ex-
periments confirming our results. Sec. 4 is devoted to the
outcome of associated residual neural network numerical
calculations. There, we showcase the resulting, experimen-
tal, universal spectrum of the Jacobian and the outcomes
of the learning processes. We close the paper with a dis-
cussion section. In Appendix A we give a brief comment
on the influence of batch normalization on the presented
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setup. In the rest of the Appendices, we show the results
of numerical experiments validating the signal propagation
recurrence relations and some baseline (based on using the
same weight matrix variances, irrespective of the choice of
activation functions) simulations of the learning process.

2 The model

In this paper, we consider a deep, residual network of L
layers of a constant width of N neurons. We follow the
typical nomenclature of the literature and therefore the real-
valued, synaptic matrix for the l-th layer is denoted by W l,
whereas the real-valued bias vectors are bl. The informa-
tion propagates in this network according to:

xl = φ(hl) + axl−1, hl = W lxl−1 + bl, (1)

where hl and xl are pre- and post-activations respectively
and φ is the activation function itself, acting entry-wise on
the vector of pre-activations. We have introduced the pa-
rameter a to track the influence of skip connections in the
calculations, however we do not study its influence on the
Jacobian’s spectrum or learning in general. By x0 we de-
note the input of the network and by xL its output. Our pri-
mary interest will lay in exploring the singular value spec-
tral properties of the input-output Jacobian:

Jik =
∂xL

i

∂x0
k

, (2)

known to be useful in studying initialization schemes of
neural networks at least since the work of (Glorot and Ben-
gio, 2010). It in particular holds the information on the
severity of the exploding gradients problem.

2.1 Relevance of the input-output Jacobian

To understand why we are interested in the Jacobian, con-
sider the neural network adjusting its weights during the
learning process. In a simplified, example by example sce-
nario, this happens according to

∆W l
i j = −η

∂E(xL,y)
∂W l

i j

, (3)

where E(xL,y) is the error function depending on xL - the
output of the network, y - the correct output value associ-
ated with that example and, implicitly through xL, on the
parameters of the model, namely the weights and biases.
Here, for simplicity, we consider only the adjustments of
the weights - an analogous reasoning applies to the biases.
η is the learning rate. By use of the chain rule we can
rewrite this as:

∆W l
i j = −η

∑
k,t

∂xl
t

∂W l
i j

∂xL
k

∂xl
t

∂E(xL,y)
∂xL

k

, (4)

For the learning process to be stable, all three terms need
to be bounded. Out of those, the middle one can become
problematic if a poor choice of the initialization scheme is
made. We can rewrite it as:

∂xL
k

∂xl
t

=

 L∏
i=l+1

(
DiW i + 1a

)
kt

(5)

and see the larger the difference between L and l, the more
terms we have in the product, and (in general) the less con-
trol there is over its behavior. Here 1 is an identity matrix
and, Dl is a diagonal matrix such that Dl

i j = φ′(hl
i)δi j. In-

deed, it was proposed by (Glorot and Bengio, 2010), that
learning in deep feed-forward neural networks can be im-
proved by keeping the mean singular value of the Jacobian
associated with layer i (in our setup J i = DiW i + 1a),
close to 1 for all i’s. It is also important for the dynamics
of learning to be driven by data, not by the random ini-
tialization of the network. The latter may take place if the
Jacobian to the l-th layer possesses very large singular val-
ues which dominate the learning or very small singular val-
ues suppressing it. In the optimal case all singular values
should be concentrated around 1 regardless of how deep is
the considered layer. One therefore examines the case of
l = 0, namely ∂xL

k /∂x0
t - the input-output Jacobian, as the

most extreme object of (5). The feature that in the limit
of large depth all singular values of J concentrate around
1, irrespective of the depth of the network, was coined as
dynamical isometry (Saxe et al., 2013).

Note, that the spectral problem for the full Jacobian

J =

L∏
l=1

(
DlW l + 1a

)
(6)

belongs to the class of matrix-valued diffusion pro-
cesses (Gudowska-Nowak et al., 2003; Janik and Wiec-
zorek, 2004), leading to a complex eigenvalue spectrum.
We note that the large N limit, spectral properties of (6)
with D = 1 (deep linear networks), and different symmetry
classes of W , was derived already by (Gudowska-Nowak
et al., 2003). Due to non-normality of the Jacobian, singu-
lar values cannot be easily related to eigenvalues. There-
fore we follow (Pennington et al., 2017, 2018) and tackle
the full singular spectrum of the Jacobian (or equivalently
the eigenvalue spectrum of JJT ), extending these works to
the case of the Residual Neural Network model.

3 Spectral properties of the Jacobian

3.1 Spectral analysis

Free Probability Theory, or Free Random Variable (FRV)
Theory (Voiculescu et al., 1992), is a powerful tool for the
spectral analysis of random matrices in the limit of their
large size. It is a counterpart of the classical Probability
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Theory for the case of non-commuting observables. For
a pedagogical introduction to the subject, see (Mingo and
Speicher, 2017) - here we start by laying out the basics use-
ful in the derivations of this subsection. The fundamental
objects of the theory are the Green’s functions (a.k.a. Stielt-
jes transforms in mathematical literature):

GH(z) =

〈
1
N

Tr (z1 −H)−1
〉

=

∫ ∞

−∞

ρH(λ)dλ
z − λ

, (7)

which generate spectral moments and where the subscript
H indicates, that his formulation is proper for self-adjoint
matrices. The eigenvalue density can be recovered via the
Sochocki-Plemelj formula

ρH(x) = −
1
π

lim
ε→0

GH(x + iε). (8)

The associated free cumulants are generated by the so-
called R-transform, which plays the role of the logarithm of
the characteristic function in the classical probability. By
this correspondence, the R-transform is additive under ad-
dition, i.e. RX+Y (z) = RX(z) + RY (z) for mutually free, but
non-commuting random ensembles X and Y . Moreover, it
is related to G via the functional equations

G
(
R(z) +

1
z

)
= z, R(G(z)) +

1
G(z)

= z. (9)

On the other hand, the so-called S -transform facilitates cal-
culations of the spectra of products of random matrices, as
it satisfies S AB(z) = S A(z)S B(z), provided A and B are mu-
tually free and at least one is positive definite. If addition-
ally, the ensemble has a finite mean, the S-transform can
be easily obtained from the R-transform, and vice versa,
through a pair of the following, mutually inverse maps
z = yS (y) and y = zR(z). Explicitly:

S (zR(z)) =
1

R(z)
, R(zS (z)) =

1
S (z)

. (10)

Denoting now JL the Jacobian across L layers and
Yl = (a1 + DlW l), one can write the recursion relation
JLJ

T
L = YLJL−1J

T
L−1YL. The latter matrix is isospectral

to Y T
L YLJL−1J

T
L−1, which leads to the equation for the S -

transform S JL JT
L
(z) = S YT

L YL
(z)S JL−1 JT

L−1
(z). Proceeding in-

ductively, we arrive at

S JJT (z) =

L∏
l=1

S YlYT
l
(z). (11)

To find the S -transform of the single layer Jacobian, we
will first consider its Green’s function

G(z) =

〈
1
N

Tr(z1 − YlY
T

l )−1
〉
, (12)

with the averaging over the ensemble of weight matrices
W l. To facilitate the study of G, in particular to cope with

Y Y T , one linearizes the problem by introducing matrices
of size 2N × 2N

Z :=
(
−a 1
z −a

)
, X :=

(
X 0
0 XT

)
, (13)

with X = DlW l. Another crucial ingredient is the block
trace operation (bTr), which is the trace applied to each
N × N block. The generalized Green’s function is defined
as a block trace of the generalized resolvent (Z⊗ 1 − X)−1

G :=
(

G11 G12
G21 G22

)
=

〈
1
N

bTr
(
−a −X 1

z −a −XT

)−1〉
.

(14)
Remarkably, the Green’s function of Y Y T is the G12 en-
try of the generalized Green’s function. This construction
is a slight modification of the quaternionization approach
to large non-Hermitian matrices developed by (Janik et al.,
1997), therefore we adapt these concepts here for calcula-
tions in the large width limit of the network. Furthermore,
the generalized Green’s function (14) is given implicitly by
the solution of the Schwinger-Dyson equation

G(Z) = (Z− R(G(Z)))−1. (15)

Here R is the generalized R-transform of FRV theory. This
construction is a generalization of standard FRV tools to
the matrix-valued functions. In particular, (15) is such a
generalization of (9) to 2 × 2 matrices.

To study two common weight initializations, Gaussian and
scaled orthogonal, on the same footing, we assume that W
belongs to the class of biunitarily invariant random matri-
ces, i.e. its pdf is invariant under multiplication by two
orthogonal matrices, P(UWV T ) = P(W ) for U ,V ∈

O(N). In the large N limit these matrices are known in
free probability as R-diagonal operators (Nica and Spe-
icher, 1996). A product of R-diagonal operator with an
arbitrary operator remains R-diagonal (Nica and Speicher,
2006), thus the matrix X is R-diagonal too.

The generalized R-transform of R-diagonal operators takes
a remarkably simple form (Nowak and Tarnowski, 2017)

R(G) = A(G12G21)
(

0 G12
G21 0

)
. (16)

Here, A(x) =
∑∞

k=1 c2k xk−1 is the determining sequence,
which generates cumulants c2k, it is a Taylor expansion
of A(x) at 0. For the later use we mention a simple re-
lation for the determining sequence of a scaled matrix
AaX(z) = a2AX(a2z), which generalizes the Hermitian case
GaH(z) = 1

aGH( z
a ) or, equivalently, RaH(z) = aRH(az).

We derive the equation for the Green’s function (with
G(z) = G12) by substituting the R-transform (16) into (15)
and eliminating irrelevant variables. It thus reads:

G =
GA(zG2) − 1

a2 − z(1 −GA(zG2))2 , (17)
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where for clarity we omitted the argument of the Green’s
function. In the next step we substitute z → R(z) + 1

z and
use (9) to obtain

z =
zA(z2R + z) − 1

a2 − (R + 1
z )(1 − zA(z2R + z))2

. (18)

Then, we substitute z→ zS (z) and use (10), which leads us
to

1 =
zS A(z(z + 1)S ) − 1

a2zS − (z + 1)(1 − zS A(z(z + 1)S ))2 . (19)

This equation is exact. To incorporate the additional scal-
ing of weights variances by 1/L in our considerations,
as proposed by (Taki, 2017) and (Balduzzi et al., 2017),
we rescale X → X/

√
L and since we are interested

in deep networks, we keep only the leading term in 1/L
(see also (Janik and Wieczorek, 2004)). This leads to
A (z(z + 1)S )→ 1

L A
(

1
L z(z + 1)S

)
= c2

L +O
(

1
L2

)
, which sim-

plifies (19) to a quadratic equation for S . Choosing the ap-
propriate branch of the solution, we see that

S YlYT
l
(z) =

1
a2

1 − cl
2

a2L
(1 + 2z) + O

(
1
L2

) . (20)

Here

cl
2 =

〈
1
N

TrW lDlDl(W l)T
〉

=
σ2

w

N

N∑
i

(
φ′(hl

i)
)2

(21)

is the squared spectral radius of the matrix DlW l. In gen-
eral, cl

2 can vary across the depth of the network due to
non-constant variance of preactivations. Assuming that this
variability is bounded, we can consider the logarithm of
(11) and write:

ln S JJT (z) = −2L ln a −
(1 + 2z)

a2 c, (22)

where we defined the effective cumulant c = 1
L
∑L

l=1 cl
2 and

used ln(1 + x) ≈ x. This allows us to deduce the form of
the S -transform, assuming that a does not scale with L

S JJT (z) =
1

a2L e−
c

a2 (1+2z). (23)

Substituting z→ zR(z) and using (10), we obtain

a2L = R(z) exp
[
−

c
a2 (1 + 2zR(z))

]
. (24)

Then, we substitute z→ G(z) and use (9) to finally get

a2LG(z) = (zG(z) − 1)e
c

a2 (1−2zG(z)), (25)

an equation for the Green’s function characterizing the
square singular values of the Jacobian, which can be solved
numerically. We do that for a range of different activation
functions and present the results with numerical simula-
tions to corroborate them in Fig. 1.

We close this section with a remark that the above analysis
is not restricted only to the model (1), but analogous rea-
soning can be performed for networks in which skip con-
nections bypass more than one fully connected block. The
qualitative results remain unaltered provided that L is re-
placed by the number of skip connections.

3.2 Signal propagation

The formulas we have derived until now were given in
terms of a single parameter c, which is the squared deriva-
tive of the activation function averaged within each layer
and across the depth of the network. Thus, we now need
to address the behavior of preactivations. In the proceeding
paragraph, we closely follow a similar derivation done in
(Schoenholz et al., 2016), for fully connected feed forward
networks.

For the simplicity of our arguments, we consider here W l
i j

and bl
i as independent identically distributed (iid) Gaus-

sian random variables with 0 mean and variances (σW )2

LN and
(σb)2, respectively. Here, (σW )2 is of order one, and the ad-
ditional scaling is meant to reflect those introduced in the
previous paragraphs. At the end of this section we provide
an argument that the same results hold for scaled orthogo-
nal matrices.

In this subsection, we will denote the averaging over vari-
ables W l

i j and bl
i, at a given layer l, by 〈·〉wbl. By 〈u〉l we

denote the sample average, of some variable u in the l-th
layer: 〈u〉l ≡ 1

N
∑N

i=1 ul
i. Note that the width (N) is inde-

pendent of the layer number, however the derivation can be
easily generalized to the opposite case, when the architec-
ture is more complicated. Unless stated otherwise explic-
itly, all integrals are calculated over the real line.

We are interested in the distribution of hl
i in our model, de-

pending on the input vectors and the probability distribu-
tions of W l

i j and bl
i. If we assume they are normal (as can

be argued using the Central Limit Theorem), we just need
the first two moments. It is clear that 〈hl

i〉wbl = 0. Fur-
thermore, we assume ergodicity, i.e. that averaging some
quantity over a layer of neurons is equivalent to averag-
ing this quantity for one neuron over an ensemble of neural
networks with random initializations. We assume this is
true for hi, xi, Wi j and bi. Thus, we can say that 〈h〉l = 0
and moreover, as we work in the limit of wide networks,
〈 f (h)〉l (where f is some function of hl) can be replaced
with an averaging over a normal distribution of variance

ql ≡

〈(
hl
)2
〉

wbl
. This is the crux of the dynamical mean

field theory approach (Poole et al., 2016) for feed-forward
neural networks. We have in particular:

cl
2 = σ2

W

〈(
φ′(h)

)2
〉

l
= σ2

W

∫
Dzφ′2

(√
qlz

)
, (26)
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where Dz = exp(−z2/2)dz/
√

2π. To calculate the effective
cumulant, we need to know how the variance of the distri-
bution of the preactivations changes as the input informa-
tion propagates across consecutive layers of the network.
It is shown in Appendix C, that ql satisfy the recurrence
equation

ql+1 = a2ql +
(
1 − a2

)
σ2

b +
(σW )2

L

∫
Dzφ2

(√
qlz

)
+

2
(σW )2

L

 l−1∑
k=1

ak
∫
Dzφ

(√
ql−kz

) ∫ Dzφ
(√

qlz
)
, (27)

with the initial condition q1 = σ2
b +

σ2
W
L .

We remark here that the above reasoning concerning sig-
nal propagation holds also when the weights are scaled or-
thogonal matrices, i.e. WW T =

σ2
W
L 1. In such a case〈

Wi j

〉
= 0 and

〈
Wi jWkl

〉
=

σ2
W

NL δikδ jl (Collins and Śniady,
2006) and the entries of W can be approximated as inde-
pendent Gaussians (Chatterjee and Meckes, 2007).

3.3 Random matrix simulations

To thoroughly test the theoretical predictions of Section
3, we run numerical simulations using Mathematica. The
initial condition, input vector x0 of length N = 500,
filled with iid Gaussian random variables of zero mean
and unit variance, is propagated according to the recur-
rence (1), for various activation functions. The network
weights and biases are generated from normal distribu-
tion of zero mean and σ2

W/NL and σ2
b variances, respec-

tively, with N = 500 The propagation of variance of pre-
activations, post-activations as well as the calculation of the
second cumulants cl for the studied activation functions,
across the network, is presented in Appendix E. All numer-
ical simulations corroborate our theoretical results. Here,
for clarity and as a generic example, in Fig. 1 (upper), we
show the distribution of singular values of the input-output
Jacobian (defined in (6)) for the tanh nonlinearity for var-
ious network depths. In this example the Jacobian in not
independent of the signal propagation, contrary to the case
of piecewise linear activation functions. Similarly, in the
lower panel of Fig. 1, we showcase the outcome of numer-
ical experiments and the associated, matching, theoretical
results for the most popular ReLU activation function, for
various initializations resulting in different values of the ef-
fective cumulant c.

4 Experiments on image classification

The goal of this section is to test our theoretical pre-
dictions on real data via the popular CIFAR-10 bench-
mark (Krizhevsky, 2009). To this end we will use a single
representation fully connected residual network, see Fig. 2.

L=10

L=50

L=200

Theory

0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

σ

si
ng
ul
ar
va
lu
e
de
ns
ity

tanh, N=500, σW=0.3535, σb=0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

σ

si
ng
ul
ar
va
lu
e
de
ns
ity

ReLU N=500, L=200

c=0.045

c=0.125

c=0.25

c=0.5

Figure 1: (Top) density of singular values of the input-
output Jacobian for the residual network with tanh nonlin-
earity. Note that the asymptotic theoretical result describes
remarkably well not very deep (L = 10) networks. (Bot-
tom) asymptotic distribution of singular values for various
values of parameter c (dashed) juxtaposed with the numer-
ical simulations for ReLU nonlinearity (solid). Note that
histograms were calculated from a single random initiali-
sation. The smaller c, the narrower the spectrum and the
closer to the ideal isometry.

This simplified version of the model of (He et al., 2016)
does not use (i) multiple stages with different dimension
of hidden representation, and (ii) two layers within resid-
ual block. We leave study of a more general version of
ResNets for future work.

4.1 Achieving dynamical isometry for any activation
function

Perhaps the most interesting prediction of our theory is
that ResNets, in contrast to fully connected networks, can
achieve dynamical isometry for many different activation
functions. We will study this empirically by looking at J, at
initialization, for different activation functions and number
of residual blocks. Please note that by J we refer to Jaco-
bian of the output of the last residual block with respect to
the input of the first one, see also Fig. 2.

We consider the following popular activation functions:
ReLU (Nair and Hinton, 2010), Tanh, Hard Tanh, Sigmoid,
SeLU (Klambauer et al., 2017) and Leaky ReLU (Maas
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Figure 2: Residual network architecture used in the paper.

●●●●●●

●

●

●

●
●
●●

●●●
●●●●●

●●

●●
●

●
●

●
●
●●

●
●

●
●
●●

●
●

●●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●■■■■■■■

■

■
■

■■

■
■

■■■
■

■

■■

■
■■

■

■
■

■■■

■
■
■■

■

■

■■■

■

■
■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■◆◆◆◆◆◆

◆

◆

◆

◆

◆◆
◆
◆
◆◆

◆

◆

◆
◆◆

◆
◆
◆

◆
◆

◆◆◆
◆
◆◆

◆◆
◆

◆

◆

◆◆
◆

◆

◆
◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆▲▲▲▲▲▲▲

▲

▲

▲
▲

▲

▲

▲
▲▲

▲
▲

▲

▲▲
▲

▲

▲
▲

▲
▲▲

▲▲

▲
▲

▲
▲
▲▲

▲
▲
▲
▲

▲▲

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▼▼▼▼▼▼▼

▼

▼

▼
▼

▼

▼

▼

▼
▼

▼

▼

▼

▼▼
▼

▼

▼
▼

▼
▼

▼

▼

▼

▼▼
▼▼

▼
▼▼

▼▼
▼

▼▼

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼○○○○○○
○

○

○
○

○

○○

○

○
○○

○○

○

○○
○○

○○○

○

○

○
○
○

○○
○○

○
○

○○
○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○
○
○○○○○○○○○○○□□□□□□□

□

□
□

□
□
□
□
□
□
□
□
□

□
□
□□

□

□

□

□
□
□

□
□
□
□
□
□□

□□

□
□

□

□

□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□◇◇◇◇◇◇
◇

◇

◇
◇

◇

◇
◇
◇

◇

◇
◇
◇
◇◇

◇
◇

◇

◇
◇◇

◇
◇
◇◇

◇
◇◇

◇
◇

◇

◇

◇
◇

◇
◇◇

◇
◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇◇△△△△△△△

△

△
△

△△

△

△△
△
△△

△△△
△△

△
△

△

△

△

△

△
△
△
△

△
△
△

△
△
△
△
△

△
△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△▽▽▽▽▽▽▽

▽

▽

▽

▽
▽
▽▽

▽

▽▽
▽

▽▽▽
▽▽

▽

▽

▽
▽

▽

▽

▽
▽

▽▽
▽▽

▽▽

▽
▽

▽

▽
▽

▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽▽

0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

S
in
gu
la
r
va
lu
e
de
ns
ity

Jacobians calculated on data

L=∞ RMT c=0.125

● ReLU L=10

■ Tanh=10

◆ Sigmoid L=10

▲ SELU L=10

▼ linear L=10

○ ReLU L=20

□ Tanh=20

◇ Sigmoid L=20

△ SELU L=20

▽ linear L=20

Figure 3: Singular spectra obtained for various activation
functions and depth L = 10, 20. The network was fed with
examples from CIFAR10 dataset.

et al., 2013) with the leaking constant 0.05 and 0.25. For
each activation function we consider the number of blocks
L to be 10 and 20. All weights of the network are ini-
tialized from a zero-centered normal distribution whereas
biases are initialized to zero. The weights of the residual
blocks are initialized using standard deviation σW/

√
NL,

other weights are initialized as by (Taki, 2017). For the
given activation function and the number of blocks L, we
set σW in such a way that the effective cumulant c = 0.125,
which ensures the concentration of eigenvalues of the Ja-
cobian around one, and hence dynamical isometry (see Ap-
pendix D for more details and Fig. 1 for the shape of the
singular value densities).

For each pair of activation function and number of blocks
we compute the empirical spectrum of J at initialization,
the results are reported in Fig. 3. Indeed, we observe that
upon scaling the initializations standard deviation, in such
a way that c is kept constant, the empirical spectrum of J is
independent of the number of residual blocks or the choice
of activation functions.

4.2 Learning dynamics are more similar at
universality under dynamical isometry

Our next objective is to investigate whether networks
achieving dynamical isometry share similar learning dy-
namics. While this is outside of the scope of our theoretical
investigation, it is inspired by studies such as (Pennington
et al., 2017), which demonstrate the importance of dynam-
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Figure 4: Training accuracy during first 200 epochs (mid-
dle) and first 100 iterations (bottom) of residual networks
with various activation functions. The weight initialization
was chosen for each activation function in such a way that
the effective cumulant is c = 0.125. In the top panel, the
dynamics with this initialization was juxtaposed with anal-
ogous training of networks in which the variance of weights
was chosen to be 1

LN for all activation functions. We used
leaky ReLU with α = 0.05, 0.25.
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ical isometry at the initialization for the subsequent opti-
mization.

We consider the same set of experiments as in the previous
section, and follow a similar training protocol to (He et al.,
2016). We train for 200 epochs and drop the learning rate
by a factor of 10 after epochs 80, 120, and 160. We use
batch-size 128 and a starting learning rate of either 10−3 or
10−4 1.

First, we look at the learning dynamics on the training set.
We can observe that most of the activation functions ex-
hibit similar training accuracy evolution, see Fig. 4 (mid-
dle). Using the sigmoid activation, led however to signifi-
cantly slower optimization. This is due to a faster growth
of the variances of post- and pre- activations (which can be
observed in Fig. 5), which exacerbates the neuron satura-
tion problem.

Overall our results suggest that the singular spectrum of
J at initialization does not fully determine generalization
and training performance. Nonetheless, setting the same
effective cumulant for the experiments with different ac-
tivation functions results in a markedly coinciding behav-
ior of neural networks using activation functions of similar
characteristics. This is in contrast to a setup in which the
variances of the weight matrix entries are set to be equal.
To demonstrate this we run another set of training experi-
ments, this time with all standard deviations σ = 1/

√
LN.

The plots depicting the full results are relegated to Fig. 7 in
Appendix F. Here, in Fig. 4 (top) we showcase the train-
ing accuracy during the first 40 iterations for these two
setups (excluding, for clarity, the networks with the sig-
moid activation function). With different effective cumu-
lants, the network learning dynamics, differs among exper-
iments with different activation functions, especially at the
beginning of learning.

This suggests that the spectrum of the input-output Jaco-
bian at initialization can be treated as a confounding vari-
able in such experiments. Ensuring that the level of dy-
namic isometry, and hence the value of the effective cu-
mulant is kept the same, provides the possibility of a more
meaningful comparison of the effect of activation functions
on learning dynamics.

5 Synopsis and discussion

The main focus of this paper was the singular spectrum
of the input-output Jacobian of a simple model of resid-
ual neural networks. We have shown that in the large net-
work depth limit, it is described by a single, universal equa-
tion. This holds irrespective of the activation function used,
for biunitarily invariant weight initializations matrices, a
set covering Gaussian and scaled orthogonal initialization

1We use relatively low learning rates, largely because we omit
batch normalization layers in the architecture.

schemes. The singular value density depends on a single
parameter called the effective cumulant, which can be cal-
culated by considering the propagation of information in
the network, via a dynamical mean field theory approach.
This parameter depends on the activation function used,
variance of biases and the entries of the weight matrices,
and, for some activation functions, also on the depth of the
network. We demonstrated the validity of our theoretical
results in numerical experiments, both by generating ran-
dom matrices adhering to the assumptions of the model and
by evaluating the Jacobians of residual networks (at initial-
ization) on the CIFAR10 dataset.

For a given activation function and/or network depth, it is
always possible to set the weight matrix entries variances in
such a way, that the resulting singular spectra of the Jaco-
bians not only fulfill the conditions for dynamical isometry,
but also are exactly the same, irrespective of the activation
function used. This observation allows us to eliminate the
singular spectrum of the Jacobian treated as a confounding
factor in experiments with the learning process of simple
residual neural networks for different activation functions.
As an example of how this approach can be applied, we ex-
amined how accuracies of simple residual neural networks,
employing a variety of activation functions, change during
the learning process. When using the same variances of
weight matrices entries, the learning curves of similar ac-
tivation functions differed between each other more than
when the networks were initialized with the same input-
output Jacobian spectra. This allows, in our opinion, for a
more meaningful comparison between the effects of choos-
ing the activation function. We hope this observation will
help with the research of deep neural networks.
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