Improved Semi-Supervised Learning with Multiple Graphs: Supplementary Material

Krishnamurthy Viswanathan¹ Google Research Sushant Sachdeva¹ University of Toronto Sujith Ravi Andrew Tomkins Google Research

1 Additional Proofs

Lemma 1.1. We can express $\Sigma_{\widehat{\mathbf{y}}_{\mathbf{S}}}$ equivalently as follows,

$$\Sigma_{\widehat{\mathbf{y}}_{\mathbf{s}}} = I + \prod_{S} \left(\sum_{i=1}^{n} \alpha_{i} L_{G_{i}} \right)^{-1} \prod_{S}^{\top}$$

Proof. Let

$$L_w = \sum_{i=1}^n \alpha_i L_{G_i}$$

denote the weighted sum of Laplacians. Then

$$\begin{split} \boldsymbol{\Sigma}_{\widehat{\mathbf{y}}_{S}}^{-1} \left(I + \Pi_{S} L_{w}^{-1} \Pi_{S}^{\top} \right) \\ &= \left(I - \Pi_{S} \left(I_{S} + L_{w} \right)^{-1} \Pi_{S}^{\top} \right) \\ \left(I + \Pi_{S} L_{w}^{-1} \Pi_{S}^{\top} \right) \\ &= I - \Pi_{S} \left(I_{S} + L_{w} \right)^{-1} \Pi_{S}^{\top} \\ &+ \Pi_{S} L_{w}^{-1} \Pi_{S}^{\top} \\ &- \Pi_{S} \left(I_{S} + L_{w} \right)^{-1} I_{S} L_{w}^{-1} \Pi_{S}^{\top} \\ &= I - \Pi_{S} \left(I_{S} + L_{w} \right)^{-1} \left(I_{S} + L_{w} \right) L_{w}^{-1} \Pi_{S}^{\top} \\ &+ \Pi_{S} \left(I_{S} + L_{w} \right)^{-1} I_{S} L_{w}^{-1} \Pi_{S}^{\top} \\ &= I - \Pi_{S} \left(I_{S} + L_{w} \right)^{-1} I_{S} L_{w}^{-1} \Pi_{S}^{\top} \\ &= I - \Pi_{S} \left(I_{S} + L_{w} \right)^{-1} \Pi_{S}^{\top} \\ &= I - \Pi_{S} \left(I_{S} + L_{w} \right)^{-1} L_{w} L_{w}^{-1} \Pi_{S}^{\top} \\ &= I. \end{split}$$

Proof. We have $BWB^{\top} = \sum_{i} \alpha_i L_{G_i}$. Thus,

$$MM^{\top} = I + \Pi_S (\sum_i \alpha_i L_{G_i})^{-1} BWB^{\top} (\sum_i \alpha_i L_{G_i}^{-1} \Pi_S^{\top})$$
$$= I + \Pi_S (\sum_i \alpha_i L_{G_i})^{-1} \Pi_S^{\top} = \boldsymbol{\Sigma}_{\widehat{\mathbf{y}}_{\mathbf{s}}}.$$

The claim about $Tr(\cdot)$ follows due to the cyclic property of the trace operator.

Lemma 1.2. Let *B* and *W* denote the edgevertex incidence matrix, and the diagonal weight matrix of $\sum_i \alpha_i L_{G_i}$. Let *M* be the matrix $\left[I, \Pi_S(\sum_i \alpha_i L_{G_i})^{-1} BW^{\frac{1}{2}}\right]$. Then $MM^{\top} = \Sigma_{\widehat{\mathbf{y}}_{\mathbf{s}}}$, and thus,

$$Tr(\boldsymbol{\Sigma}_{\widehat{\mathbf{y}}_{\mathbf{S}}} \Pi_{S} L^{-1} L_{G_{i}} L^{-1} \Pi_{S}^{\top})$$

= $Tr((L^{-1} \Pi_{S}^{\top} M)^{\top} L_{G_{i}} (L^{-1} \Pi_{S}^{\top} M))$

¹Equal contribution