
Shengjie Wang†, Wenruo Bai∗, Chandrashekhar Lavania∗, Jeffrey A. Bilmes†∗

A Efficiency of Partitioning

For generating the similarity graph for the nearest neighbor function, on CIFAR-100 data, the similarity graph
is of size 4002 × 100 (the 400 comes from 40000/100, 40000 is the size of the dataset, and 100 is the number
of classes) and takes around 3 minute on a 16 core CPU machine. On the Imagenet dataset, the graph size is
roughly 13002 × 1000, and it takes around 89 minutes to generate on the same machine. The memory costs in
either case are small, as we compute the similarities class by class.

In Figure 5 we present the running time of Algorithm 1 with the lazy evaluation trick with various ground set
sizes. Particularly, we use the same fNN similarity graph as we use for the CIFAR-100 experiment, and we
random sample a subset from the ground set as the input to the partitioning algorithm. For various |V | values,
we fix m, the number of blocks, to be 20, and let k = |V |/m. We run the algorithm on a single Intel Xeon
CPU 2.60GHz CPU, and we record the min wall clock time over 5 runs to reduce the influence of other system
processes over our timing experiment.

2 × 104 3 × 104 4 × 104

ground set size

1.5 × 101

2.5 × 101

3.5 × 101

2 × 101

3 × 101

4 × 101

6 × 101

ru
nn

in
g

tim
e

in
 se

c

partition
slope 2.0 (O(V^2))
slope 1.0 (O(V))

Figure 5: Log-log plot of the running time of the partition algorithm v.s. the ground set size. The slope of the
regression line of the partition points is 1.345.

As shown in Figure 5, with the lazy evaluation trick, the running time of Algorithm 1 is significantly less than the
theoretical worst case O(|V |2) (the slope of a line in log-log scale reflects the complexity). We note that without
the lazy evaluation trick, the running time would be O(|V |2), but the lazy evaluation trick greatly increases the
memory cost of the partitioning algorithm, for this experiment in particular, the memory cost is merely 20 times
as the ordinary case since m = 20. Only with the hierarchical partitioning algorithm can we benefit from the
speed-up achieved by the lazy evaluation trick, yet with little increase in memory cost. For example, if we set
the block size constraints accordingly with m1 = 2, m2 = 2, and m3 = 5, we get 20 = 2 × 2 × 5 blocks in the
end, and the memory cost with the lazy evaluation trick is only twice the ordinary case.

Specifically, for the CIFAR100 experiment with mini-batch size 128, the ordinary partitioning (Algorithm 1) has
peak memory of 234MBs, while the hierarchical method with k1 = 1024, k2 = 512, k3 = 128, has peak memory of
only 30MBs. For the ImageNet experiment with a mini-batch size of 128, the ordinary partitioning (Algorithm 1)
has peak memory of 151GBs, while the hierarchical method with k1 = 32768, k2 = 16384, k3 = 8192, k4 = 4096,
k5 = 128, has peak memory of only 4.6 GBs.

Fixing Mini-batch Sequences with Hierarchical Robust Partitioning

B On the fly Priority Queue for Robust Partitioning with Lazy Evaluation

In Algorithm 3, we show details about building the priority queues on demand rather than initializing m priority
queues with all elements in V for robust partitioning with lazy evaluation. The general idea is simple: we keep
a global list of singleton values f(v)∀v ∈ V shared by all partitions, initialize the priority queue for every block
to be empty, and gradually push the gain of an element with respect to certain block into the priority queue
for such block. Under the ordinary approach, the peak memory happens near the initialization phase, as every
priority queue is initialized with all the elements in the ground set, which is a big waste, since the singleton gains
are the same. We address this issue by keeping a shared global list of singleton values.

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

Su
m
	o
f	P

rio
rit
y	
Q
ue
ue
	S
ize

500X	elements	assigned

Base Priority	on	the	Fly

Figure 6: Comparison of the memory (as the sum of priority queue sizes) of the ordinary lazy evaluation to
the on-the-fly priority queue lazy evaluation for robust submodular partitioning. The peak memory cost for the
ordinary case starts at the beginning when we initialize m priority queues with all singleton values, while for the
on-the-fly case, we gradually push elements into each priority queue, which reduces the peak memory cost by
around 25%.

In the worst case, Algorithm 3 does not save memory, unfortunately. In practice, however, we regularly observe
a constant reduction of memory cost (around 25%) as shown in Figure 6.

C Proof of Theorem 1

Theorem 1. For submodular function f on ground set V and block size (mini-batch size) constraint k, suppose
m = |V |/k, Algorithm 1 gives an approximation ratio of e−1

(e−1)m+1 .

Proof. At each iteration of Algorithm 1, it finds the smallest partially filled block (i.e., block size is less than k)
and assigns the element with the largest gain to that block. The objective value we care about is the minimum
block value. Therefore, at the end of some iteration (line 6 of Algorithm 1), if we find j s.t. |Aj | = k where
j ∈ argminj f(Aj), we know the final minimum block value is f(Aj), even though there are still elements
unassigned at that moment (i.e. |R| > 0). The reason is quite simple, block Aj is full so its value will not change
afterwards and all other block values will not decrease since f is monotone non-decreasing. Aj will be minimum
ever after. Therefore, in this proof and also for the proof of Theorem 2, we assume that we are at line 6 of the
earliest iteration when there exists j s.t. |Aj | = k where j ∈ argminj f(Aj). We pause the algorithm and prove
minj f(Aj) has a lower bound at that time. This lower bound will also apply for the final {Aj}s.

This assumption is useful since at the beginning of the current and all previous iterations (line 3), we know that for
all j ∈ argminj f(Aj), |Aj | < k. Then in line 3, j∗ ∈ argminj,|Aj |<k f(Aj) is equivalent with j∗ ∈ argminj f(Aj),
which will make the analysis simpler. Unfortunately, this is not the end of Algorithm 1, so that A1, A2, . . . , Am

Shengjie Wang†, Wenruo Bai∗, Chandrashekhar Lavania∗, Jeffrey A. Bilmes†∗

may not partition the entire ground set V , or more precisely, ∪mi=1Ai ⊆ V . We will be mindful of this in the
below.

We begin the proof with several definitions and lemmas.

Definition 2. Let OPTf be maxπ∈Π(V,k) mini f(πi(V)) for submodular function f defined on ground set V . Let
OPT = OPTf for simplicity.

Definition 3. Let fA(X) : 2V → R be a set function with fA(X) = f(X ∩A), and X ⊆ V .

Immediately, we notice that if f is monotone non-decreasing submodular, so is fA. Those two definitions are
only valid in the scope of this section.

Lemma 1. For monotone non-decreasing submodular function f , for any A ⊆ V , OPTf ≤ OPTfV \A + f(A).

Proof. First, we have f(X) ≤ f(X \A) +f(X ∩A) ≤ fV \A(X) +f(A) for all X ⊆ V according to submodularity
and monotonicity.

Let π∗ ∈ argmaxπ∈Π(V,k) mini f(πi(V)). Then we have OPTfV \A ≥ mini fV \A(π∗i (V)) ≥ mini[f(π∗i (V))−f(A)] =
OPTf − f(A).

Lemma 2. For monotone non-decreasing submodular function f , OPTf ≤
minX⊆V,|X|=m−1 maxY⊆V \X,|Y |≤k f(Y) (Recall the m is the number of blocks).

Proof. Let π∗ ∈ argmaxπ∈Π(V,k) mini f(πi(V)). Note that OPTf ≤ f(π∗i (V)) for i = 1, . . . ,m.

For all X ⊆ V with |X| = m − 1, there is at least one π∗i (V) that does not contain any element from X since
{π∗i (A)}mi=1 are m disjoint sets. Assume π∗j (V) ∩ X = ∅, then π∗j (V) ⊆ V \ X. Since |π∗j (V)| ≤ k, we have
OPTf ≤ f(π∗j (V)) ≤ maxY⊆V \X,|Y |≤k f(Y). Note that this holds for all X ⊆ V with |X| = m − 1. Therefore,
OPTf ≤ minX⊆V,|X|=m−1 maxY⊆V \X,|Y |≤k f(Y)

Now, we move to the main part of the proof for Theorem 1. We assume m ∈ argmini=1,2,...,m f(Ai) w.l.o.g.
(assume the last block has the min evaluation). So mini=1,2,...,m f(Ai) = f(Am).

For i = 1, 2, . . . ,m−1, assume Ai is not empty; otherwise |V | < m and OPTf = 0 which immediately proves the
theorem. Let ai be the last added element in block Ai. We claim f(Ai \ {ai}) ≤ f(Am), as the greedy process
of the algorithm always puts an element into the block with minimal evaluation.

Let f ′(X) = fV \[∪i=1:m−1(Ai\{ai})](X). We note that

OPTf ′ ≤ max
Y⊆V \{a1,a2,...,am−1},|Y |≤k

f ′(Y) (5)

= max
Y⊆V ′,|Y |≤k

f(Y) (6)

according to lemma 2, where V ′ = V \ (∪i=1:m−1Ai). Next, we want to prove OPTf ′ ≤ 1
γ f(Am).

If |V ′| ≤ k, then OPTf ′ ≤ f(Am).

If |V ′| > k, then |Am| = k. Recall that in the greedy process, at each step, we always choose the block with
minimal evaluation and add the element with the largest gain from the remaining set R. Let us focus only
on the m-th block. Let Am = {v1, v2, . . . , vk} where each element is labeled in the greedy order. Assume
that just before vi is picked, the current remaining set of elements is Ri. Given the greedy process, we have
vi ∈ argmaxv∈Ri f(v|{v1, v2, . . . , vi−1}) for all i = 1, 2, . . . , k. We notice that vi ∈ Bi ∩ V ′ for all i and Bi ∩ V ′ =
V ′ \ {v1, v2, . . . , vi−1}. Therefore,

vi ∈ argmax
v∈V ′\{v1,v2,...,vi−1}

f(v|{v1, v2, . . . , vi−1}) (7)

for all i = 1, 2, . . . , k.

Fixing Mini-batch Sequences with Hierarchical Robust Partitioning

Interestingly, this is just the greedy algorithm that chooses k elements from V ′. Immediately, we have

f(Am) ≥ γ max
Y⊆V ′,|Y |≤k

f(Y) (8)

where γ = 1− 1
e (Nemhauser et al., 1978). Therefore, OPTf ′ ≤ 1

γ f(Am).

Then we use lemma 1,

OPTf ≤ OPTf ′ + f(∪i=1,2,...,m−1(Ai \ {ai})) (9)

≤ OPTf ′ +
∑

i=1,2,...,m−1

f(Ai \ {ai}) (10)

≤ 1

γ
f(Am) + (m− 1)f(Am) (11)

(12)

since f(Ai \ {ai}) ≤ f(Am).

Therefore, we have

min
i=1,...,m

f(Ai) = f(Am) ≥ 1
1
γ − 1 +m

OPTf =
e− 1

(e− 1)m+ 1
OPTf (13)

D Proof of Theorem 2

Theorem 2. If we have τ ≥ 2 as defined in Def. 1 for every call to Algorithm 1 from Algorithm 2, then we
achieve an approximation ratio of (τ−1

2τ−1)r kr|V | .

Proof. First, we show a simple counter example which can make the bound arbitrarily bad for Algorithm 1
without any partitions. Let |V | = 8, m = 4, k1 = 4, k2 = 2 and f is modular. The eight elements have weights
1−2ε, 0.25, 0.25, 0.25, 0.25, ε, ε, ε respectively, with ε > 0 as a small value. Clearly, OPT=0.25+ε, yet Algorithm 2
will give blocks with weights (0.25, 0.25), (0.25, 0.25), (1− 2ε, ε) and (ε, ε), and the min block evaluation is 2ε.

Next, we prove Theorem 2 under certain mild assumption.

Definition 4. For any monotone non-decreasing submodular f and number of partitions M , Let OPTM be
maxπ∈Π(V,|V |/M) mini f(πi(V)).

The previous definition is valid only within the scope of this section.

Lemma 3. For any monotone non-decreasing submodular f , and M1,M2 ∈ Z+, if M2

M1
∈ Z+, we have OPTM1

≥
OPTM2

.

Proof. For any optimal partition of M2, we can group them into M1 partitions and each partition’s function
value is greater or equal to OPTM2 .

In Algorithm 2, there are r iterations and the partition will form a tree structure (Figure 2). The root is V and

Q1 = {V }. In the i-th iteration, it will partition every block A in Qi = {Ai,j}|Qi|j=1 into mi smaller sets and those

|Qi|mi sets form Qi+1. Immediately, we have that |Qi| = Πi
j=1mj−1 = |V |

ki−1
, where m0 is set to 1. Let Mi = |Qi|

and Qi is a Mi-partition.

Definition 5. For any i = 1, . . . , r, A ∈ Qi is partitioned into A1, A2, . . . , Ami , we call child(A) =
{A1, A2, . . . , Ami} and parent(Aj) = A.

Algorithm 2 is repeatedly calling Algorithm 1, and as we have discussed in Appendix C, we can end Algorithm 1
early to achieve the desired bound. The end condition is that there exists j s.t. Aj ∈ argminiAi and |Aj | = k.
At the time we early stop Algorithm 1, we name the resulting blocks, whose sizes are possibly less than the
cardinality constraint, as Ā1, Ā2, . . . , Ā|V |/k. We notice Āj ⊆ Aj and miniAi = mini Āi. We assume that
Algorithm 1 also outputs Ā1, Ā2, . . . , Ā|V |/k.

Shengjie Wang†, Wenruo Bai∗, Chandrashekhar Lavania∗, Jeffrey A. Bilmes†∗

Definition 6. For any i = 1, . . . , r, A ∈ Qi, after running Algorithm 1 on A, let t(A) = minmii=1 |Āi|.

Definition 7. For i = 1, . . . , r and τ ≥ 2 is an integer, we say Property P (i, τ) is true if and only if t(A) ≥ τ
for all A ∈ Qi.

Definition 8. For i = 1, . . . , r + 1 and τ ≥ 2 is an integer, we say Property G(i, τ) is true if and only
f(A) ≥ 1

(2τ−1
τ−1)i−1Mi

OPTMi
for all A ∈ Qi.

G(1, τ) is true immediately, since M1 = 1. The ultimate goal is to prove G(r + 1, τ) by induction.

Lemma 4. For i = 1, 2, . . . , r and τ ≥ 2 is an integer, [G(i, τ) ∩ P (i, τ)]→ G(i+ 1, τ)

Proof. Given the assumption, we have both G(i, τ) and P (i, τ) to be true. So for all A ∈ Qi, f(A) ≥
1

(2τ−1
τ−1)i−1Mi

OPTMi
≥ 1

(2τ−1
τ−1)i−1Mi

OPTMi+1
according to Lemma 3. For the next step, we need to prove

f(Aj) ≥ τ−1
(2τ−1)mi

f(A) for all Aj ∈ child(A) = {A1, A2, . . . , Ami}.

W.l.o.g, we assume mi ∈ argminj=1,2,...,mi f(Aj) and |Ami | = |Āmi | = ki+1. For j = 1, 2, . . . ,mi − 1, we first

look at Āj . Since P (i, τ) is true, we know that |Āj | ≥ τ ≥ 2. Let aj be the last added element in Āj . We claim
f(Āj \ aj) ≤ f(Ami) given the greedy process and note that block Ami is not full (size smaller than ki+1) at the

time of adding aj . Also, all elements in Āj are added by greedy order, so f(Āj) ≤ |Āj |
|Āj |−1

f(Āj \aj) ≤ τ
τ−1f(Ami)

for j = 1, 2, . . . ,mi − 1.

Next, there are still some elements in Aj \ Āj we have not analyzed. We notice | ∪j=1,2,...,mi−1 [Aj \ Āj]| ≤ |A| −
(mi−1)τ−ki, and the elements in ∪j=1,2,...,mi−1[Aj\Āj] are not added to mi block because they have less or equal

marginal gains than any element in Ami . Therefore f(Ami ∪
[
∪j=1,2,...,mi−1(Aj \ Āj)

]
) ≤ |A|−(mi−1)τ

ki
f(Ami).

f(A) ≤ f(Ami ∪
[
∪j=1,2,...,mi−1(Aj \ Āj)

]
)

+ f(∪j=1,2,...,mi−1f(Āj)) (14)

≤
[
|A| − (mi − 1)τ

ki
+
τ(mi − 1)

τ − 1

]
f(Ami) (15)

=

[
miki − (mi − 1)τ

ki
+
τ(mi − 1)

τ − 1

]
f(Ami) (16)

≤
[
1 +

τ

τ − 1

]
mif(Ami) (17)

(18)

Therefore, we have f(Ami) ≥ 1
2τ−1
τ−1 mi

f(A). And since, mi ∈ argminj=1,2,...,mi f(Aj), we have

minB∈child(A) f(B) ≥ 1
2τ−1
τ−1 mi

f(A) for all A ∈ Qi. Recall that, we have, for all A ∈ Qi, f(A) ≥
1

(2τ−1
τ−1)i−1Mi

OPTMi+1
.

Combining them together gives G(i+ 1, τ).

Finally, we finish the proof of Theorem 2 by induction, [∩i=1,2,...,rP (i, τ)]→ G(r + 1, τ).

E Binary Programming Formulation for Robust Partition Problem with a
Cardinality Constraint

Consider X as a binary matrix of size (n×m), where every column of X (a binary vector of length n) corresponds
to a subset of a ground set of size n. As we represent a set as a binary vector, a submodular function f takes in

Fixing Mini-batch Sequences with Hierarchical Robust Partitioning

a binary vector and outputs a real value.

max
X

min
i=1:m

f(X[:, i]) (19)

s.t. ∀j,
∑
i=1:m

X[j, i] = 1 (partition constraint) (20)

∀i,
∑
j=1:n

X[j, i] = k (mini-batch size constraint) (21)

X[j, i] ∈ {0, 1} for every j, i (22)

F Discussion about τ Values

For the CIFAR-100 experiment, we do a three-level hierarchical partitioning using the fNN function defined in
Section 5. The final mini-batch/block size is 128, and the τ value we get is 103 (τ is always less than the final
block size), so the extra factor we get in Theorem 2 is 0.123. We also show the plot of the extra factor (τ−1

2τ−1)r

in Figure 7.

20 40 60 80 100 120 140

0.116

0.118

0.120

0.122

0.124

[
1

2
1]

r

= 103
[1
2 1]r = 0.123179

Figure 7: The extra factor in Theorem 2 v.s. τ on CIFAR-10 with fNN function.

For the ImageNet experiment, we do a five-level partition. Like the CIFAR-100 case, we use the fNN function
and the final mini-batch size is 128. The τ value we get is 106 and the extra factor is 0.0305. For both cases,
the τ values are close to the final block size, and far greater than the requirement (τ ≥ 2) given in Theorem 2.
Therefore, in practice, the partitioning algorithm fills in blocks in a quite balanced manner.

G Architecture of DNNs

See Table 1 for the structure of autoencoder for extracting features for CIFAR-100 experiment.

Shengjie Wang†, Wenruo Bai∗, Chandrashekhar Lavania∗, Jeffrey A. Bilmes†∗

Algorithm 3: Priority Queue on the Fly for Robust Submodular Partition

1 Input: n = |V |, k, f , m = n/k ; // n ground set size, m partition

2 Initialize q1, .., qm ; // m priority queues

3 q′ = [] ; // global sorted list

4 a = [0, ..., 0] of length m ; // pointer to q′ of every block
5 for i = 1 : n do
6 q′.push((i, f(i)));
7 end

8 Sort q′ descending by value (second element in the pair);

9 πj := {} for j = 1 : m ; // blocks

10 j′ := 0 ; // min partition index

11 u := [False, False, ..., False] of length n ; // element i assigned or not
12 while

∑
j |πj | < n do

13 while a[j′] < n do

; // find the next unselected element from the global list
14 if u[q′[a[j′]].index()] then

15 a[j′] := a[j′] + 1 ; // increment if element q′[a[j′]].index() already assigned
16 end

17 end
18 if |qj′ | > 0 then

; // find the next unselected element from the priority queue of j′

19 i := qj′ .pop().index();

20 while u[i] do
21 if |qj′ | > 0 then

22 i := qj′ .pop().index() ; // skip if i already assigned
23 else

24 i := −1 ; // i = −1 indicating queue is empty
25 break;

26 end

27 end

28 else

29 i := −1 ; // i = −1 indicating queue is empty
30 end
31 if i == −1 then

; // choose the larger one from the two candidate elements

32 i := a[j′].index() ; // queue empty, get from the global sorted list
33 else
34 if a[j′] < n then

35 i′ := q′[a[j′]].index() ; // have not traversed the entire global sorted list
36 if f(i′|πj′) > f(i|πj′) then

37 i := i′ ; // Whether use the one from q′ or qj′
38 end

39 end

40 end

41 Increment a[j′] until q′[a[j′]] is not assigned ; // Get the next largest value from global queue

42 Pop qj′ until the top one is not assigned ; // Get the next largest value from qj′

43 w := max(qj′ .top().value(), q
′[a[j′]].value()) ; // The criteria is the larger one from the two queues

44 if f(i|πj′) > w then

; // greedy step
45 πj′ := πj′ ∪ {i};
46 u[i] := True;

47 j′ := argminjf(πj) ; // choose new min block
48 else
49 qj′ .push((i, f(i|πj′)));
50 end

51 end

Fixing Mini-batch Sequences with Hierarchical Robust Partitioning

Layer Group
Block Type

(kernel size, stride, channels)
Blocks

conv1 [3× 3], 2, 64 1

conv2 (residual)

[
3× 3
3× 3

]
, 1, 64 3

conv3 [3× 3], 2, 64 1

conv4 (residual)

[
3× 3
3× 3

]
, 1, 64 3

conv5 [3× 3], 2, 64 1

conv6 (residual)

[
3× 3
3× 3

]
, 1, 64 3

conv7 [3× 3], 2, 8 1

conv8 (residual)

[
3× 3
3× 3

]
, 1, 8 1

deconv9 (residual)

[
3× 3
3× 3

]
, 1, 8 1

deconv10 [3× 3], 1, 64 1

deconv11 (residual)

[
3× 3
3× 3

]
, 1, 64 3

deconv12 [3× 3], 2, 64 1

deconv13 (residual)

[
3× 3
3× 3

]
, 1, 64 3

deconv14 [3× 3], 2, 64 1

deconv15 (residual)

[
3× 3
3× 3

]
, 1, 64 3

deconv16 [3× 3], 2, 3 1

Table 1: Neural network structure of autoencoder for extracting features for CIFAR-100 experiment.

