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Abstract

In this paper, we study the problem of multi-
task metric learning (mtML). We first exam-
ine the generalization bound of the regular-
ized mtML formulation based on the notion
of algorithmic stability, proving the conver-
gence rate of mtML and revealing the trade-
off between the tasks. Moreover, we also
establish the theoretical connection between
the mtML, single-task learning and pooling-
task learning approaches. In addition, we
present a novel boosting-based mtML (mt-
BML) algorithm, which scales well with the
feature dimension of the data. Finally, we
also devise an efficient second-order Rieman-
nian retraction operator which is tailored
specifically to our mt-BML algorithm. It pro-
duces a low-rank solution of mtML to reduce
the model complexity, and may also improve
generalization performances. Extensive eval-
uations on several benchmark data sets verify
the effectiveness of our learning algorithm.

1 Introduction

Many machine learning algorithms rely on distance
metrics for an appropriate definition of similari-
ty/dissimilarity over the input space (e.g., k-nearest
neighbor (k-NN) classifier, K-means clustering). S-
tarting from [39], distance metric learning has been
actively studied as a promising approach to learn-
ing problem-specific distance metrics [38, 18, 33, 17].
More specifically, given the data points {xi}ni=1 ∈
Rd, the objective of metric learning is to learn a
Mahalanobis distance parameterized by a symmet-
ric positive definite (SPD) matrix M : dM (xi, xj) =√

(xi − xj)>M(xi − xj) such that additional con-
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straints (e.g., pairwise similarity) are satisfied. In ad-
dition, it has been shown that by taking advantage of
the idea of multitask learning [9], the performance of
metric learning algorithms can be improved by jointly
solving multiple related problems, where the under-
lying assumption is that some common knowledge or
structure can be shared across the tasks [29].

While the empirical results presented in recent works
have verified the effectiveness of the multitask metric
learning (mtML), its theoretical justification is rarely
investigated. The only related work we are aware of
is [34], where a mtML algorithm is proposed using
the idea of group lasso [42, 28], and the generalization
guarantee is analyzed based on the notion of algorith-
mic robustness [40]. However, the theoretical analy-
sis in [34] only reveals the benefits of sparse learning,
not providing any insight into why and when mtML
will improve the learning performances. As the first
contribution, we theoretically analyze a widely used
multitask learning strategy based on the notion of al-
gorithmic stability [7]. Specifically, we first answer the
question of why mtML can work by showing that
by controlling the tradeoff between the similarity and
the diversity of the model, the convergence rate of the
stability coefficient of mtML can increase fromO( 1

n ) to
O( 1

Tn ), with the risk of increasing training loss, where
T is the number of tasks. More important, we also try
to address the question of when mtML can work by
showing that the generalization bound of mtML is re-
lated to the learning performances of the pooling-task
approach and the single-task approach on the training
set, which provides a new insight into mtML.

Given the theoretical analysis, our second contribu-
tion is algorithmic: we study an instantiation of mtML
and present an efficient boosting-based method that
alleviates the computational issue of metric learning.
In contrast to previous approaches which formulate
the mtML problem as semidefinite programming and
do not scale well with the dimension of the data,
our method, inspired by [33], decomposes a positive
semidefinite matrix as a positive linear combination of
trace-one rank-one (TORO) matrices as weak learners,
and simultaneously learns the metric matrices from
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multiple tasks via a scalable boosting-based algorithm.
As a result, each boosting step only requires the com-
putation of the largest eigenvalue and its correspond-
ing eigenvector, which can be solved efficiently.

The third contribution of this paper is also algorith-
mic, motivated by learning low-rank metric matrices,
which is particularly useful for reducing the model
complexity and improving the generalization perfor-
mance. Although there have been some methods pro-
posed in the literature [15, 13, 12, 19], they cannot
directly applied to the setting of mtML. Inspired by
recent advances in optimization over a matrix mani-
fold [1, 35, 31], we propose a fixed-rank learning algo-
rithm based on a novel second-order Riemannian re-
traction operator, which is tailored specifically to our
boosting learning procedure. By leveraging the fact
that each weak learner is a TORO matrix, the pre-
sented operator is efficient and ensures that the met-
ric matrices reside on the low-rank manifolds at each
boosting step.

2 Multitask Metric Learning

Let S = {St}Tt=1 be T related tasks, where St = {zti =
(xti, y

t
i)}

nt
i=1 is the d-dimensional data set drown from a

distribution Dt for the t-th task, and nt is the number
of training data points of the t-th task. For simplici-
ty, we assume that nt = n, ∀t = 1, . . . , T . To jointly
learn from multiple tasks, we investigate a widely used
mtML formulation [29, 41, 6], which assumes that for
the t-th task, the metric matrix can be decomposed as
Mt = H0 + Ht, where Ht is the task-specific metric,
and H0 is the global metric measuring the commonali-
ties among the tasks. Consequently, the goal of mtML
is to find the matrices {Ht}Tt=0 which minimize the
following objective function:

min
{Ht}T0=1

1
T

∑T
t=1 (LSt(H0 +Ht) +Rt(H0, Ht)) , (1)

s.t. Ht ∈ Sd+, ∀t = {0, . . . , T}

where LSt(H0 + Ht) = 1
|Ct|

∑
(zti ,z

t
j)∈Ct

`
(
H0 +Ht, z

t
i , z

t
j

)
is the empirical loss over the t-th task, `(·) is a loss
function of the constraints (e.g., pairs, triplets), Ct
is the set of constraints,1 and |Ct| is the number
of constraints. Rt is a regularizer to control the
model complexity, and Sd+ denotes the set of SPD
matrices defined over Rd×d. In this paper, we s-
tudy the widely used Frobenius norm regularizer (e.g.,
[14, 18, 29, 30]). In addition, to control the model

1For simplicity, our analysis focuses on pair-based con-
straints, but the conclusion is also applicable to triplet-
based metric learning algorithms with slightly modifica-
tion of the lemmas and theorems. See the supplementary
materials for more details.

diversity, one should impose different regularization
strengths on H0 and Ht>0. To this end, we study the
regularizer Rt(H0, Ht) = λ0||H0||2F + λt||Ht||2F, where
||·||F is the Frobenius norm of a matrix, λ0 and λt>0 are
the trade-off regularization parameters. If λ0 → ∞,
(1) reduces to single-task (stML) approaches, which
solve T tasks individually, and if λt>0 → ∞, (1) re-
duces to pooling-task (ptML) approaches, which sim-
ply treat the T tasks as a single one. For simplicity,
we assume λt>0 = λ.

3 Theory

Before we present a specific algorithm to solve (1),
we first theoretically analyze the properties of mtML
by adapting the notion of algorithmic stability [7, 18]
to the setting of metric learning. The main advan-
tage of exploiting algorithmic stability rather than
the Rademacher complexity, the growth function, or
the VC-dimension is that it can provide algorithm-
dependent learning bounds and hence lead to tighter
generalization guarantees [20]. We start by introduc-
ing several definitions used in our analysis.

Definition 1 (σ-admissibility). A loss function
` (M, z, z′) is σ-admissible with respect to M , if for
any two matrices M and M ′, and any pairs of exam-
ples z and z′ , there exists σ > 0 such that

|` (M, z, z′)− ` (M ′, z, z′)|
≤ σ

∣∣(x− x′)>M(x− x′)− (x− x′)>M ′(x− x′)
∣∣ .

Definition 2 (Uniform stability). (See [18], Sec-
tion 3) A metric learning algorithm has β-uniform sta-
bility, with β ≥ 0, if

sup
z,z′∼D

|`(MS , z, z′))− `(MSi , z, z′)| ≤ β, ∀S,Si

where Si is the training sample S with the i-th example
zi replaced by an independent and identically distribut-
ed (i.i.d.) example z′i, MS and MSi are the matrices
learned from S and Si respectively.

The following lemma gives the generalization bounds
of bounded β-uniformly stable metric learning algo-
rithms. Due to space constraints we delegate all the
proofs to the supplementary materials.

Lemma 1. Let ` be a loss function bounded by B ≥ 0,
and let S be a training set of n data points drawn from
a distribution D, and MS be the matrix learned over
S by a β-uniformly stable metric learning algorithm.
Let LD(MS) = Ez,z′ ∼D[`(MS , z, z

′)] be the expected
loss of MS over D. Then, for any δ ∈ (0, 1), with
probability at least 1− δ, the following holds:

LD(MS)− LS(MS) ≤ 2β + (2nβ + 2B)

√
log 1

δ

2n .
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Given Lemma 1, we can derive meaningful generaliza-
tion guarantees of mtML by upper bounding β and
B. The following theorem shows that the mtML algo-
rithms solving (1) is β-uniformly stable.

Theorem 1. The mtML algorithms solving (1) is β-
uniformly stable, with

β ≤ σ2R4

λ0Tn
+ σ2R4

λn ,

where R = maxx,x′ ||x− x′||.
Remark 1. Theorem 1 explains why mtML can work
– the stability coefficient β of mtML converges in the
order of O( 1

Tn ) as λ → ∞. However, it results in
ptML, which simply put all the tasks together and may
have high training loss L(MS). On the other hand,
λ0 → ∞ leads to the stML solution with the conver-
gence rate in the order of O( 1

n ), and therefore there is
no benefit of multitask learning. In other words, The-
orem 1 formalizes the intuition that multitask learn-
ing can be viewed as a tradeoff between single-task and
pooling-task learning. To obtain good generalization
performances, one should the control balance between
the model diversity and training loss across the tasks
by tuning the regularization parameters λ0 and λ.

Remark 2. When T = 1, we obtain the stability co-
efficient βst of the stML with the same regularization
strength. If we further set λ0 = λ, we can show that
the ratio between the coefficient β of mtML and βst is
T+1
2T ≈

1
2 , which indicates that mtML converges twice

as fast as stML in this case.

Next, we upper bound the loss function ` by the fol-
lowing theorem.

Theorem 2. Let {Ht}Tt=0 be the optimal solution of
the mtML problem (1), H∗0 be the optimal solution of
ptML with R(H0) = λ0||H0||2F, and {H∗t }Tt=1 be the

optimal solution of stML with R(Ht) = λ̃||Ht||2F, where

λ̃ = λ0λ
λ0+λ

. Then, for any task j, the norm of Mj is
bounded by

||Mj ||F = ||H0 +Hj ||F ≤Mj ,
√
||H∗j ||2F + G

λ̃
,

where G =
∑T
t=1 ∆LSt , ∆LSt =

[ (
LSt(H∗0 ) + λ0||H∗0 ||2F

)
−(LSt(H∗t ) + λ̃||H∗t ||2F)

]
, is the overall gap between the

pooling-task and single-task learning approaches.

Remark 3. Theorem 2 connects the generalization
bound of mtML with the stML and ptML, and indi-
cates when mtML can work (note that Mj does not
depend on the training performance of mtML) – the
model complexity (hence the upper bound B of the loss
function, as well as generalization gap) of the j-th task
is low, when both 1) the intrinsic complexity of the
(single-task) learning problem, measured by ||H∗j ||2F,
and 2) the diversity between the tasks, measured by G,

are low. Large value of G indicates low similarity be-
tween the tasks, and in this case, mtML may have high-
er generalization error than stML even though it has
faster convergence rate for β. On the other extreme,
if the performance gap G is small, one can expect that
mtML can have a tight model complexity bound and
also achieve fast convergence rate by Theorem 1. In
other words, Theorem 2 formulates the intuition that
mtML can work when tasks are similar to each other
in the way that stML and ptML have similar learning
performances.

As a concrete example, we combine Lemma 1, The-
orem 1 and Theorem 2, and note that hinge loss is
σ-admissible with σ = 1 [26], and upper bounded by
MjR

2 + 1. Then, we the following corollary gives the
generalization bound of the mtML algorithm solving
(1) with hinge loss [29].

Corollary 1. Let {Ht}Tt=0 (hence {Mt}Tt=1) be the op-
timal solution of the mtML problem (1) with hinge loss.
Then, for any δ ∈ (0, 1), with probability at least 1−δ,
the following holds for any task j:

LDj (Mj)− LSj (Mj) ≤
(

2R4

λ0Tn
+ 2R4

λn

)
+

(
2R4

λ0T
+

2R4

λ
+ 2(MjR

2 + 1)

)√
log 1

δ

2n
.

4 Multitask Boosted Metric Learning
(mt-BML)

In this section, we propose an efficient and scalable
boosting-based algorithm, termed multitask boosted
metric learning (mt-BML), to solve the problem (1).
Specifically, we consider the relative constraint defined
over triplets as in [38] and use the exponential loss

min
{Ht}Tt=0

log

 T∑
t=1

|Ct|∑
c=1

exp−ρtc

+

T∑
t=1

Rt(H0, Ht)

s.t. Ht ∈ Sd+, (2)

where we have simplified the notations by introduc-
ing ρtc = 〈Xt

c, H0 + Ht〉, with Xt
c = (xti − xtk)(xti −

xtk)>− (xti−xtj)(xti−xtj)>, (xti, x
t
j , x

t
k) ∈ Ct. 〈X,H〉 =

tr(XH>), tr(·) being the trace of a matrix, is the in-
ner product of X and H. In addition, to simplify
the algorithm derivation, instead of using a Frobe-
nius norm regularizer, we adopt a trace regularizer
Rt(H0, Ht) = λ0tr(H0) + λttr(Ht) as in [32]. While
mt-BML does not use a Frobenius norm as a stabiliz-
er, it still archives good generalization performances
in practice, as shown in the experiments.

As a positive semidefinite matrix can be decomposed
by a positive linear combination of TORO matrices,
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we can reformulate each Ht as Ht =
∑M
m=1 w

t
mP

t
m,

with rank(P tm) = 1, tr(P tm) = 1 and wtm ≥ 0.

Then we have ρtc = ζtc
>
w0 + ξtc

>
wt, where wt =

[wt1, . . . , w
t
M ]>, ζtc = [〈Xt

c, P
0
1 〉, . . . , 〈Xt

c, P
0
M 〉]>, and ξtc =

[〈Xt
c, P

t
1〉, . . . , 〈Xt

c, P
t
M 〉]>. Now Eq. (2) becomes

min
w,ρ

log

 T∑
t=1

|Ct|∑
c=1

exp−ρtc

+ Tλ0

M∑
m=1

w0
m (3)

+

T∑
t=1

λt

M∑
m=1

wtm

s.t. ρtc = ζtc
>
w0 + ξtc

>
wt, P tm ∈ Ω1, w

t � 0,

where Ω1 is the set of TORO matrices. The Lagrange
function of (3) is

L(w, ρ, µ, ν) = log

 T∑
t=1

|Ct|∑
c=1

exp−ρtc

 (4)

+

T∑
t=1

λt

M∑
m=1

wtm + Tλ0

M∑
m=1

w0
m

+

T∑
t=1

|Ct|∑
c=1

µtc

(
ρtc − ζtc

>
w0 − ξtc

>
wt
)
−

T∑
t=0

νt
>
wt,

where ν � 0, and µ, ν are the sets of Lagrange multi-
pliers. Then, the dual function is given by

inf
w,ρ

L =

inf
ρ

log

 T∑
t=1

|Ct|∑
c=1

exp−ρtc

+

T∑
t=1

|Ct|∑
c=1

µtcρ
t
c


+ inf
{wt}Tt=1

 T∑
t=1

λt

M∑
m=1

wtm − wt
>
( |Ct|∑
c=1

µtcξ
t
c + νt

)
+ inf

w0

Tλ0 M∑
m=1

w0
m − w0>

( T∑
t=1

|Ct|∑
c=1

µtcζ
t
c + ν0

) (5)

It can be observed that problem (5) can be minimized
with respect to w0, {wt}, and ρ separately, which gives
the Lagrange dual problem of (3) (see the supplemen-
tary materials for the detailed derivations):

max
µ
−

T∑
t=1

|Ct|∑
c=1

µtc logµtc, (6)

s.t. µ � 0,

T∑
t=1

|Ct|∑
c=1

µtc = 1, (C1)

1

T

T∑
t=1

|Ct|∑
c=1

µtc,mζ
t
c,m ≤ λ0, (C2)

|Ct|∑
c=1

µtc,mξ
t
c,m ≤ λt, ∀t = 1, . . . , T (C3)

where ζtc,m and ξtc,m are, respectively, the m-th element
of ζtc and ξtc, and the formulation of µtc,m will be de-
tailed later. As the number of possible TORO matrices
is infinite, neither the primal (3) nor dual (6) can be
solved directly. Following the intuition of column gen-
eration [21], we use an AdaBoost-like algorithm which
sequentially adds TORO matrices P tm to the curren-
t solution. More specifically, at the m-th iteration, a
TORO matrix that most violates the constraints (C2)
or (C3) is added to the current optimization problem.
In other words, we need to solve

P ?m = arg max
{P tm}Tt=0

{
f tm(P tm)

}
, s.t. P tm ∈ Ω1 (7)

where

f tm(P tm) =

{〈(
1

λ0T

∑T
t=1

∑|Ct|
c=1 µ

t
c,mX

t
c

)
, P 0

m

〉
, t = 0〈(

1
λt

∑|Ct|
c=1 µ

t
c,mX

t
c

)
, P tm

〉
, t > 0

where Ht,m =
∑m
i=1 w

t
iP

t
i is the solution of Ht at the

m-th boosting step. Note that as {P tm} are TORO
matrices, the solution of (7) can be obtained by eigen-
value decomposition. Specifically, let

Σt =


(

1
λ0T

∑T
t=1

∑|Ct|
c=1 µ

t
c,mX

t
c

)
, t = 0(

1
λt

∑|Ct|
c=1 µ

t
c,mX

t
c

)
, t > 0

, (8)

and σ(Σt) be the largest eigenvalue of Σt. Then we
have

P ?m = P t̂m = pt̂mp
t̂
m

>
, (9)

where t̂ = arg maxt σ(Σt), and pt̂m is the correspond-
ing eigenvector. From Eq. (8) it can be observed that
P t>0
m (hence Ht>0) is learned only from the triplets of

the t-th task, while P 0
m (hence H0) is learned from the

triplets of all the tasks. Consequently, the tasks in-
teract with each other when Σ0 is selected during the
boosting procedure.

Once we add a new basis to the current solution, its
coefficient wt̂m can be obtained by minimizing the cost
function of primal problem (3). Specifically, the cost
function with respect to w0

m is (note that wt>0
m = 0 if

P 0
m is selected, and we have omitted the terms irrele-

vant to w0
m)

log

 T∑
t=1

|Ct|∑
c=1

exp−
(
ρtc,m−1 + w0

mζ
t
c,m

)+ λ0w
0
m.

Setting the derivative of with respect to w0
m to zero,

we need to find w0
m such that

T∑
t=1

|Ct|∑
r=1

µtc,m−1(ζtr,m − λ0) exp−(w0
mζ

t
c,m) = 0. (10)
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Algorithm 1 Multitask Boosted Metric Learning
(mt-BML)

Input: Training set S, regularization parameters {λt}Tt=0,
number of boosting iterations M .

1: Initialize µtc,0 = 1
|C| , where |C| =

∑T
t=1 |Ct|.

2: for m = 1, . . . ,M do
3: Compute {ptm}Tt=0 by solving Eq (8). O(|C|d+ Td2)

4: Obtain a new base learner P t̂m using Eq (9). O(d2)

5: Compute wt̂m by finding the root of (10) or (11).
6: Call SROMU to map the metrics back to a low-rank

manifold (optional). O(dk) or O(Tdk)
7: Update the weight µtc,m for each triplet Xt

c using
Eq (12). O(|C|d) or O(|Ct̂|d)

8: end for

Output: Metric matrices Mt, where Mt = H0 +Ht, with
Ht =

∑M
m=1 w

t
mP

t
m, ∀t = 0, . . . , T .

Similarly, we need to solve

|Ct̂|∑
c=1

µt̂c,m−1(ξ t̂c,m − λt̂) exp−(wt̂mξ
t̂
c,m) = 0, (11)

for wt̂>0
m (and wt 6=t̂m = 0). Note that as the cost func-

tion is convex with respect to wtm, there exists a unique
global solution for (10) and (11), which can be found
by any root-finding algorithm.

It remains to show the formulation of µtc,m, which can
be derived from the KKT conditions of (4). Setting
the derivative of (4) with respect to ρtc to zero gives

µtc =
exp−ρtc∑T

s=1

∑|Ct|
k=1 exp−ρsk

,

which suggests that once we add a new matrix P t̂m to
the current solution, µtc,m can be updated by

µtc,m =


µtc,m−1 exp(−wt̂m〈X

t
c,P

t̂
m〉)

Zm
, t̂ = 0 or t

µtc,m−1

Zm
, otherwise.

, (12)

where Zm is simply a normalization factor to ensure

that
∑T
t=1

∑|Ct|
c=1 µ

t
c,m = 1. As each base learner is

obtained by computing the largest eigenvector of Σt,
which is a weighted linear combination of Xt

c, as shown
in Eq. (8), the dual variable µtc,m plays a role of the
weight of each triplet Xt

c as in AdaBoost. The pseudo-
code of mt-BML is summarized in Algorithm 1.

4.1 Learning Low-Rank Metric

In practice, a low-rank solution of metrics is usually
preferred since it can reduce the memory and model
complexity, and therefore may avoid overfitting and
improve the generalization performances. In addition,
it also corresponds to dimensionality reduction which

projects the data to a lower dimensional space with
more compact representation. In mt-BML, a low-rank
solution can be obtained by limiting the number of
boosting iterations. One fundamental problem with
this approach is that it can only control the sum of
the rank of Ht, but not the rank of each specific Ht.
In practice, it may happen that Ht is never learned
for some specific tasks t. Moreover, our ultimate ob-
jective is to limit the rank of Mt, rather than Ht. In
this section, we tackle the low-rank mtML problem by
explicitly enforcing fixed-rank constraints on Mt. By
exploiting the characteristics of mt-BML, we present
an efficient operator that maps metrics back to a low-
rank manifold at each boosting iteration.

Let M ∈ Sd,k+ and Z ∈ Rd×d, where Sd,k+ is the set of
positive semidefinite matrices of rank k. We aim to de-
vise an operator MM (Z) = M∗ such that M∗ ∈ Sd,k+ ,
while keep M∗ as close to M + Z as possible. Naive
approaches (e.g., projected gradient descent) involv-
ing repeated singular value decomposition (SVD) are
computationally intractable for high-dimensional da-
ta, and tend to deviate from the original direction [27].
To circumvent this problem, more efficient algorithm-
s have been proposed in the literature of optimiza-
tion over Riemannian manifolds [35], which typically
consist of two consecutive operations: 1. Projection
which linearly maps Z ∈ Rd×d to the tangent space
TMSd,k+ : ZT = PM (Z) ∈ TMSd,k+ . (see the supplemen-

tary materials for the formal definition of TMSd,k+ ).
2. Retraction which maps ZT back onto the manifold:
ZR = RM (ZT ) ∈ Sd,k+ . However, a direct implementa-
tion of these two operations is computationally unaf-
fordable since a generic retraction is called exponential
mapping [1], which is still expensive.

As each iteration of mt-BML is a rank-one update:
Z = wP ∈ Sd,1+ , it allows us to design an efficient op-

erator that directly mapsM+Z back onto Sd,k+ without
computing projection and retraction separately. The
following Lemma gives an efficient mapping and rigor-
ously proves that our retraction operator is a second-
order approximation of exponential mapping.

Lemma 2. Let M = UU> ∈ Sd,k+ , with U ∈ Rd×k,
and M†, U† be their pseudoinverses. Given a matrix
Z = zz> ∈ Sd,1+ , z ∈ Rd, the operator MM (Z) = M∗ =
U∗U

>
∗ , where U∗ = U + V , with

V = zz>U†
>
− 1

2
PUzz

>U†
>
− 1

2
zz>M†zz>U†

>

+
3

8
PUzz

>M†zz>U†
>

(13)

maps M + Z back to the manifold Sd,k+ , where PU =
UU† = U(U>U)−1U>. In addition, we have the pro-
jection ZT = PM (Z) = PUzz

>PU + PU⊥zz
>PU +

PUzz
>PU⊥ ∈ TMSd,k+ , where PU⊥ = I − PU , and the
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Algorithm 2 Symmetric Rank-One Matrix Update
on Riemannian Manifold (SROMU)

Input: M = UU> ∈ Sd,k+ , U†, Z = zz> ∈ Sd,1+ .

1: Compute V using Eq. (13). O(dk)
2: Compute U∗ = U + V . O(d)

3: Compute U†∗ , the rank-one update of the pseudoinverse
of U , given U,U†, and Z. O(dk)

4: Compute P = UV > + V U> + V V > O(dk)

Output: The matrix U∗, such that U∗U
>
∗ = M∗ ∈ Sd,k+ ,

with its pseudoinverse, U†∗ , and the base learner P .

retraction RM : ZT 7→ U∗U
>
∗ is a second-order Rie-

mannian retraction on Sd,k+ . Namely, 1) RM (0) =
M ; 2) local rigidity: the derivative of the curve
γZT : τ 7→ RM (τZT ) with respect to τ satisfies
γ̇ZT (0) = ZT ; and 3) zero initial acceleration condi-

tion: PM
(
d2RM (τZT )

dτ2
|τ=0

)
= 0, ∀ZT ∈ TMSd,k+ .

Remark 4. Lemma 2 implies that the mapping de-
fined by MM (Z) (i.e., Eq (13)) is sufficiently accu-
rate (but much computationally cheaper), maintains
the convergence property of exponential mapping, and
enjoys the convergence properties of second-order al-
gorithms [1].

Based on Lemma 2, we present the Symmetric Rank-
One Matrix Update on Riemannian Manifold (SROMU)
to efficiently maintain the rank of a matrix during
the boosting procedure of mt-BML, as shown in Al-
gorithm 2. To map the update back to Sd,k+ , we on-
ly need to track U†. Since rank(V ) = 1, efficien-
t algorithms are available to update the pseudoin-
verse of rank-one perturbed matrix [25]. As M∗ =
M +UV >+V U>+V V >, we can define the new base
learner as P t̂m = UV > + V U> + V V > (wt̂m = 1) for
t̂ > 0. When t̂ = 0 is selected, we update the metric
matrices of all the tasks to ensure that Mt ∈ Sd,k+ . Our
update rule is based on [35], and is similar in spirit to
some previous work [31, 19], yet with key differences:
by exploiting of the rank-one and symmetric structure
of Z, MM (Z) is simple and elegant. Moreover, it is
tailored specifically to mt-BML, producing a rank-2
base learner P , which makes the weights of triplets
still updated efficiently (i.e., Eq. 12) after retraction
at each boosting iteration.

Computational Complexity At each boosting iter-
ation, the computation cost of the eigenvalue decom-
position is O(d2) to find the largest eigenvalue and the
corresponding eigenvector for each task, and therefore
the overall time complexity of line 3 of Algorithm 1
is O(Td2). On the other hand, other mtML algo-
rithms based on semidefinite programming (e.g., mt-
LMNN [29]) take at least O(d3) to project the metric
matrix back to Sd+ for each task. Therefore, the over-
all complexity is O(Td3) at each iteration. As V is

a rank-one matrix, Algorithm 2 is generally fast, and
the overall complexity is O(dk), while naive approach-
es using SVD take O(d2k).

5 Related Work

The first attempt to utilizing the multitask learning
framework for metric learning is presented in [29],
termed as mt-LMNN, which is a multitask extension of
the large margin nearest neighbor (LMNN) algorith-
m [38]. It makes use of the idea that there is a glob-
al model parameter shared across the tasks [14, 10],
which is equivalent to the assumption that the model
parameters of different tasks come from a common pri-
or. Later, this intuition is also adopted in [37] to share
the knowledge among semantic labels and social tag-
ging information for image understanding. In [43], the
task covariance matrix is proposed to measure more
sophisticated task relatedness structures for multitask
metric learning, and then extended to the setting of
transfer learning by regarding it as a special case of
multitask learning. In [41], the von Neumann diver-
gence is introduced to regularize the relationship a-
mong multiple tasks, as well as to preserve the data
geometry. Recently, the idea of sharing the global pa-
rameter across the tasks is revisited in [6] for multitask
face matching via coupled projection.

From the theoretical perspective, there have been sev-
eral studies either on metric learning or multitask
learning. For example, by utilizing the notions of
VC-dimension and covering number, the generaliza-
tion bound of multitask learning has been investigat-
ed in [3] under the assumption that the tasks share
some common hypothesis space. Later, Ando and
Zhang [2] present a more general (although related)
analysis of structural learning from multiple tasks by
leveraging both labeled and unlabeled data. Their
analysis is based on Rademacher complexity and a d-
ifferent covering number definition. Based on the no-
tion of Rademacher complexity, improved bounds are
presented under the assumption that the tasks are in
related in the way such that they share a common lin-
ear operator which is chosen to preprocess data [22], or
the linear model parameters lie in a low-dimensional
subspace [23, 24]. The latter work is also extended to
nonlinear model by gradient boosting [36]. Recently,
algorithm-dependent bounds have also been analyzed
in [20], based on the notion of algorithmic stability.

As for metric learning, the theoretical results are rel-
atively rare. The main obstacle of deriving bounds
for metric learning algorithms is that the aforemen-
tioned technical approaches are based on the assump-
tion that training examples are i.i.d., which does not
hold for the constraints (e.g., pairs, triplets) used for
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training a metric. The first attempt to analyzing the
generalization bounds for metric learning is presented
in [18], where the uniform stability is defined for met-
ric learning. Later, this work is extended to the prob-
lem of similarity learning by making use of framework
of good similarities [5]. More recently, the notion of
algorithmic stability is also used for deriving the gen-
eralization bounds of metric hypothesis transfer learn-
ing [30]. Other technical approaches to the theoretical
analysis of metric learning include Rademacher com-
plexity [16, 8] and algorithmic robustness [4]. In the
context of mtML, the only related work we are aware
of is [34], where a mtML algorithm is proposed using
the idea of group lasso [42, 28], and the generaliza-
tion guarantee is also analyzed based on the notion
of algorithmic robustness [40]. However, the analysis
in [34] only reveals the benefits of sparse learning, not
providing any insight into the mtML itself.

Low-rank metric learning has been actively studied
over the recent years. Inspired by recent advances in
optimization over matrix manifolds [1, 35], there have
been some studies on devising efficient Riemannian re-
traction operator, which project the matrix back on
the low-rank manifold at each step of optimization pro-
cedure [11, 31, 19, 27]. Our method is similar in spirit
to these work, yet with key differences: by exploiting
of the rank-one and symmetric structure of the base
learner of mt-BML, our Riemannian retraction oper-
ator is simple and elegant. Moreover, it is tailored
specifically to mt-BML, producing a new rank-2 base
learner after projection, which makes the weights of
triplets still updated efficiently after retraction.

6 Experiments

In this section, we evaluate mt-BML on four bench-
mark data sets of multitask learning, including Isolet,
CoIL, Letter, and USPS.2 We use the same approach
to generate the triplets as in [38, 33]. With respect
to the hyper-parameters, we simply set the number of
iterations M = 500, λt>0 = 0.01, and tune λ0 in the
grid {0.001, 0.002, . . . , 0.02} by cross-validation. After
the metric learning step, the testing examples are clas-
sified by using 3-NN classifier. We run the experiments
20 times by randomly splitting training/testing data
set and the average results are reported.

Performance Comparison We first evaluate mt-
BML against several baseline algorithms, including
mt-LMNN [29], mt-GPML [41] and mt-SCML [34] as
mtML baselines, as well as st-LMNN [38] and Boost-
Metric [33] as stML baselines. We vary the ratio of
training examples from 0.1 to 0.5, and the results are

2See the supplementary materials for more details of the
data sets and additional experimental results.

shown in Figure 1. Overall, the mtML algorithms
outperform st-LMNN, especially when the sample size
is small. BoostMetric also achieve comparable per-
formances with mt-LMNN, mt-GPML and mt-SCML
even without sharing the knowledge from other tasks.
On the other hand, mt-BML inherits the benefits from
both BoostMetric and multitask learning, and outper-
forms other baselines. Specifically, mt-BML consis-
tently attains the lowest error rates on CoIL and Letter
data sets with different ratios of training examples. It
also outperforms other baseline on the Isolet and USPS
data sets when the ratio of training examples is smaller
than 0.4, and achieves comparable performances with
other algorithms when the ratio is between 0.4 and 0.5.

Low-Rank mt-BML Next, we evaluate low-rank
mt-BML (mt-LRBML) against several other low-rank
metric learning algorithms, including single task L-
RBML (st-LRBML) by setting λ0 = 104, ITML [13],
LORETA [31], and FRML [19]. We fix the ratio of
training examples to be 0.5, vary the rank of metric,
and the results are shown in Figure 2. It can be ob-
served that compared with single task low-rank learn-
ing algorithms, mt-LRBML substantially improve the
learning performances on both data sets across al-
l values of rank, and it outperforms other algorithms
even with very low rank. Roughly speaking, the error
rates decrease with the increase of the value of rank,
but low-rank metrics still achieve comparable perfor-
mances. For example, the lowest error rate is achieved
by the low-rank solution on the Letter data set (rank
k = 110). In addition, the results are saturated for
larger value of the rank k. For example, for the USP-
S data set, the error rate of mt-BML is reduced by
1.14% when the rank k varies from 15 (1.63%) to 30
(0.49%), but by 0.21% when rank k varies from 30 to
64 (0.28%). In other words, mt-LRBML obtains more
compact representations without losing much discrim-
inative power of the data.

Influence of λ0 In this section, we empirically ex-
amine the influence of the regularization parameter λ0
with different ratios of training examples, as shown in
Figure 3. It can be observed that the performance of
mt-BML is relatively insensitive to the values of λ0.
We conjecture that this is due to the fact that the
boosting procedure itself has the mechanism to bal-
ance the trade-off between the tasks by adjusting the
weights of examples according to the learning perfor-
mance each base learner. Further investigation of the
learning process could be an interesting direction for
the future work. Comparing Figure 3 with the Fig-
ure 1, we also observe that mt-BML outperforms other
baselines over a wide range of values of λ0.

Running Time Comparison We verify the efficien-
cy of mt-BML and mt-LRBML with rank k = 10 on
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Figure 1: Test error rates (%) of the algorithms with different ratios of training examples.
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Figure 2: Test error rates (%) with different values of rank.
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Figure 3: Test error rates with different values of regularization parameter λ0.
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Figure 4: Running time comparison.

the normally distributed synthetic data set. For each
task, we keep the number of triplets fixed to 72, and
vary the feature dimension from 1 to 1000. As mt-
BML avoids explicitly solving the optimization prob-
lem with the semidefiniteness constraint by sequential-
ly performing eigenvalue decomposition, it has much
lower computational cost than mt-LMNN especially
when the feature dimension is high, as shown in Fig-
ure 4. The running time of mt-BML is slightly more

than BoostMetric, which is mainly because of the ex-
tra eigenvalue decomposition of Σ0. At each boosting
iteration, mt-LRBML calls SROMU to project the met-
rics back to the low-rank manifolds, which requires
extra computational cost of order O(dk) or O(Tdk).
As a result, it is slightly slower than mt-BML, but still
much more scalable than mt-LMNN.

7 Conclusions

In this paper, we have investigated both theoretical
and algorithmic aspects of mtML algorithms. By ex-
amining the generalization bound, we theoretically jus-
tify the benefits of a widely used mtML formulation.
On the algorithmic side, we present mt-BML, which
scales well with the feature dimension. In addition,
we also investigate the issues of low-rank learning in
the setting of mtML. The extensive evaluations verify
the efficiency and effectiveness of our algorithms.

We have proposed to use performance gap to measure
the similarity between domains in the context of mul-
titask learning. In the future, we are interested in ex-
tending this notion to other learning paradigms, such
as transfer learning and meta learning.
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