Supplementary Materials: Online Decentralized Leverage Score Sampling for Streaming Multidimensional Time Series

1 Proofs

Proof of Theorem 5.1.
Let $\mathbf{U}_{t}=1_{\left\{\mathbf{x}_{t} \in \mathcal{E}_{r}\right\}} \mathbf{X}_{t}$. By equation (2), we have

$$
\begin{equation*}
\sqrt{n}(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta})=\left(\frac{1}{n} \sum_{t=1}^{n} \mathbf{U}_{t} \mathbf{U}_{t}^{\prime}\right)^{-1}\left(\frac{1}{\sqrt{n}} \sum_{t=1}^{n} \mathbf{U}_{t} \mathbf{e}_{t}^{\prime}\right) \tag{1}
\end{equation*}
$$

which is understood as $-\sqrt{n} \boldsymbol{\beta}$ if the invertibility fails. Note that

$$
\begin{equation*}
\mathbb{E}\left[\operatorname{vec}\left(\mathbf{U}_{t} \mathbf{e}_{t}^{\prime}\right) \operatorname{vec}\left(\left(\mathbf{U}_{t} \mathbf{e}_{t}^{\prime}\right)^{\prime}\right]=\Omega \otimes \Gamma(r)\right. \tag{2}
\end{equation*}
$$

For any column vector $\mathbf{a} \in \mathbb{R}^{K^{2} p}$, the linear combination $\mathbf{a}^{\prime} \operatorname{vec}\left(\mathbf{U}_{t}\right) \mathbf{e}_{t}$ forms a stationary martingale difference in t with respect to the filtration $\mathcal{F}_{t}=\sigma\left(\mathbf{e}_{i}, i \leq t\right)$ since \mathbf{U}_{t} is $\mathcal{F}_{t-1^{-}}$ measurable and \mathbf{e}_{t} is centered and independent of \mathcal{F}_{t-1}. By (2) and the Martingale Central Limit Theorem (Theorem 35.12 of [Billingsley 1995 Probability and Measure 3rd ed.]), as $n \rightarrow \infty$,

$$
\frac{1}{\sqrt{n}} \sum_{t=1}^{n} \mathbf{a}^{\prime} \operatorname{vec}\left(\mathbf{U}_{t} \mathbf{e}_{t}^{\prime}\right) \xrightarrow{d} N\left(0, \mathbf{a}^{\prime} \Omega \otimes \Gamma(r) \mathbf{a}\right)
$$

In view of the Cramer-Wold Device, we have thus shown that as $n \rightarrow \infty$,

$$
\begin{equation*}
\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \operatorname{vec}\left(\mathbf{U}_{t} \mathbf{e}_{t}^{\prime}\right) \xrightarrow{d} N(\mathbf{0}, \Omega \otimes \Gamma(r)) \tag{3}
\end{equation*}
$$

On the other hand, each component of the \mathbf{U}_{t} is a causal linear filter of i.i.d. (thus ergodic) \mathbf{e}_{t}, and is hence an ergodic sequence by Lemma 10.5 of [Kallenberg 2002 Foundations of Modern Probability 2nd ed]. Therefore, by the Birkhoff Ergodic Theorem (Theorem 10.6 of [Kallenberg]) applied to each entry, one has almost surely as $n \rightarrow \infty$ that

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} \mathbf{U}_{t} \mathbf{U}_{t}^{\prime} \rightarrow \Gamma(r) \tag{4}
\end{equation*}
$$

At last, notice that the invertible matrices of a fixed size form an open subset under the product topology. Hence $\frac{1}{n} \sum_{i=1}^{n} \mathbf{U}_{t} \mathbf{U}_{t}^{\prime}$ is invertible with probability tending to one as $n \rightarrow \infty$. Combining (1), (3) and (4) yields (12).

Proof of Theorem 5.2.
The case of consecutive sampling can be directly deduced from Theorem 5.1 by letting $E=\mathbb{R}^{m}$ and substituting n by $n q$. For the Bernoulli sampling, the proof can be carried out similarly as the proof of Theorem 5.1. In particular, the indicator $1_{\left\{\mathbf{X}_{t} \in E\right\}}$ is replaced by i.i.d. Bernoulli (q) variables independent of the time series $\left(\mathbf{Y}_{t}\right)$, which still retains the martingale property used in the proof of Theorem 5.1

Hence

$$
\min _{\|\mathbf{b}\|=1} F\left(\mathbf{a}(\mathbf{b}) ; \mathcal{E}_{r}\right)=\lambda_{\min }[T(m, r)-Q(m, r)] .
$$

