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A Proofs

In this section, we provide proofs for lemmas and theorems in Section 5. Throughout this section, we use
xcat 2 Rnd to denote the concatenation of n vectors x1, . . . ,xn 2 Rd, i.e., xcat := [x>

1 , . . . ,x
>
n ]

>, x̄ = 1
n

Pn
i=1 xi

to denote the average of xi, and x̄cat := [x̄>, . . . , x̄>]> 2 Rnd the concatenation of n copies of x̄. Note that
x̄cat = ( 1n1n1

>
n ⌦ Id)xcat, where Id 2 Rd⇥d is an identity matrix. Besides, we denote rFcat(xcat) 2 Rnd as the

vector [rFi(x1)>, . . . ,rFi(xn)>]>. We note that the proofs of Lemma 1, 2, and 3 are borrowed from (Mokhtari
et al., 2018b) and we state them here for completeness.

A.1 Proof of Lemma 1

Proof. First, we observe that

x
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(t)
cat +

1

T
v
(t)
cat = (W ⌦ Id)

t
x
(1)
cat +

1

T

tX

⌧=1
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t�⌧

v
(⌧)
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1

T

tX

⌧=1

(W ⌦ Id)
t�⌧

v
(⌧)
cat, (23)

where the first equality follows from the update rule of x(t)
i and the second equlity holds because x

(1)
i = 0d. Let

z
(⌧)
i 2 Rd, i 2 [n], denote the i-th block of (W ⌦ Id)v

(⌧)
cat and y

(⌧,t)
i denote the i-th block of (W ⌦ Id)t�⌧

v
(⌧)
cat.

Note that each v
(⌧)
i belongs to the set C, therefore z

(⌧)
i =

P
j2N (i)[{i} Wijv

(⌧)
j also belongs to C, since z

(⌧)
i is a

convex combination of v(⌧)
j . Hence, y(⌧,t)

i 2 C, and thus 1
t

Pt
⌧=1 y

(⌧,t)
i 2 C. From (23) we can see that, for any

t 2 [T ],

0d  x
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1
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tX

⌧=1
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i 

1

t

tX
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i , (24)

which implies that x(t+1)
i 2 X since C ⇢ X and X = {x|0d  x  u}. Besides, since C has a radius R,

kx
(t+1)
i k  k

1

t

tX

⌧=1

y
(⌧,t)
i k  R. (25)

Moreover, when t = T , we have x
(T+1)
i = 1

T

PT
⌧=1 y

(⌧,t)
i , which implies that x(T+1)

i 2 C.

A.2 Proof of Lemma 2

Proof. For t = 1, x̄(1) = x
(1)
i = 0d, the claim (11) immediately holds. Notice that

qPn
i=1 kx

(t+1)
i � x̄(t+1)k2 =
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(t+1)
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(t+1)
cat k, it su�ces to prove that kx(t+1)
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cat k 

p
nR

T (1��) holds for t 2 [T ]. Observe that,
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where v̄
(t) = 1

n

Pn
i=1 v

(t)
i and the third equality holds because W is doubly stochastic. Therefore,
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cat. (27)

Combining (23) and (27), we have
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where the first inequality follows from the fact that kA ⌦ Idk = kAk for any matrix A; the second inequality

holds because v
(t)
i 2 C. To see the third inequality holds, we observe that W has an eigenvalue 1 with an

eigenvector 1n and ( 1n1n1
>
n ) is a rank-one matrix that has an eigenvalue 1 with eigenvector 1n, too. Therefore,

the largest eigenvalue of W t�⌧
�

1
n1n1

>
n is �t�⌧ , where � is defined in Assumption 1.

We proceed to prove the second part of Lemma 2 as follows.
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where the first inequality holds because each Fi is G-Lipschitz over X . the last inequality follows from (28).

A.3 Proof of Lemma 3

Proof. Since each Fi is L-smooth, the global objective F is also L-smooth. Besides, Lemma 1 implies that

x
(t)
i 2 X and thus x̄(t) also lies in X for any t 2 [T + 1]. Thus, for t 2 [T ],
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where the first equality follows from (26). Next, we derive a lower bound of hrF (x̄(t)), v̄(t)
i.
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where the inequality holds since v
(t)
i = argmaxv2Chd

(t)
i ,v(t)

i i. Add and subtract hd̄(t),x⇤
i, we have
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where we add and subtract hrF (x̄(t)),x⇤
i in the first equality, and we use Cauchy-Schwarz in the last inequality.

Since F is monotone and continuous DR-submodular, one can show that hrF (x̄(t)),x⇤
i � F (x⇤) � F (x̄(t)) as

follows. For any x 2 X , define y = (x⇤
� x) _ 0d, then

hrF (x),x⇤
i � hrF (x),yi � F (x+ y)� F (x)

= F (x _ x
⇤)� F (x) � F (x⇤)� F (x), (33)

where the first inequality follows from the monotonicity (rF (x) � 0) and the fact that y  x
⇤; the second in-

equality follows from the concavity of F along any non-negative direction (see, e.g., (Bian et al., 2017, Propositon
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4)); the last inequality follows from the monotonicity of F . Combining (30), (32), and (33) yields
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After rearranging terms of the above inequality, we arrive at (13).

A.4 Proof of Lemma 4

Proof. First, we show that d̄
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where (a) follows from Assumption 1.

We proceed to prove the second part of Lemma 4. Notice that (W ⌦ Id)g
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where the second equality holds because (W ⌦ Id)ḡ
(t)
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>
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(t)
cat = ḡ

(t)
cat.

A.5 Proof of Lemma 5

Proof. First, we notice that
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where the first inequality follows from the Cauchy-Schwarz inequality. It su�ces to show that kd
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Applying Lemma 4, we obtain
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For t = 1, since g
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where the last inequality holds because of Assumption 3. Therefore, kd
(1)
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(1)
catk 

p
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that the claim (14) holds for t = 1. Next, we show that the claim holds for 1 < t  T . We define �
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Applying (38), we have
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where the last inequality holds because k�(t+1)
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Notice that for any t  T , k�(t+1)
cat k can be bounded as follows.

k�
(t+1)
cat k = krFcat(x

(t+1)
cat )�rFcat(x

(t)
cat)k

(a)
 Lkx(t+1)

cat � x
(t)
catk

= Lk(W ⌦ Id)x
(t)
cat +

1

T
v
(t)
cat � x

(t)
catk

= Lk(W ⌦ Id)(x
(t)
cat � x̄

(t)
cat) +

1

T
v
(t)
cat � (x(t)

cat � x̄
(t)
cat)k

 L(kW k+ 1)kx(t)
cat � x̄

(t)
catk+

L

T
kv

(t)
catk

(b)
 L(2kx(t)

cat � x̄
(t)
catk+

p
nR

T
)

(c)
 L(

2
p
nR

T (1� �)
+

p
nR

T
) 

3
p
nLR

T (1� �)
(41)

where (a) follows from the smoothness of Fi; (b) holds because kW k = 1 and the fact that v(t)
i 2 C; (c) follows

from Lemma 2.
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catk and � = 3

p
nLR

T (1��) . Combining (40) and (41), we have
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which is the desired result.

A.6 Proof of Theorem 1

Proof. Since Lemma 3 holds under Theorem 1’s conditions, we proceed to bound
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where the second inequality holds because of Lemma 1 and the fact that x̄
(t) is a convex combination of xt

i;
the last inequality follows from Lemma 2 and the Cauchy-Schwarz inequality. Combining (44), Lemma 3, and
Lemma 5, we have
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With the above recursion, we obtain
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Rearrange terms and recall that x(1)
i = 0d for i 2 [n] and F (0d) � 0, we arrive at
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Combining (47) and (12), we obtain
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To ensure that F (x̄(T+1)) or each F (x(T+1)
i ) is greater than (1 � 1/e)F (x⇤) � ✏, the number of iterations T

should be T = O( 1✏ ). Since at each iteration, DeGTFW requires one communication round and one full local
gradient evaluation at each node, we conclude that both the communication and gradient evaluation complexities
of DeGTFW are O( 1✏ ).

A.7 Proof of Lemma 6

Proof. Using the same argument as (35), one can show that d̄(t) = ḡ
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where the last inequality follows from (44). Taking expectation on both sides yields
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where the last inequality follows from (49) and Jensen’s inequality.
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A.8 Proof of Lemma 7

Proof. We prove the lemma by induction, which uses ideas in (Wai et al., 2017, Section D). Recall from (37)

that
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Then for t = 1, we have
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Taking expectation on both sides, we get
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where the first inequality follows from the same argument as (39) and the unbiasedness of r̃(t)
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In the remaining of the paper, we define �
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First, we show that the claim (18) holds for t  t0, where t0 is defined in Lemma 7. Using the same argument
as (40), one can easily show that

kd
(t+1)
cat � d̄

(t+1)
cat k  �(kd(t)

cat � d̄
(t)
catk+ k�

(t+1)
cat k). (55)

Notice that krFcat(x
(t+1)
cat )�rFcat(x

(t)
cat)

�� can be simply bounded as follows.

krFcat(x
(t+1)
cat )�rFcat(x

(t)
cat)

�� =

vuut
nX

i=1

krFi(x
(t+1)
i )�rFi(x

(t)
i )k2 

vuut
nX

i=1

L2kx
(t+1)
i � x

(t)
i k2



vuut
nX

i=1

2L2(kx(t+1)
i k2 + kx

(t)
i k2)  2

p
nLR, (56)

where the last inequality follows from Lemma 1 and Assumption 2. Then the expectation of k�(t+1)
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bounded as follows:
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where the second inequality follows from Jensen’s inequality and (56); the third inequality holds because
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For t0 = 1, (54) already holds for t = 1. Now suppose that t+ 1  t0, then taking expectation on both sides of
(55) and applying (54) and (57) yields
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where the third inequality holds because of Jensen’s inequality (kE[x]k2  E[kxk2]). Therefore, E[kd(t)
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some t 2 [t0, T ], we will show that the same claim holds for t+1. Note that k�(t+1)
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where the inequality follows from the same argument as (41). Taking expectation on both sides, we have
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where the second inequality follows from Jensen’s inequality and (58).

Taking expectation on both sides of (55) and applying (61) yields
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Therefore, we have proved that E[kd(t)
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p
nM̃/t for t 2 {1, . . . , T +1}, which is the desired result.

A.9 Proof of Theorem 2

Proof. Combining Lemma 3, Lemma 6 and Lemma 7 and taking expectation leads to
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Applying the aboe inequality recursively yields

E[F (x⇤)� F (x̄(T+1))]  (1�
1

T
)TE[F (x⇤)� F (x̄(1))] +

TX

t=1

⇣LR2

2T 2
+

LRD

T 2(1� �)
+

�D + M̃D

Tt

⌘


1

e
(F (x⇤)� F (x̄(1))) +

LR2

2T
+

LRD

T (1� �)
+

(�D + M̃D)(logT + 1)

T
. (64)

Finally, recall that x(1)
i = 0d for i 2 [n] and F (0d) � 0, we arrive at
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Combining (65) and (12), we obtain
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To ensure that E[F (x̄(T+1))] or each E[F (x(T+1)
i )] is greater than (1� 1/e)F (x⇤)� ✏, the number of iterations T

should be T = Õ( 1✏ ). Since at each iteration t, DeSGTFW requires one communication round and t2 stochastic
gradient evaluations, we conclude that the communication and stochastic gradient evaluation complexities of
DeSGTFW are Õ( 1✏ ) and Õ( 1

✏3 ), respectively.


