A Technical proofs

A. 1 Proof of Lemma 1.

Proof. Since $\widehat{\Theta}=\left(\widehat{\Theta}_{1}, \ldots, \widehat{\Theta}_{K}\right)$ are the global minimum of (5), we have
$0 \geq f(\widehat{\Theta})-f\left(\Theta^{*}\right) \geq\left\langle\nabla f\left(\Theta^{*}\right), \widehat{\Theta}-\Theta^{*}\right\rangle+\frac{\mu_{\Theta}}{2}\left\|\widehat{\Theta}-\Theta^{*}\right\|_{F}^{2}$.
We then have

$$
\begin{aligned}
\left\|\widehat{\Theta}-\Theta^{*}\right\|_{F}^{2} & \leq-\frac{2}{\mu_{\Theta}}\left\langle\nabla f\left(\Theta^{*}\right), \widehat{\Theta}-\Theta^{*}\right\rangle \\
& \leq \frac{2}{\mu_{\Theta}}\left\|\nabla f\left(\Theta^{*}\right)\right\|_{F} \cdot\left\|\widehat{\Theta}-\Theta^{*}\right\|_{F}
\end{aligned}
$$

and hence

$$
\left\|\widehat{\Theta}-\Theta^{*}\right\|_{F} \leq \frac{2}{\mu_{\Theta}}\left\|\nabla f\left(\Theta^{*}\right)\right\|_{F}
$$

A. 2 Proof of Theorem 2.

Proof. We apply the non-convex optimization result in [37]. Since the initialization condition and (RSC/RSS) are satisfied for our problem according to Lemma 1, we apply Lemma 3 in [37] and obtain

$$
\begin{align*}
& d^{2}\left(B^{(t+1)}, B^{*}\right) \leq \xi^{2}\left[\left(1-\eta \cdot \frac{2}{5} \mu_{\min } \sigma_{\max }\right) \cdot d^{2}\left(B^{(t)}, B^{*}\right)\right. \\
&\left.+\eta \cdot \frac{L_{\Theta}+\mu_{\Theta}}{L_{\Theta} \cdot \mu_{\Theta}} \cdot e_{\mathrm{stat}, \Theta}^{2}\right] \tag{11}
\end{align*}
$$

where $\xi^{2}=1+\frac{2}{\sqrt{c-1}}$ and $\sigma_{\max }=\max _{k}\left\|\Theta_{k}^{*}\right\|_{2}$. Define the contraction value

$$
\beta=\xi^{2}\left(1-\eta \cdot \frac{2}{5} \mu_{\min } \sigma_{\max }\right)<1
$$

we can iteratively apply (11) for each $t=1,2, \ldots, T$ and obtain
$d^{2}\left(B^{(T)}, B^{*}\right) \leq \beta^{T} d^{2}\left(B^{(0)}, B^{*}\right)+\frac{\xi^{2} \eta}{1-\beta} \cdot \frac{L_{\Theta}+\mu_{\Theta}}{L_{\Theta} \cdot \mu_{\Theta}} \cdot e_{\text {stat }, \Theta}^{2}$
which shows linear convergence up to statistical error.

A. 3 Proof of Lemma 5.

Proof. Since \tilde{X} is the best rank K approximation for \bar{X}, and \bar{X}^{*} is also rank K, we have $\|\widetilde{X}-\bar{X}\|_{F} \leq$ $\left\|\bar{X}^{*}-\bar{X}\right\|_{F}$ and hence

$$
\begin{align*}
\left\|\widetilde{X}-\bar{X}^{*}\right\|_{F} & \leq\|\tilde{X}-\bar{X}\|_{F}+\left\|\bar{X}^{*}-\bar{X}\right\|_{F} \\
& \leq 2\left\|\bar{X}^{*}-\bar{X}\right\|_{F}=2\|\bar{E}\|_{F} . \tag{12}
\end{align*}
$$

By definition we have

$$
\begin{aligned}
\bar{X}^{*} & =\sum_{k=1}^{K}\left(\frac{1}{n} \sum_{i=1}^{n} m_{i k}^{*}\right) \Theta_{k}^{*}=B_{1}^{*} A^{*} B_{2}^{* \top} \\
& =Q_{1} R_{1} A^{*} R_{2}^{\top} Q_{2}^{\top}=Q_{1}\left(A_{\text {diag }}+A_{\text {off }}\right) Q_{2}^{\top} .
\end{aligned}
$$

Plugging back into (12) we obtain

$$
\left\|\widetilde{X}-Q_{1}\left(A_{\text {diag }}+A_{\text {off }}\right) Q_{2}^{\top}\right\|_{F} \leq 2\|\bar{E}\|_{F}
$$

and hence

$$
\begin{align*}
& \left\|\sum_{k=1}^{K} \widetilde{\sigma}_{k} \widetilde{u}_{k} \widetilde{v}_{k}^{\top}-Q_{1} A_{\mathrm{diag}} Q_{2}^{\top}\right\|_{F} \\
& \leq 2\|\bar{E}\|_{F}+\left\|Q_{1} A_{\mathrm{off}} Q_{2}^{\top}\right\|_{F} \tag{13}\\
& \leq 2\|\bar{E}\|_{F}+\rho_{0} .
\end{align*}
$$

Under mild conditions we have that $\|\bar{E}\|_{F} \propto n^{-1 / 2}$ and therefore can be arbitrarily small with large enough n. Moreover, the left hand side of (13) is the difference of two singular value decompositions. According to the matrix perturbation theory, for each k we have (up to permutation)

$$
\left\|\widetilde{\sigma}_{k} \widetilde{u}_{k} \widetilde{v}_{k}^{\top}-q_{1, k} \cdot a_{\text {diag }, k} \cdot q_{2, k}^{\top}\right\|_{F} \leq 2 C \rho_{0},
$$

and hence

$$
\left\|\widetilde{\sigma}_{k} \widetilde{u}_{k} \widetilde{v}_{k}^{\top}-\frac{1}{n} \sum_{i=1}^{n} m_{i k}^{*} \Theta_{k}^{*}\right\|_{F} \leq 2 \widetilde{C} \rho_{0}
$$

Finally we obtain

$$
\begin{aligned}
& \left\|K \cdot \widetilde{\sigma}_{k} \widetilde{u}_{k} \widetilde{v}_{k}^{\top}-\Theta_{k}^{*}\right\|_{F}=K \cdot\left\|\widetilde{\sigma}_{k} \widetilde{u}_{k} \widetilde{v}_{k}^{\top}-\frac{1}{K} \Theta_{k}^{*}\right\|_{F} \\
& \leq K \cdot\left(2 \widetilde{C} \rho_{0}+\left|\frac{1}{n} \sum_{i=1}^{n} m_{i k}^{*}-\frac{1}{K}\right| \cdot\left\|\Theta_{k}^{*}\right\|_{F}\right) \\
& \leq 2 \widetilde{C} K \rho_{0}+(\eta-1) \sigma_{\max } .
\end{aligned}
$$

A. 4 Proof of Theorem 6

We analyze the two estimation step in Algorithm 2.
Update on B_{1} and B_{2}. The update algorithm on B_{1} and B_{2} is the same with known M. Besides the statistical error defined in (7), we now have an additional error term due to the error in M. Recall that $d^{2}\left(M, M^{*}\right)=\frac{1}{n} \sum_{i=1}^{n} \sum_{k_{0}=1}^{K}\left(m_{i k_{0}}-m_{i k_{0}}^{*}\right)^{2}$, Lemma 7 quantifies the effect of one estimation step on B.
Lemma 7. Suppose the conditions in Theorem 2 hold and suppose condition $(D C)$ and (OC) hold, we have

$$
d^{2}\left(B^{[t]}, B^{*}\right) \leq C_{1} \cdot e_{\mathrm{stat}, \Theta}^{2}+\beta_{1} \cdot d^{2}\left(M^{[t]}, M^{*}\right),
$$

for some constant C_{1} and β_{1}.

Update on M. Lemma 8 quantifies the effect of one estimation step on M.
Lemma 8. Suppose the condition (TC) holds, we have

$$
d^{2}\left(M^{[t]}, M^{*}\right) \leq C_{2} \cdot e_{\mathrm{stat}, M}^{2}+\beta_{2} \cdot d^{2}\left(B^{[t]}, B^{*}\right)
$$

for some constant C_{2} and β_{2}.
Denote $\beta_{0}=\min \left\{\beta_{1}, \beta_{2}\right\}$, as long as the signal $\sigma_{\max }$ is small and the noise E_{i} is small enough we can guarantee that $\beta_{0}<1$. Combine Lemma 7 and 8 we complete the proof.

A. 5 Proof of Lemma 7.

Proof. The analysis is exactly the same with the case where M is known except that the statistical error is different. Specifically, for each k we have

$$
\begin{aligned}
& \nabla_{\Theta_{k}} f\left(\Theta^{*}, M\right) \\
= & -\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\sum_{k_{0}=1}^{K} m_{i k_{0}} \Theta_{k_{0}}^{*}\right) \cdot m_{i k} \\
= & -\frac{1}{n} \sum_{i=1}^{n}\left(E_{i}+\sum_{k_{0}=1}^{K}\left(m_{i k_{0}}^{*}-m_{i k_{0}}\right) \Theta_{k_{0}}^{*}\right) \cdot m_{i k} \\
= & \underbrace{-\frac{1}{n} \sum_{i=1}^{n} E_{i} m_{i k}^{*}}_{R_{1}}+\underbrace{\frac{1}{n} \sum_{i=1}^{n} E_{i}\left(m_{i k}^{*}-m_{i k}\right)}_{R_{2}} \\
& +\underbrace{\frac{1}{n} \sum_{i=1}^{n} \sum_{k_{0}=1}^{K}\left(m_{i k_{0}}-m_{i k_{0}}^{*}\right) \Theta_{k_{0}}^{*} \cdot m_{i k}}_{R_{3}}
\end{aligned}
$$

The first term R_{1} is just the usual statistical error term on Θ. For term R_{2}, denote $e_{0}=\frac{1}{n} \sum_{i=1}^{n}\left\|E_{i}\right\|_{F}^{2}$, we have

$$
\begin{aligned}
\left\|R_{2}\right\|_{F}^{2} & \leq \frac{1}{n^{2}}\left(\sum_{i=1}^{n}\left\|E_{i}\right\|_{F}^{2}\right) \cdot \sum_{i=1}^{n}\left(m_{i k}-m_{i k}^{*}\right)^{2} \\
& \leq \frac{e_{0}}{n} \sum_{i=1}^{n}\left(m_{i k}-m_{i k}^{*}\right)^{2} .
\end{aligned}
$$

For term R_{3}, we have

$$
\begin{aligned}
& \left\|R_{3}\right\|_{F}^{2} \\
\leq & \frac{1}{n^{2}}\left\|\sum_{i=1}^{n} \sum_{k_{0}=1}^{K}\left(m_{i k_{0}}-m_{i k_{0}}^{*}\right) \Theta_{k_{0}}^{*} \cdot m_{i k}\right\|_{F}^{2} \\
\leq & \frac{1}{n^{2}}\left(\sum_{i=1}^{n} \sum_{k_{0}=1}^{K}\left(m_{i k_{0}}-m_{i k_{0}}^{*}\right)^{2}\right)\left(\sum_{i=1}^{n} \sum_{k_{0}=1}^{K}\left\|\Theta_{k_{0}}^{*}\right\|_{F}^{2} \cdot m_{i k}^{2}\right) \\
\leq & \frac{K \sigma_{\max }^{2}}{n^{2}}\left(\sum_{i=1}^{n} m_{i k}^{2}\right) \cdot\left(\sum_{i=1}^{n} \sum_{k_{0}=1}^{K}\left(m_{i k_{0}}-m_{i k_{0}}^{*}\right)^{2}\right) .
\end{aligned}
$$

Taking summation over all k, the first term R_{1} gives the statistical error as before, the terms R_{2} and R_{3} gives
$\sum_{k=1}^{K}\left\|R_{2}\right\|_{F}^{2}+\left\|R_{3}\right\|_{F}^{2} \leq \frac{e_{0}+K \sigma_{\max }^{2}}{n}\left(\sum_{i=1}^{n} \sum_{k=1}^{K}\left(m_{i k}-m_{i k}^{*}\right)^{2}\right)$.

A. 6 Proof of Lemma 8.

Proof. The estimation on M is separable with each m_{i}. Denote the objective function on observation i as

$$
\begin{equation*}
f_{i}\left(\Theta, m_{i}\right)=\left\|X_{i}-\sum_{k=1}^{K} m_{i k} \cdot \Theta_{k}\right\|_{F}^{2} \tag{14}
\end{equation*}
$$

According to condition (DC), the objective function (14) is μ_{M}-strongly convex in m_{i}. Similar to the proof of Lemma 1, we obtain

$$
\begin{aligned}
\sum_{k=1}^{K}\left(m_{i k}-m_{i k}^{*}\right)^{2} & \leq \frac{4}{\mu_{M}^{2}}\left\|\nabla_{m_{i}} f_{i}\left(\Theta, m_{i}^{*}\right)\right\|_{F}^{2} \\
& =\frac{4}{\mu_{M}^{2}} \sum_{k=1}^{K}\left[\nabla_{m_{i k}} f_{i}\left(\Theta, m_{i}^{*}\right)\right]^{2}
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
\nabla_{m_{i k}} f_{i}\left(\Theta, m_{i}^{*}\right)= & -\left\langle X_{i}-\sum_{k_{0}=1}^{K} m_{i k_{0}}^{*} \cdot \Theta_{k_{0}}, \Theta_{k}\right\rangle \\
= & \underbrace{-\left\langle E_{i}, \Theta_{k}^{*}\right\rangle}_{T_{1}}+\underbrace{\left\langle E_{i},\left(\Theta_{k}^{*}-\Theta_{k}\right)\right\rangle}_{T_{2}} \\
& +\underbrace{\left\langle\sum_{k_{0}=1}^{K} m_{i k_{0}}^{*}\left(\Theta_{k_{0}}-\Theta_{k_{0}}^{*}\right), \Theta_{k}\right\rangle}_{T_{3}}
\end{aligned}
$$

The first term T_{1} is just the usual statistical error term on M. For term T_{2}, we have

$$
\begin{align*}
\sum_{i=1}^{n} \sum_{k=1}^{K}\left(T_{2}\right)^{2} & \leq \sum_{i=1}^{n} \sum_{k=1}^{K}\left\|E_{i}\right\|_{F}^{2} \cdot\left\|\Theta_{k}^{*}-\Theta_{k}\right\|_{F}^{2} \\
& =\left(\sum_{i=1}^{n}\left\|E_{i}\right\|_{F}^{2}\right) \cdot\left(\sum_{k=1}^{K}\left\|\Theta_{k}^{*}-\Theta_{k}\right\|_{F}^{2}\right) \tag{15}
\end{align*}
$$

For term T_{3} we have

$$
\begin{align*}
\sum_{k=1}^{K}\left(T_{3}\right)^{2} & \leq\left(\sum_{k=1}^{K}\left\|\Theta_{k}\right\|_{F}^{2}\right)\left\|\sum_{k_{0}=1}^{K} m_{i k_{0}}^{*}\left(\Theta_{k_{0}}-\Theta_{k_{0}}^{*}\right)\right\|_{F}^{2} \\
& \leq K \sigma_{\max }^{2}\left(\sum_{k=1}^{K}\left\|\Theta_{k}^{*}-\Theta_{k}\right\|_{F}^{2}\right)\left(\sum_{k=1}^{K} m_{i k}^{*}{ }^{2}\right) \\
& \leq K \sigma_{\max }^{2}\left(\sum_{k=1}^{K}\left\|\Theta_{k}^{*}-\Theta_{k}\right\|_{F}^{2}\right) \tag{16}
\end{align*}
$$

Moreover, we have

$$
\begin{aligned}
\left\|\Theta_{k}^{*}-\Theta_{k}\right\|_{F} & =\left\|b_{k}^{1^{*}} b_{k}^{2^{*}}{ }^{\top}-b_{k}^{1} b_{k}^{2^{\top}}\right\|_{F} \\
& \leq\left\|b_{k}^{1^{*}}\right\|_{2}\left\|b_{k}^{2^{*}}-b_{k}^{2}\right\|_{2}+\left\|b_{k}^{2}\right\|_{2}\left\|b_{k}^{1^{*}}-b_{k}^{1}\right\|_{2} \\
& \leq 2 \sigma_{\max }\left(\left\|b_{k}^{2^{*}}-b_{k}^{2}\right\|_{2}+\left\|b_{k}^{1^{*}}-b_{k}^{1}\right\|_{2}\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \sum_{k=1}^{K}\left\|\Theta_{k}^{*}-\Theta_{k}\right\|_{F}^{2} \\
\leq & 4 \sigma_{\max }^{2} \sum_{k=1}^{K}\left(\left\|b_{k}^{2^{*}}-b_{k}^{2}\right\|_{2}+\left\|b_{k}^{1^{*}}-b_{k}^{1}\right\|_{2}\right)^{2} \\
\leq & 8 \sigma_{\max }^{2} d^{2}\left(B, B^{*}\right)
\end{aligned}
$$

Combine (15) and (16), taking summation over i, we obtain

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K}\left(T_{2}\right)^{2}+\left(T_{3}\right)^{2} \\
\leq & \left(e_{0}+K \sigma_{\max }^{2}\right) \cdot\left(\sum_{k=1}^{K}\left\|\Theta_{k}^{*}-\Theta_{k}\right\|_{F}^{2}\right) \\
\leq & 8 \sigma_{\max }^{2}\left(e_{0}+K \sigma_{\max }^{2}\right) \cdot d^{2}\left(B, B^{*}\right) .
\end{aligned}
$$

B Detailed rationale on initialization and condition (OC) for jointly learning

Initialization. Define $\bar{X}, \bar{X}^{*}, \bar{E}$ as the sample mean of X_{i}, X_{i}^{*}, E_{i}, respectively. We have

$$
\begin{aligned}
\bar{X} & =\frac{1}{n} \sum_{i=1}^{n} X_{i}^{*}+E_{i}=\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} m_{i k}^{*} \Theta_{k}^{*}+\frac{1}{n} \sum_{i=1}^{n} E_{i} \\
& =\sum_{k=1}^{K}\left(\frac{1}{n} \sum_{i=1}^{n} m_{i k}^{*}\right) \Theta_{k}^{*}+\bar{E}=\bar{X}^{*}+\bar{E} .
\end{aligned}
$$

We then do the rank- K SVD on \bar{X} and obtain $[\widetilde{U}, \widetilde{S}, \widetilde{V}]=$ rank- K SVD of \bar{X}. We denote $\widetilde{X}=$
$\widetilde{U} \widetilde{S} \widetilde{V}^{\top}=\sum_{k=1}^{K} \widetilde{\sigma}_{k} \widetilde{u}_{k} \widetilde{v}_{k}^{\top}$. It is well known that \widetilde{X} is the best rank K approximation for \bar{X}. We propose the following initialization method

$$
\Theta_{k}^{(0)}=K \cdot \widetilde{\sigma}_{k} \widetilde{u}_{k} \widetilde{v}_{k}^{\top} .
$$

To see why this initialization works, we first build intuition for the easiest case, where $E_{i}=0$ for each i, $\frac{1}{n} \sum_{i=1}^{n} m_{i k}^{*}=\frac{1}{K}$ for each k, and the columns of B_{1}^{*} and B_{2}^{*} are orthogonal. In this case it is easy to see that $\bar{X}=\bar{X}^{*}=\sum_{k=1}^{K} \frac{1}{K} \Theta_{k}^{*}$. Note that this expression in a singular value decomposition of \bar{X}^{*} since we have $\Theta_{k}^{*}=b_{k}^{1^{*}} b_{k}^{2^{* \top}}$ and the columns $\left\{b_{k}^{1^{*}}\right\}_{k=1}^{K}$ and columns $\left\{b_{k}^{2}\right\}_{k=1}^{K}$ are orthogonal. Now that \bar{X} is exactly rank K, the best rank K approximation would be itself, i.e., $\bar{X}=\widetilde{X}=\sum_{k=1}^{K} \widetilde{\sigma}_{k} \widetilde{u}_{k} \widetilde{v}_{k}^{\top}$. By the uniqueness of singular value decomposition, as long as the singular values are distinct, we have (up to permutation) $\frac{1}{K} \Theta_{k}^{*}=\widetilde{\sigma}_{k} \widetilde{u}_{k} \widetilde{v}_{k}^{\top}$ and therefore $\Theta_{k}^{*}=K \cdot \widetilde{\sigma}_{k} \widetilde{u}_{k} \widetilde{v}_{k}^{\top}$. This is exactly what we want to estimate.

With this intuition in mind, we relax the restrictions we have and impose the following condition.

Orthogonal Condition (OC). Let $B_{1}^{*}=Q_{1} R_{1}$ and $B_{2}^{*}=Q_{2} R_{2}$ be the QR decomposition of B_{1}^{*} and B_{2}^{*}, respectively. Denote A^{*} as a diagonal matrix with diagonal elements $\frac{1}{n} \sum_{i=1}^{n} m_{i k}^{*}$. Denote $R_{1} A^{*} R_{2}^{\top}=$ $A_{\text {diag }}+A_{\text {off }}$ where $A_{\text {diag }}$ captures the diagonal elements and $A_{\text {off }}$ captures the off-diagonal elements. We require that $\left\|A_{\text {off }}\right\|_{F} \leq \rho_{0}$ for some constant ρ_{0}. Moreover, we require that $\frac{1}{n} \sum_{i=1}^{n} m_{i k}^{*} \leq \eta / K$ for some η.
This condition requires that B_{1}^{*} and B_{2}^{*} are not too far away from orthogonal matrix, so that when doing the QR rotation, the off diagonal values of R_{1} and R_{2} are not too large. The condition $\frac{1}{n} \sum_{i=1}^{n} m_{i k}^{*} \leq$ η / K is trivially satisfied with $\eta=K$. However, in general η is usually a constant that does not scale with K, meaning that the topic distribution among the n observations is more like evenly distributed than several topics dominate.

Finally note that the condition (OC) is for this specific initialization method only. Since we are doing singular value decomposition, we end up with orthogonal vectors so we require that B_{1}^{*} and B_{2}^{*} are not too far away from orthogonal; since we do not know the value $\frac{1}{n} \sum_{i=1}^{n} m_{i k}^{*}$ and use $1 / K$ to approximate, we require that topics are not far away from evenly distributed so that this approximation is reasonable. In practice we can also initialize using other methods, for example we can do alternating gradient descent on B_{1}, B_{2} and M based on the objective function (10). This method also works reasonably well in practice.

C Detailed node-topic matrices for citation dataset

The detailed two node-topic matrices for citation dataset is given in Table 4 and Table 5.

D Additional figures

Figure 3 and Figure 4 shows the comparison result for binary observation in Section 6, with known topics and unknown topics, respectively.

Figure 3: Prediction error for binary observa- Figure 4: Prediction error for binary observation, with known topics tion, with unknown topics

Table 4: The influence matrix B_{1} for citation dataset

	black hole energy chains	quantum model field theory	gauge theory field effective	algebra space group structure	states space noncommutative boundary	string theory supergravity supersymmetric
Christopher Pope		0.359		0.468		0.318
Arkady Tseytlin	0.223	0.565		0.25		
Emilio Elizalde		0.109				
Cumrun Vafa			0.85	0.623	0.679	0.513
Edward Witten		0.204		0.795	0.678	1.87
Ashok Das		0.155	0.115	1.07		
Sergei Odintsov						
Sergio Ferrara	0.297	0.889	0.345	0.457	0.453	0.249
Renata Kallosh	0.44	0.512		0.326	0.382	
Mirjam Cvetic		0.339	0.173	0.338		
Burt A. Ovrut	0.265	0.191	0.127	0.328	0.133	
Ergin Sezgin		0.35		0.286		
Ian I. Kogan			0.193			
Gregory Moore		0.323	0.91	0.325	0.536	
I. Antoniadis	0.443	0.485		0.545	0.898	0.342
Mirjam Cvetic	0.152	0.691		0.228	0.187	
Andrew Strominger	0.207	0.374	0.467	1.15		
Barton Zwiebach	0.16			0.222	0.383	0.236
P.K. Townsend		0.629		0.349		0.1
Robert C. Myers		0.439		0.28		
E. Bergshoeff		0.357		0.371		
Amihay Hanany		0.193		0.327		1.09
Ashoke Sen	0.319			0.523		0.571

Table 5: The receptivity matrix B_{2} for citation dataset

	black hole energy chains	quantum model field theory	gauge theory field effective	algebra space group structure	states space noncommutative boundary	string theory supergravity supersymmetric
Christopher Pope	0.477	0.794		0.59		
Arkady Tseytlin	0.704	1.16	0.312	0.487		0.119
Emilio Elizalde						
Cumrun Vafa	0.309		0.428	0.844	0.203	0.693
Edward Witten	0.352		0.554	0.585	0.213	0.567
Ashok Das	0.494	0.339		0.172		
Sergei Odintsov		0.472				
Sergio Ferrara	0.423	0.59	0.664	0.776		
Renata Kallosh	0.123	0.625	0.638	0.484		0.347
Mirjam Cvetic	0.47	0.731		0.309		
Burt A. Ovrut	0.314	0.217	0.72	0.409		0.137
Ergin Sezgin		0.108	0.161	0.358		
Ian I. Kogan	0.357	0.382				0.546
Gregory Moore	0.375	0.178	0.721	0.69	0.455	0.517
I. Antoniadis	0.461		0.699	0.532		0.189
Mirjam Cvetic	0.409	1.11	0.173	0.361		
Andrew Strominger		0.718	0.248	0.196	0.133	
Barton Zwiebach			0.308	0.204		0.356
P.K. Townsend	0.337	0.225	0.245	0.522		
Robert C. Myers	0.364	0.956		0.545		0.139
E. Bergshoeff	0.487	0.459	0.174	0.619		
Amihay Hanany	0.282		0.237	0.575		0.732
Ashoke Sen		0.214	0.18	0.37		

