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A Technical proofs

A.1 Proof of Lemma 1.

Proof. Since b
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A.2 Proof of Theorem 2.

Proof. We apply the non-convex optimization result in
[37]. Since the initialization condition and (RSC/RSS)
are satisfied for our problem according to Lemma 1, we
apply Lemma 3 in [37] and obtain
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we can iteratively apply (11) for each t = 1, 2, ..., T and
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which shows linear convergence up to statistical error.

A.3 Proof of Lemma 5.

Proof. Since eX is the best rank K approximation for
X, and X
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Under mild conditions we have that kEk
F

/ n�1/2 and
therefore can be arbitrarily small with large enough n.
Moreover, the left hand side of (13) is the difference of
two singular value decompositions. According to the
matrix perturbation theory, for each k we have (up to
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A.4 Proof of Theorem 6

We analyze the two estimation step in Algorithm 2.

Update on B
1

and B
2

. The update algorithm on
B

1

and B
2

is the same with known M . Besides the
statistical error defined in (7), we now have an addi-
tional error term due to the error in M . Recall that
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quantifies the effect of one estimation step on B.
Lemma 7. Suppose the conditions in Theorem 2 hold
and suppose condition (DC) and (OC) hold, we have
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Update on M . Lemma 8 quantifies the effect of one
estimation step on M .
Lemma 8. Suppose the condition (TC) holds, we have
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}, as long as the signal �
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small and the noise E

i

is small enough we can guarantee
that �
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< 1. Combine Lemma 7 and 8 we complete
the proof.

A.5 Proof of Lemma 7.

Proof. The analysis is exactly the same with the case
where M is known except that the statistical error is
different. Specifically, for each k we have
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Taking summation over all k, the first term R
1

gives
the statistical error as before, the terms R
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A.6 Proof of Lemma 8.

Proof. The estimation on M is separable with each m
i

.
Denote the objective function on observation i as
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According to condition (DC), the objective function
(14) is µ

M

-strongly convex in m
i

. Similar to the proof
of Lemma 1, we obtain

K

X

k=1

(m
ik

�m⇤
ik

)

2  4

µ2

M

�

�r
mifi(⇥,m⇤

i

)

�

�

2

F

=

4

µ2

M

K

X

k=1

h

r
mikfi(⇥,m⇤

i

)

i

2

.

Moreover, we have

r
mikfi(⇥,m⇤

i

) = �
D

X
i

�
K

X

k0=1

m⇤
ik0

·⇥
k0 ,⇥k

E

= �
D

E
i

,⇥⇤
k

E

| {z }

T1

+

D

E
i

, (⇥⇤
k

�⇥

k

)

E

| {z }

T2

+

D

K

X

k0=1

m⇤
ik0

(⇥

k0 �⇥

⇤
k0
),⇥

k

E

| {z }

T3

.

The first term T
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is just the usual statistical error term
on M . For term T
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Moreover, we have

k⇥⇤
k

�⇥

k

k
F

= kb1
k

⇤
b2
k

⇤> � b1
k

b2
k

>k
F

 kb1
k

⇤k
2

kb2
k

⇤ � b2
k

k
2

+ kb2
k

k
2

kb1
k

⇤ � b1
k

k
2

 2�
max

�

kb2
k

⇤ � b2
k

k
2

+ kb1
k

⇤ � b1
k

k
2

�

,

and hence
K

X

k=1

k⇥⇤
k

�⇥

k

k2
F

 4�2

max

K

X

k=1

�

kb2
k

⇤ � b2
k

k
2

+ kb1
k

⇤ � b1
k

k
2

�

2

 8�2

max

d2(B,B⇤
).

Combine (15) and (16), taking summation over i, we
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B Detailed rationale on initialization
and condition (OC) for jointly
learning

Initialization. Define X, X⇤, E as the sample mean
of X
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, respectively. We have
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intuition for the easiest case, where E

i

= 0 for each i,
1

n

P

n

i=1

m⇤
ik

=

1

K

for each k, and the columns of B⇤
1

and B⇤
2

are orthogonal. In this case it is easy to see
that X = X

⇤
=

P

K

k=1

1

K

⇥

⇤
k

. Note that this expression
in a singular value decomposition of X⇤ since we have
⇥

⇤
k

= b1
k

⇤
b2
k

⇤> and the columns {b1
k

⇤}K
k=1

and columns
{b2

k

⇤}K
k=1

are orthogonal. Now that X is exactly rank
K, the best rank K approximation would be itself, i.e.,
X =

eX =

P

K

k=1

e�
k

eu
k

ev>
k

. By the uniqueness of singular
value decomposition, as long as the singular values are
distinct, we have (up to permutation) 1

K

⇥

⇤
k

= e�
k

eu
k

ev>
k

and therefore ⇥

⇤
k

= K · e�
k

eu
k

ev>
k

. This is exactly what
we want to estimate.

With this intuition in mind, we relax the restrictions
we have and impose the following condition.

Orthogonal Condition (OC). Let B⇤
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This condition requires that B⇤
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far away from orthogonal matrix, so that when doing
the QR rotation, the off diagonal values of R
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⌘/K is trivially satisfied with ⌘ = K. However, in
general ⌘ is usually a constant that does not scale with
K, meaning that the topic distribution among the n
observations is more like evenly distributed than several
topics dominate.

Finally note that the condition (OC) is for this specific
initialization method only. Since we are doing singular
value decomposition, we end up with orthogonal vectors
so we require that B⇤

1

and B⇤
2

are not too far away from
orthogonal; since we do not know the value 1
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and use 1/K to approximate, we require that topics
are not far away from evenly distributed so that this
approximation is reasonable. In practice we can also
initialize using other methods, for example we can do
alternating gradient descent on B

1

, B
2

and M based
on the objective function (10). This method also works
reasonably well in practice.
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C Detailed node-topic matrices for
citation dataset

The detailed two node-topic matrices for citation
dataset is given in Table 4 and Table 5.

D Additional figures

Figure 3 and Figure 4 shows the comparison result for
binary observation in Section 6, with known topics and
unknown topics, respectively.
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Figure 3: Prediction error for binary observa-
tion, with known topics
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Figure 4: Prediction error for binary observa-
tion, with unknown topics

Table 4: The influence matrix B
1

for citation dataset

black
hole

energy
chains

quantum
model
field

theory

gauge
theory
field

effective

algebra
space
group

structure

states
space

noncommutative
boundary

string
theory

supergravity
supersymmetric

Christopher Pope 0.359 0.468 0.318
Arkady Tseytlin 0.223 0.565 0.25
Emilio Elizalde 0.109
Cumrun Vafa 0.85 0.623 0.679 0.513
Edward Witten 0.204 0.795 0.678 1.87
Ashok Das 0.155 0.115 1.07
Sergei Odintsov
Sergio Ferrara 0.297 0.889 0.345 0.457 0.453 0.249
Renata Kallosh 0.44 0.512 0.326 0.382
Mirjam Cvetic 0.339 0.173 0.338
Burt A. Ovrut 0.265 0.191 0.127 0.328 0.133
Ergin Sezgin 0.35 0.286
Ian I. Kogan 0.193
Gregory Moore 0.323 0.91 0.325 0.536
I. Antoniadis 0.443 0.485 0.545 0.898 0.342
Mirjam Cvetic 0.152 0.691 0.228 0.187
Andrew Strominger 0.207 0.374 0.467 1.15
Barton Zwiebach 0.16 0.222 0.383 0.236
P.K. Townsend 0.629 0.349 0.1
Robert C. Myers 0.439 0.28
E. Bergshoeff 0.357 0.371
Amihay Hanany 0.193 0.327 1.09
Ashoke Sen 0.319 0.523 0.571
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Table 5: The receptivity matrix B
2

for citation dataset

black
hole

energy
chains

quantum
model
field

theory

gauge
theory
field

effective

algebra
space
group

structure

states
space

noncommutative
boundary

string
theory

supergravity
supersymmetric

Christopher Pope 0.477 0.794 0.59
Arkady Tseytlin 0.704 1.16 0.312 0.487 0.119
Emilio Elizalde
Cumrun Vafa 0.309 0.428 0.844 0.203 0.693
Edward Witten 0.352 0.554 0.585 0.213 0.567
Ashok Das 0.494 0.339 0.172
Sergei Odintsov 0.472
Sergio Ferrara 0.423 0.59 0.664 0.776
Renata Kallosh 0.123 0.625 0.638 0.484 0.347
Mirjam Cvetic 0.47 0.731 0.309
Burt A. Ovrut 0.314 0.217 0.72 0.409 0.137
Ergin Sezgin 0.108 0.161 0.358
Ian I. Kogan 0.357 0.382 0.546
Gregory Moore 0.375 0.178 0.721 0.69 0.455 0.517
I. Antoniadis 0.461 0.699 0.532 0.189
Mirjam Cvetic 0.409 1.11 0.173 0.361
Andrew Strominger 0.718 0.248 0.196 0.133
Barton Zwiebach 0.308 0.204 0.356
P.K. Townsend 0.337 0.225 0.245 0.522
Robert C. Myers 0.364 0.956 0.545 0.139
E. Bergshoeff 0.487 0.459 0.174 0.619
Amihay Hanany 0.282 0.237 0.575 0.732
Ashoke Sen 0.214 0.18 0.37


