
Learning Influence-Receptivity Network Structure with Guarantee

Ming Yu Varun Gupta Mladen Kolar

University of Chicago University of Chicago University of Chicago

Abstract

Traditional works on community detection
from observations of information cascade
assume that a single adjacency matrix
parametrizes all the observed cascades. How-
ever, in reality the connection structure usu-
ally does not stay the same across cascades.
For example, different people have different
topics of interest, therefore the connection
structure depends on the information/topic
content of the cascade. In this paper we con-
sider the case where we observe a sequence
of noisy adjacency matrices triggered by in-
formation/event with different topic distribu-
tions. We propose a novel latent model using
the intuition that a connection is more likely
to exist between two nodes if they are inter-
ested in similar topics, which are common
with the information/event. Specifically, we
endow each node with two node-topic vectors:
an influence vector that measures how influen-
tial/authoritative they are on each topic; and
a receptivity vector that measures how recep-
tive/susceptible they are to each topic. We
show how these two node-topic structures can
be estimated from observed adjacency matri-
ces with theoretical guarantee on estimation
error, in cases where the topic distributions of
the information/event are known, as well as
when they are unknown. Experiments on syn-
thetic and real data demonstrate the effective-
ness of our model and superior performance
compared to state-of-the-art methods.

1 INTRODUCTION

Uncovering latent network structure is an important
research area in network model and has a long history
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[33, 7]. For a p node network, traditional approaches
usually assume a single p⇥ p adjacency matrix, either
binary or real-valued, that quantifies the connection in-
tensity between nodes, and aim to learn the community
structure from it. For example, in Stochastic Block
Model (SBM) [17] we assume that nodes within a group
have an edge with each other with probability p

0

while
nodes across groups have an edge with probability q

0

where p
0

> q
0

. In information diffusion we observe
the propagation of information among nodes and aim
to recover the underlying connections between nodes
[28, 14, 13]. In time-varying networks we allow the
connections and parameters to change over time [23, 2].
In this paper, we consider the case where we have a
sequence of information/event/collaboration with dif-
ferent topics, and we observe a noisy adjacency matrix
for each of them. The connection between nodes varies
under each topic distribution and this cannot be cap-
tured by only one adjacency matrix. For example, each
researcher has her own research interests and would
collaborate with others only on the areas they are both
interested in. Specifically, suppose researcher 1 is inter-
ested in computational biology and information theory;
researcher 2 is interested in computational biology and
nonparametric statistics; researcher 3 is interested in
information theory only. Then if researcher 1 wants to
work on computational biology, she would collaborate
with researcher 2; while if the topic is on information
theory, then she would collaborate with researcher 3.
As another example, suppose student 1 is interested in
music and sports while student 2 is interested in music
and chess. If the topic of a University event is music,
then there will be an edge between these two students;
however, if the topic of the event is sports or chess,
then there would not be an edge between them.

Intuitively, for a specific informa-
tion/event/collaboration, there will be an edge between
two nodes if and only if they are both interested in
the topic of this information/event/collaboration. In
this paper we model this intuition by giving each node
two node-topic vectors: one influence vector (how
authoritative they are on each topic) and one recep-
tivity vector (how susceptible they are on each topic).
In addition, each information/event/collaboration is
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associated with a distribution on topics. The influence
and receptivity vectors are fixed but different topic
distributions result in different adjacency matrices
among nodes. In this paper we consider both cases
where the topic distribution may or may not be known,
and provide algorithms to estimate the node-topic
structure with theoretical guarantees on estimation
error. In particular, we show that our algorithm
converges to the true values up to statistical error. Our
node-topic structure is easier to interpret than a large
adjacency matrix among nodes, and the result can be
used to make targeted advertising or recommendation
systems.

Notation In this paper we use p to denote the num-
ber of nodes in the network; we assume there are K
topics in total, and we observe n adjacency matri-
ces under different topic distributions. We use sub-
script i 2 {1, . . . , n} to index samples/observations;
subscript j, ` 2 {1, . . . , p} to index nodes; and sub-
script k 2 {1, . . . ,K} to index topic. For any matrix A,
we use kAk

0

= |(j, k) : A
jk

6= 0| to denote the number
of nonzero elements of A. Also, for any d, I

d

is the
identity matrix with dimension d.

2 MODEL
Our model to capture the node-topic structure in net-
works is built on the intuition that, for a specific in-
formation/event/collaboration, there would be an edge
between two nodes if they are interested in similar top-
ics, which are also common with that of the informa-
tion/event/collaboration. Furthermore, the connection
is directed where an edge from node 1 to node 2 is more
likely to exist if node 1 is influential/authoritative in
the topic, and node 2 is receptive/susceptible to the
topic. For example, an eminent professor would have
a large influence value (but maybe a small receptivity
value) on his/her research area, while a high-producing,
young researcher would have a large receptivity value
(but maybe a small influence value) on his/her research
area. Note that the notion of “topic” can be very gen-
eral. For example it can be different immune systems:
different people have different kinds of immune sys-
tems, and a disease is more likely to propagate between
people with similar and specific immune system.

Our node-topic structure is parametrized by two ma-
trices B

1

, B
2

2 Rp⇥K . The matrix B
1

measures how
much a node can infect others (the influence matrix)
and the matrix B

2

measures how much a node can be
infected by others (the receptivity matrix). We use b1

jk

and b2
jk

to denote the elements of B
1

and B
2

, respec-
tively. Specifically, b1

jk

measures how influential node
j is on topic k, and b2

jk

measures how receptive node j

is on topic k. We use b1
k

and b2
k

to denote the columns
of B

1

and B
2

, respectively.

Each observation i is associated with a topic distribu-
tion m

i

= (m
i1

, ...,m
iK

) on the K topics satisfying
m

i1

, ...,m
iK

� 0 and m
i1

+ ...+m
iK

= 1. The choice
of K can be heuristic and pre-specified or alternatively
can be decided by methods such as in [18] which learn
the distribution over the number of topics. For each
observation i, the true adjacency matrix is given by

�

x⇤
i

�

j`

=

K

X

k=1

b1
jk

·m
ik

· b2
`k

, (1)

or in matrix form,
X⇤

i

= B
1

·M
i

·B>
2

, (2)
where M

i

is a diagonal matrix

M
i

= diag(m
i1

,m
i2

, ...,m
iK

).

The interpretation of the model is straightforward from
(1). For an observation i on topic k, there will be an
edge j ! ` if and only if node j tends to infect others
on topic k (large b1

jk

) and node ` tends to be infected
by others on topic k (large b2

`k

). This intuition applies
to each topic k and the final value is the summation
over all the K topics.

If we do not consider self connections, we can zero out
the diagonal elements and get

X⇤
i

= B
1

M
i

B>
2

� diag(B
1

M
i

B>
2

).

For notational simplicity, we still stick to (2) for the
definition of X⇤

i

in the subsequent sections. The data
consists of n observations {X

i

}n
i=1

satisfying

X
i

= X⇤
i

+ E
i

, (3)

where the noise term E
i

are mean 0 and indepen-
dent across i. They are not necessarily identically
distributed and can follow an unstructured distribu-
tion. The observations X

i

can be either real-valued
or binary. For binary observations we are interested
in the existence of a connection only, while for real-
valued observation we are also interested in how strong
the connection is, i.e. larger values indicate stronger
connections.

Related Works There is a vast literature on un-
covering latent network structures. The most com-
mon and basic model is the Stochastic block model
(SBM) [17] where connections are assumed to be dense
within group and are sparse across groups. The ex-
act recovery of SBM can be solved using maximum
likelihood method but is NP-hard. Many practical
algorithms have been proposed for SBM such as Mod-
ularity method, EM algorithm, Spectral clustering, etc
[6, 21, 29, 26, 30, 32]. Many variants and extensions
of SBM have also been developed to better fit real
world network structures, including Degree-corrected
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block model (DCBM) [22], Mixed membership stochas-
tic block models (MMSB) [4], Degree Corrected Mixed
Membership (DCMM) model [20], etc. Other models
include information diffusion [28, 14, 13, 38], time-
varying networks [23, 2], conjunctive Boolean networks
[11, 19, 10], graphical models [1, 5, 36], buyer-seller
networks [24, 34, 31], etc. [16] and [15] assume a “logis-
tic” model based on covariates to determine whether
an edge exists or not. However, most of the existing
work focuses on a single adjacency matrix and ignores
the node-topic structure. In [35] the authors propose
a node-topic model for information diffusion problem,
but it requires the topic distribution to be known and
lacks theoretical guarantees.

In [3] the authors study multiple adjacency matrices
but it still falls into the SBM framework. The number
of blocks need to be predefined (the performance is
sensitive to this value) and the output is the block
information. As a contrast, our model outputs the
(numeric) influence-receptivity information for each
node and these nodes do not need to form blocks. Also,
their work does not utilize the topic information.

In terms of topic-based network inference, a closely
related work is [9] where the authors use K adjacency
matrices to describe the network structure. However
it ignores the node-topic structure and can only deal
with the case where the topic distributions are known,
while our method is able to learn the topic distribution
and the network structure simultaneously. In Section
6 and 7 we show that our method outperforms this
model on both synthetic and real dataset.

Another closely related work is [8] where the authors
propose the graph embedding model which also gives
each node two K dimensional “embedding” vector. How-
ever, our model is different in the following senses: 1.
The topic information of our model is easier to interpret
than the “embedding” vectors. The whole framework
of our model is more interpretable: we know all the
topics information and the topics of interest for each
node. 2. We provide a generative model and thorough
theoretical result (error analysis). 3. The graph embed-
ding model focuses on only one observation while our
model focuses on n observations with each observation
having a different topic distribution. In our model, the
influence and receptivity vectors interact with topic
information, while the graph embedding model cannot
deal with that.

If we add up all the adjacency matrices X
i

to a single
matrix X, then it is similar to the mixed membership
stochastic block model (MMSB [4]) where X = B ⇤
M ⇤ B> and M can be non-diagonal. Compared to
MMSB, our model allows for asymmetry by considering
“influence” and “receptivity”; our model considers that

information with a different topic can have different
adjacency matrices; also, our model can be used to
predict a future adjacency matrix given the topics.
Finally, when we have n adjacency matrices, it is usually
better to analyze them individually instead of adding
them up, which may lead to information loss.

3 OPTIMIZATION

In this paper we consider the loss function

f(B
1

, B
2

) =

1

2n

n

X

i=1

�

�X
i

�B
1

M
i

B>
2

�

�

2

F

. (4)

Using the notation B
1

= [b1
1

, ..., b1
K

] and B
2

=

[b2
1

, ..., b2
K

], we can rewrite (2) as

X⇤
i

= B
1

M
i

B>
2

=

K

X

k=1

m
ik

· b1
k

b2
k

>
.

Denote ⇥

k

= b1
k

b2
k

>; with some abuse of notation we
can rewrite the loss function (4) as

f(⇥) = f(⇥
1

, ...,⇥
K

) =

1

2n

n

X

i=1

�

�

�

X
i

�
K

X

k=1

m
ik

·⇥
k

�

�

�

2

F

.

(5)
From (5) we can see that solving for B

1

, B
2

is equiva-
lent to solving for rank-1 matrix factorization problem
on ⇥

k

. This model is therefore not identifiable on
B

1

and B
2

, since if we multiply column k of B
1

by
some scalar � and multiply column k of B

2

by 1/�,
the matrix X⇤

i

remains unchanged for any i, since
b1
k

b2
k

> does not change. Hence the loss function also
remains unchanged. Therefore we need an additional
regularization term to ensure a unique solution. Here
we borrow an idea from matrix factorization literature
and introduce the following regularization term

g(B
1

, B
2

) =

�

2

·
K

X

k=1

⇣

�

�b1
k

�

�

2

2

�
�

�b2
k

�

�

2

2

⌘

2

.

This regularization term forces the 2-norm of each
column of B

1

and B
2

to be the same. Intuitively, this
means that, for each topic k, the total magnitudes of
“influence” and “receptivity” are the same. This acts
like a conservation law that the total amount of output
should be equal to the total amount of input. At the
minimizer, this regularization term is 0, and therefore
we can pick any � > 0. The final optimization problem
is given by

minimize
1

2n

n

X

i=1

�

�X
i

�B
1

M
i

B>
2

�

�

2

F

+

�

2

·
K

X

k=1

⇣

�

�b1
k

�

�

2

2

�
�

�b2
k

�

�

2

2

⌘

2

subject to B
1

, B
2

� 0
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Algorithm 1 Alternating proximal gradient descent

Initialize B(0)

1

, B(0)

2

for t = 1, ..., T do

B(t+0.5)

1

=

h

B(t)

1

� ⌘r
B1f

�

B(t)

1

, B(t)

2

�

�⌘r
B1g

�

B(t)

1

, B(t)

2

�

i

+

B(t+1)

1

= Hard
�

B(t+0.5)

1

, s
�

B(t+0.5)

2

=

h

B(t)

2

� ⌘ ·r
B2f

�

B(t)

1

, B(t)

2

�

�⌘ ·r
B2g

�

B(t)

1

, B(t)

2

�

i

+

B(t+1)

2

= Hard
�

B(t+0.5)

2

, s
�

end for

Initialization. We initialize by solving the con-
vex relaxation problem (5) without the rank-1 con-
straint on ⇥

k

, and apply rank-1 SVD on estimated
b

⇥

k

, i.e., we keep only the largest singular value:
[u

k

, s
k

, v
k

] = rank-1 SVD of b⇥
k

. The initialization
is given by B(0)

1

= [u
1

s1/2
1

, ..., u
K

s1/2
K

] and B(0)

2

=

[v
1

s1/2
1

, ..., v
K

s1/2
K

]. Being a convex relaxation, we can
find the global minimum b

⇥

k

of problem (5) by using
gradient descent algorithm.

Algorithm. After the initialization, we alternately
apply proximal gradient method [27] on B

1

and B
2

until convergence. In practice, each node would be
interested in only a few topics and hence we would
expect B

1

and B
2

to be sparse. To encourage sparsity
we need an additional hard thresholding step on B

1

and B
2

. The overall procedure is given in Algorithm 1.
The operation Hard(B, s) keeps the largest s elements
of B and zeros out others; the operation [B]

+

keeps all
positive values and zeros out others.

4 THEORETICAL RESULT

In this section we derive the theoretical results for our
algorithm. We denote B⇤

1

and B⇤
2

as the true value
and ⇥

⇤
k

= b1
k

⇤
b2
k

⇤> as the corresponding true rank-1
matrices. In this section we assume the topic distri-
bution M

i

is known. The case where M
i

is unknown
is considered in Section 5. All the detailed proofs are
relegated to the Appendix. We start by stating the
following two mild assumptions on the parameters of
the problem.

Topic Condition (TC). Denote the Hessian matrix
on ⇥ as

H
⇥

=

1

n

2

6

6

4

P
i m

2
i1

P
i mi1mi2 . . .

P
i mi1miKP

i mi1mi2
P

i m
2
i2 . . .

P
i mi2miK

...
...

. . .
...P

i mi1miK
P

i mi2miK . . .
P

i m
2
iK

3

7

7

5

.

We require H
⇥

⌫ µ
⇥

· I
K

for some constant µ
⇥

> 0.

Intuitively, this condition requires that, the correlation
among topic distributions in the n observations cannot
be too large. This makes sense because if several topics
are highly correlated with each other among the n
observations, then clearly we cannot distinguish them.
If we vectorize each ⇥

k

, the Hessian matrix of f(⇥)

with respect to ⇥ is a p2K by p2K matrix and it can
be shown that this Hessian matrix is given by H

⇥

⌦ I
p

2

where ⌦ is the Kronecker product. With this condition,
the objective function (5) is strongly convex in ⇥.

An immediate corollary of this condition is that the
diagonal elements of H

⇥

must be at least µ
⇥

, i.e., for
each topic k, we have 1

n

P

n

i=1

m2

ik

� µ
⇥

. This means
that at least a constant proportion of the observed
data should focus on this topic. The necessity of this
condition is also intuitive: if we only get tiny amount of
data on some topic, then we cannot expect to recover
the structure for that topic accurately.

Sparsity Condition (SC). Both B⇤
1

and B⇤
2

are
sparse: kB⇤

1

k
0

= kB⇤
2

k
0

= s⇤. (We use a single s⇤ for
notational simplicity, but is not required).

Subspace distance. For matrix factorization prob-
lems, it is common to measure the subspace distance
because the factorization ⇥

k

= b1
k

b2
k

> is not unique.
Here since we know that ⇥

k

are exactly rank-1 and we
have non-negativity constraints on B

1

, B
2

, we would
not suffer from rotation issue (the only way to rotate
scalar is ±1, but with non-negative constraint, �1 is
impossible). Therefore the subspace distance between
B = [B

1

, B
2

] and B⇤
= [B⇤

1

, B⇤
2

] is just defined as

d2(B,B⇤
) = min

ok2{±1}

K

X

k=1

kb1
k

� b1
k

⇤
o
k

k2
2

+ kb2
k

� b2
k

⇤
o
k

k2
2

= kB
1

�B⇤
1

k2
F

+ kB
2

�B⇤
2

k2
F

.

Statistical error. Denote
⌦ =

�

� : � = [�

1

, ...,�
K

] 2 RpK⇥p, rank(�
k

) = 2,

k�
k

k
0

= s, k�k
F

= 1

 

.

The statistical error on ⇥ is defined as
estat,⇥ = sup

�2⌦

⌦

rf
⇥

(⇥

⇤
),�

↵

= sup

�2⌦

K

X

k=1

D

1

n

n

X

i=1

E
i

·m
ik

,�
k

E

.
(7)

where E
i

is the error matrix in (3) and hA,Bi =

tr(A>B) is the matrix inner product. Intuitively, this
statistical error measures how much accuracy we can ex-
pect for the estimator. If we are within c ·estat distance
with the true value, then we are already optimal.
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The statistical error depends on the sparsity level s. In
practice, s is a hyperparameter and one can choose it
as a relatively large value to avoid missing true nonzero
values. If s is too large, then we include too many false
positive edges. This usually does not affect performance
too much, since these false positive edges tend to have
small values. However, we lose some sparsity and hence
interpretability. If we further assume that each node
is interested in at least one but not most of the topics,
then we have s = O(p) and we can choose s = c · p
where c can be a small constant. In this way, the effect
of choosing s is minimal.

In this way we transform the original problem to a
standard matrix factorization problem with K rank-1
matrices ⇥

1

, . . . ,⇥
K

. A function f(·) is termed to be
strongly convex and smooth if there exist constant µ
and L such that
µ

2

�

�Y �X
�

�

2

F

 f(Y )� f(X)� hrf(X), Y �Xi

 L

2

�

�Y �X
�

�

2

F

.

The objective function (5) is strongly convex and
smooth in ⇥. Since the loss function (5) is quadratic on
each ⇥

k

, it is easy to see that the conditions are equiv-
alent to µ · I

K

� H
⇥

� L · I
K

. The lower bound is sat-
isfied according to assumption (TC) with µ = µ

⇥

, and
the upper bound is trivially satisfied with L = L

⇥

= 1.
Therefore we see that the objective function (5) is
strongly convex and smooth in ⇥. The following lemma
quantifies the accuracy of the initialization.
Lemma 1. Suppose b

⇥ = (

b

⇥

1

, . . . , b⇥
K

) are the global
minimum of the convex relaxation (5), then we have

K

X

k=1

k⇥⇤
k

� b

⇥

k

k2
F

 2

µ
⇥

�

�rf(⇥⇤
)

�

�

F

.

The bound we obtain from Lemma 1 scales with n�1/2

and therefore can be small as long as we have enough
samples. We are then ready for our main theorem.
The following Theorem 2 shows that the iterates of
Algorithm 1 converge linearly up to statistical error.
Theorem 2. Suppose conditions (SC) and (TC) hold.
We set the sparsity level s = cs⇤. If the step size ⌘

satisfies ⌘  1

16kB(0)k2
2
· min

n

1

2(µ⇥+L⇥)

, 1
o

, then for
large enough n, after T iterations, we have

d2
�

B(T ), B⇤�  �T d2
�

B(0), B⇤�
+ C · e2

stat,⇥

, (8)

for some constant � < 1 and constant C.
Remark 3. Although we focus on the simplest loss
function (4), our analysis works for any general loss
functions f(B

1

MB>
2

), as long as the initialization is
good and the (restricted) strongly convex and smooth-
ness conditions are satisfied. See [37] for more details.

Remark 4. For time complexity of Algorithm 1, calcu-
lating the gradient takes O(p2K) time and hence taking
average over all samples takes O(np2K) time. The
initialization step involves SVD; but we do not need to
obtain the full decomposition since for each ⇥

k

we only
need the singular vector corresponding to the largest
singular value. Finally, the number of iteration T is
such that �T has the same order with the statistical
error, which gives T < O(log n).

5 LEARNING NETWORK AND
TOPIC DISTRIBUTIONS
JOINTLY

So far we have assumed that the topic distributions
m

i

for each sample i are given and fixed. However,
sometimes we do not have such information. In this
case we need to learn the topic distributions and the
network structure simultaneously.

We denote m⇤
i

as the true topic distribution of obser-
vation i and M = [m

1

, ...,m
n

] is the stack of all the
topic distributions. The algorithm for joint learning
is simply alternating minimization on B

1

, B
2

and M .
For fixed M , the optimization on B

1

, B
2

is the same
as before, and can be solved using Algorithm 1. For
fixed B

1

, B
2

, it is straightforward to see that the opti-
mization on M is separable for each i. For each i, we
solve the following optimization problem to estimate
M

i

= diag(m
i

):

minimize
�

�X
i

�B
1

M
i

B>
2

�

�

2

F

subject to m
i

� 0, 1> ·m
i

= 1

(9)

This problem is convex in M
i

and can be easily solved
using projected gradient descent. Namely in each iter-
ation we do gradient descent on M

i

and then project
to the simplex. The overall procedure is summarized
in Algorithm 2. With some abuse of notation we write

f(⇥,M) =

1

2n

n

X

i=1

�

�

�

X
i

�
K

X

k=1

m
ik

·⇥
k

�

�

�

2

F

. (10)

Besides the scaling issue mentioned in Section 3, the
problem now is identifiable only up to permutation
of the position of the topics. However we can always
permute M⇤ to match the permutation obtained in M .
From now on we assume that these two permutations
match and ignore the permutation issue. The statistical
error on M is defined as

e2stat,M =

X

i,k

h

r
mikf(⇥

⇤,M⇤
)

i

2

=

1

n

n

X

i=1

K

X

k=1

hE
i

,⇥⇤
k

i2.
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Algorithm 2 Learning network structure and topic
distributions jointly

Initialize B
1

, B
2

while tolerance > ✏ do

Optimize M according to (9) using projected
gradient descent.

Optimize B
1

, B
2

according to Algorithm 1
end while

The problem is much harder with unknown topic dis-
tribution. Similar to condition (TC), we need the
following assumption on the Hessian matrix on M .

Diffusion Condition (DC). Denote the Hessian
matrix on M as

H
M

=

2

6

6

6

4

h⇥⇤
1

,⇥⇤
1

i h⇥⇤
1

,⇥⇤
2

i . . . h⇥⇤
1

,⇥⇤
K

i
h⇥⇤

2

,⇥⇤
1

i h⇥⇤
2

,⇥⇤
2

i . . . h⇥⇤
2

,⇥⇤
K

i
...

...
. . .

...
h⇥⇤

K

,⇥⇤
1

i h⇥⇤
K

,⇥⇤
2

i . . . h⇥⇤
K

,⇥⇤
K

i

3

7

7

7

5

,

where hA
1

, A
2

i = tr(A>
1

A
2

) is the inner product of
matrices A

1

, A
2

. We require that H
M

⌫ µ
M

· I
K

for
some constant µ

M

> 0.

With this condition, the objective function (5) is
strongly convex in M . The intuition is similar as in con-
dition (TC). We require that ⇥

k

can be distinguished
from each other.

Initialization. Denote X as the sample mean of
X

i

. We perform rank-K SVD on X and obtain
[

eU, eS, eV ] = rank-K SVD of X. Denote eX =

eU eS eV >
=

P

K

k=1

e�
k

eu
k

ev>
k

and we initialize with ⇥

(0)

k

= K ·e�
k

eu
k

ev>
k

.
For this initialization to be reasonable, we assume the
following condition.

Orthogonality Condition (OC). Let B⇤
1

= Q
1

R
1

and B⇤
2

= Q
2

R
2

be the QR decomposition of B⇤
1

and
B⇤

2

, respectively. Denote A⇤ as a diagonal matrix with
diagonal elements 1

n

P

n

i=1

m⇤
ik

. Denote R
1

A⇤R>
2

=

A
diag

+A
o↵

where A
diag

captures the diagonal elements
and A

o↵

captures the off-diagonal elements. We require
that kA

o↵

k
F

 ⇢
0

for some constant ⇢
0

. Moreover, we
require that 1

n

P

n

i=1

m⇤
ik

 ⌘/K for some ⌘.

The detailed rationale of this initialization approach
and the Orthogonality Condition is relegated to Ap-
pendix B. It is useful to point out that the condition
(OC) is for this specific initialization method only. In
practice we can also use other initialization methods,
for example we can do alternating gradient descent on
⇥ and M based on the objective function (10). This
method also works reasonably well in practice. The
following lemma shows that ⇥

(0)

k

is indeed a good ini-
tialization for ⇥

⇤
k

.

Lemma 5. Suppose the condition (OC) is satisfied,
then the initialization ⇥

(0)

k

satisfies
�

�

⇥

(0)

k

�⇥

⇤
k

�

�

F

 2

eCK⇢
0

+ (⌘ � 1)�
max

,

for some constant eC where �
max

= max

k

k⇥⇤
k

k
2

.

The initialization ⇥

(0)

k

is no longer
p
n-consistent. Nev-

ertheless it is not required. With this initialization,
we then follow Algorithm 2 and estimate B

1

, B
2

and
M alternatively. Note that when estimating B

1

and
B

2

, we run Algorithm 1 for large enough T so that the
first term in (8) is small compared to the second term.
These T iterations for Algorithm 1 are one iteration for
Algorithm 2 and we use B[t]

= [B[t]

1

, B[t]

2

] and M [t] to
denote the iterates we obtained from Algorithm 2. De-
note d2(M,M⇤

) =

1

n

P

n

i=1

P

K

k0=1

(m
ik0 �m⇤

ik0
)

2. We
obtain the following theorem on estimation error for
jointly learning.
Theorem 6. Suppose the conditions in Theorem 2
hold and suppose condition (DC) and (OC) hold. For
large enough n, after T iterations of Algorithm 2 we
have

d2
�

B[T ], B⇤�
+ d2

�

M [T ],M⇤� 
C

1

e2
stat,M

+ C
2

e2
stat,⇥

1� �
0

+ �T

0

h

d2
�

B[0], B⇤�
+ d2

�

M [0],M⇤�
i

,

for some constant �
0

< 1, which shows linear conver-
gence up to statistical error.

6 SIMULATION

In this section we evaluate our model and algorithms
on synthetic datasets. We first consider the setting
where the topics are known and we consider p = 200

nodes with K = 10 topics. The true matrices B⇤
1

and B⇤
2

are generated row by row where we randomly
select 1-3 topics for each row and set a random value
generated from Uniform(1, 2). All the other values are
set to be 0. This gives sparsity level s⇤ = 2p = 400 in
expectation, and we set s = 2s⇤ in the algorithm as the
hard thresholding parameter. For each observation, we
randomly select 1-3 topics and assign each selected topic
a random value Uniform(0, 1), and 0 otherwise. We then
normalize this vector to get the topic distribution m

i

.
The true value X⇤

i

is generated according to (2). Note
that X⇤

i

is also a sparse matrix. We consider two types
of observation: real valued observation and binary
valued observation. For real valued observation, we
generate X

i

(equivalently, set E
i

) in the following way:
first we randomly select 10% of the nonzero values in X⇤

i

and set to 0 (miss some edges); second for each of the
remaining nonzero values, we generate an independent
random number Uniform(0.3, 3) and multiply with the
original value (observe edges with noise); finally we
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Figure 1: Prediction error for real-valued ob-
servation, with known topics
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Figure 2: Prediction error for real-valued ob-
servation, with unknown topics

randomly select 10% of the zero values in X⇤
i

and
set them as Uniform(0, 1) (false positive edges). For
binary observations, we treat the true values in X⇤

i

as
probability of observing an edge, and generate X

i

as
X

i

= Bernoulli(X⇤
i

). For those true values greater than
1 we just set X

i

to be 1. Finally we again pick 10%
false positive edges.

We vary the number of observations n 2
{20, 30, 50, 80, 120, 200} and compare our model
with the following two state-of-the-art methods. The
first method is inspired by [13] which ignores the topic
information and uses one p⇥ p matrix to capture the
entire dataset (termed “One matrix”). This matrix
is given by X. The second method is inspired by [9]
which considers the topic information and assigns each
topic a p⇥ p matrix (termed “K matrices”). However
it still ignores the node-topic structure. For this model,
we ignore the rank constraint and return the matrix
⇥

k

given by the initialization procedure. Note that
“One matrix” method has p2 parameters, “K matrices”
has p2K parameters, but our method has only 2pK
parameters. Since we usually have K ⌧ p, we are
able to use much fewer parameters to capture the
network structure, and would not suffer too much
from overfitting. For fair comparison, we also do hard
thresholding on each of these p ⇥ p matrices with
parameter 4p. The comparison is done by evaluating
the objective function on independent test dataset
(prediction error). This prediction error is given by
1

n

P

i

||X
i

� bX
i

||2
F

, where X
i

is the observed value and
bX
i

is the predicted value. The predicted values take
different forms for each method. For “One matrix” it is
just X; for “K matrices” it is the weighted sum of the
K estimated matrices for each topic; for our model, the
prediction is obtained by plugging in the estimated B

1

and B
2

into (2). Figure 1 and Figure 3 (in appendix D)
show the comparison results for real valued and binary
observation, respectively. Each result is based on 20
replicates. We can see that our method has the best
prediction error since we are able to utilize the topic

information and the structure among nodes and topics;
“One matrix” method completely ignores the topic
information and ends up with bad prediction error; K
matrices” method ignores the structure among nodes
and topics and suffers from overfitting. As sample size
goes large, “K matrices” method will behave closer to
our model in terms of prediction error, since our model
is a special case of the K matrices model. However, it
still cannot identify the structure among nodes and
topics and is hard to interpret.

We then consider the setting where the topics are un-
known. We initialize and estimate B

1

, B
2

and M ac-
cording to the procedure described in Section 5; for
“One matrix” method, the estimator is still given by
X; for “K matrices” method, we estimate ⇥ and M
by alternating gradient method on the objective func-
tion (10). All the other setups are the same as the
previous case. Figure 2 and Figure 4 (in appendix D)
show the comparison results for real valued and binary
observation, respectively. Again we see that our model
behaves the best. These results demonstrate the supe-
rior performance of our model and algorithm compared
with existing state-of-the-art methods.

Finally we check the running time of our method ex-
perimentally. Here we fix n = 500, T = 50 and vary K
and p. The empirical running time is given in Table 2,
where we see a linear dependency on K and quadratic
dependency on p, in line with the claim in remark 4.

7 APPLICATION TO ARXIV DATA

In this section we evaluate our model on real dataset.
The dataset we use is the ArXiv collaboration and
citation network dataset on high energy physics the-
ory [25, 12]. This dataset covers papers uploaded to
ArXiv high energy physics theory category in the pe-
riod from 1993 to 2003, and the citation network for
each paper. For our experiment we treat each author
as a node and each publication as an observation. For
each publication i, we set the observation matrix X

i
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Table 1: The influence matrix B
1

for citation dataset

black
hole

energy
chains

quantum
model
field

theory

gauge
theory
field

effective

algebra
space
group

structure

states
space

noncommutative
boundary

string
theory

supergravity
supersymmetric

Christopher Pope 0.359 0.468 0.318
Arkady Tseytlin 0.223 0.565 0.25
Emilio Elizalde 0.109
Cumrun Vafa 0.85 0.623 0.679 0.513
Ashok Das 0.155 0.115 1.07
Renata Kallosh 0.44 0.512 0.326 0.382
Ian I. Kogan 0.193
Barton Zwiebach 0.16 0.222 0.383 0.236
Ashoke Sen 0.319 0.523 0.571

Table 2: Running time (in second) with different K
and p

K = 10 K = 20 K = 40

p = 100 1.7 2.2 3.1
p = 200 4.1 5.2 7.5
p = 400 13.0 16.0 22.0

in the following way: the component (x
i

)

j`

= 1 if this
paper is written by author j and cited by author `,
and (x

i

)

j`

= 0 otherwise. Since each paper has only
a few authors, we consider a variant of our original
model as X⇤

i

=

⇥

B
1

M
i

B>
2

⇤

� A
i

where operator � is
component-wise product and A

i

2 Rp⇥p is an indictor
matrix with (a

i

)

j`

= 1 if j is the author of this paper,
and (a

i

)

j`

= 0 otherwise. This means for each paper,
we only consider the influence behavior of its authors.

For our experiment we consider the top 200 authors
with about top 10000 papers in terms of number of
citations, and split the papers into 8000 training set
and 2000 test set. We first do Topic modeling on the
abstracts of all the papers and extract K = 6 topics
as well as the topic distribution on each paper. We
then treat this topic information as known and apply
our Algorithm 1 to the training set and learn the two
node-topic matrices. Due to space limits we only show
matrix B

1

of 10 authors in Table 1. Detailed B
1

and
B

2

matrices are relegated to Table 4 and Table 5 in
Appendix C. The keywords of the 6 topics are shown
at the head of the two tables and the first column of
the two tables is the name of the author.

We then compare the node-topic structure to the re-
search interests and publications listed by the authors
themselves on their website. The comparison results
show that our model is able to capture the research top-
ics accurately. For example, Christopher Pope reports
quantum gravity and string theory; Arkady Tseytlin
reports quantum field theory; Emilio Elizalde reports
quantum physics; Cumrun Vafa reports string theory;

Table 3: Comparison of the 3 methods on test links for
citation dataset

train test # para # nonzero
One matrix [13] 7.628 8.223 40000 7695
K matrices [9] 5.861 8.415 240000 19431
Our method 8.259 8.217 2400 1200

Ashoke Sen reports string theory and black holes as
their research areas in their webpages. These are all
successfully captured by our method.

Finally we compare the result with “One matrix” and
“K matrices” methods on test set. The comparison re-
sult is given in Table 3 for training error, testing error,
number of total parameters, and number of nonzero
parameters. Since our model has much fewer parame-
ters, it has the largest training error. However we can
see that our model has the best test error, and both
the other two methods do not generalize to test set
and suffer from overfitting. These results demonstrates
that the topic information and node-topic structure do
exist, and our model is able to capture them.

8 CONCLUSION

In this paper we propose an influence-receptivity model
and show how this structure can be estimated with
theoretical guarantee. Experiments show superior per-
formance of our model on synthetic and real data, com-
pared with existing methods. This influence-receptivity
model also provides much better interpretability.

There are several future directions we would like to pur-
sue. Currently the topic information is either learned
from topic modeling and fixed, or is (jointly) learned
by our model where we ignore the text information. It
would be of interest to combine the influence-receptivity
structure and topic modeling to provide more accurate
results. Another extension would be allowing dynamic
influence-receptivity structure over time.
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