
AutoML from Service ProviderÕs Perspective: Multi-device,
Multi-tenant Model Selection with GP-EI

Chen Yu Bojan Karla ÿs Jie Zhong Ce Zhang Ji Liu
Department of

Computer
Science,

University of
Rochester

Deparment of
Computer
Science,

ETH Zurich

Deparment of
Mathematics,

California State
University

Los Angeles

Deparment of
Computer
Science,

ETH Zurich

Department of
Computer
Science,

University of
Rochester

Abstract

AutoML has become a popular service that
is provided by most leading cloud service
providers today. In this paper, we focus on the
AutoML problem from the service providerÕs
perspective, motivated by the following prac-
tical consideration: When an AutoML ser-
vice needs to servemultiple users with mul-
tiple devicesat the same time, how can we
allocate these devices to users in an e!cient
way? We focus on GP-EI, one of the most
popular algorithms for automatic model se-
lection and hyperparameter tuning, used by
systems such as Google Vizer. The technical
contribution of this paper is the Þrst multi-
device, multi-tenant algorithm for GP-EI that
is aware ofmultiple computation devices and
multiple users sharing the same set of compu-
tation devices. Theoretically, given N users
and M devices, we obtain a regret bound of
O((MIU (T, K) + M) N 2

M), whereMIU (T, K)
refers to the maximal incremental uncertainty
up to time T for the covariance matrix K . Em-
pirically, we evaluate our algorithm on two
applications of automatic model selection, and
show that our algorithm signiÞcantly outper-
forms the strategy of serving users indepen-
dently. Moreover, when multiple computation
devices are available, we achieve near-linear
speedup when the number of users is much
larger than the number of devices.

Proceedings of the 22nd International Conference on Ar-
tiÞcial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

AlexNet ResNet-18 InceptionV4

Per-user GP-EI Model Selection

Per-user GP-EI Model Selection

Per-user GP-EI Model Selection

Per-user GP-EI Model Selection
Which user should

we serve for the next
round of training?

Per-user GP-EI Model Selection

Figure 1: Multi-device, Multi-tenant Model Selection

1 INTRODUCTION

One of the next frontiers of machine learning research
is its accessibility Ñ How can we make machine learn-
ing systems easy to use such that users do not need
to worry about decisions such as model selection and
hyperparameter tuning as much as today? The in-
dustryÕs answer to this question seems to be making
AutoML services available on the cloud, and prominent
examples include Google Cloud AutoML and Microsoft
Cognitive Services. In these services, users are provided
with a single interface for uploading the data, auto-
matically dealing with hyperparameter tuning and/or
model selection, and returning a model directly without
any user intervention as shown in Figure 1. Bayesian
optimization is one of the core techniques that make
AutoML services possible by strategically planning a
series of models and hyperparameter conÞgurations to
tune and try.

From the service provider point of view, resource alloca-
tion is the problem coming together with the emerging
popularity of such a service Ñ When an online Au-
toML service needs to serve multiple users with limited
number of devices, what is the most cost e!cient way
of allocating these devices to di"erent users? During
our conversation with multiple cloud service providers,
many of them believe that an e"ective and cost e!cient
resource sharing could be of great practical interests

AutoML from Service Provider’s Perspective: Multi-device, Multi-tenant Model Selection with GP-EI

and is a natural technical question to ask.

In this paper, we focus on GP-EI, one of the most
popular algorithms for AutoML that is used in sys-
tems such as Google Vizier Golovin et al. [2017] and
Spearmint Snoek et al. [2012]. SpeciÞcally, we are in-
terested in the scenarios that each user runs her own
GP-EI instance on a di"erent machine learning task,
and there are multiple devices, each of which can only
serve one user at the same time.How to allocate re-
sources? What are the theoretical properties of such an
algorithm?

The result of this paper is the Þrst multi-device, multi-
tenant, cost sensitive GP-EI algorithm that aims at
optimizing for the Òglobal happinessÓ of all users given
limited resources. In order to analyze its performance,
we introduce a new notation of Maximum Incremen-
tal Uncertainty (MIU) to measure dependence among
all models. Given N users andM devices, the upper
bound of cumulative regret isO((MIU (T, K)+ M) N 2

M),
where MIU (T, K) will be speciÞed in Section5.2.
This bound converges to optimum and is nearly linear
speedup when more devices are employed, which will
be discussed also in Section5.2.

We evaluate our algorithms on two real-world datasets:
(1) model selection for image classiÞcation tasks that
contains 22 datasets (users) and8 di"erent neural net-
work architectures; and (2) model selection for models
available on Microsoft Azure Machine Learning Stu-
dio that contains 17 datasets and8 di"erent machine
learning models. We Þnd that, multi-tenant GP-EI
outperforms standard GP-EI serving users randomly
or in a round robin fashion, sometimes by up to5! in
terms of the time it needs to reach the same Òglobal
happinessÓ of all users. When multiple devices are
available, it can provide near linear speedups to the
performance of our algorithm.

2 RELATED WORK

Multi-armed bandit problem There are lots of
research on the multi-armed bandit problem. Some
early work such as Lai and Robbins [1985] provided the
lower bound of stochastic multi-armed bandit scenario
and designed an algorithm to attain this lower bound.
Then many research focused on improving constants of
the bound and designing distribution-free-bound algo-
rithms such as upper conÞdence bound (UCB) [Auer
et al., 2002] and Minimax Optimal Strategy in the
Stochastic case (MOSS) [Audibert and Bubeck, 2009].
UCB is now becoming a very important algorithm in
bandit problem. Lots of algorithms are based on UCB,
such as LUCB [Kalyanakrishnan et al., 2012], GP-UCB
[Srinivas et al., 2012]. The UCB algorithm constructs
the upper conÞdent bound for each arm in every itera-

tion, and chooses the arm with largest bound as the
next arm to observe. UCB is very e!cient by e"ectively
balancing exploration and exploitation, admitting the
regret upper bound O(

p
T|L| logT) [Bubeck et al.,

2012], whereT is running time, L is the set of arms.
There also exist some variations of the bandit problem
other than stochastic bandit problem, such as contex-
tual bandit problem [Deshmukh et al., 2017, Langford
and Zhang, 2008] and bandit optimization problem
[Arora et al., 2012, Hazan et al., 2016]. We recommend
readers to refer to the book by [Bubeck et al., 2012].
Regret is a common metric of algorithms above, while
another important metric is the sample complexity
[Gabillon et al., 2012, Kalyanakrishnan et al., 2012].
Recently there are also some research to combine ban-
dit algorithms and Monte Carlo tree methods to Þnd
out an optimal path in a tree with random leaf nodes,
that corresponds to Þnding the optimal strategy in a
game. Representative algorithms include UCT [Kocsis
et al., 2006], UGapE-MCTS [Kaufmann and Koolen,
2017], and LUCB-micro [Huang et al., 2017].

Expected improvement methods The expected
improvement method dates back to 1970s, when
J. Mockus and Zilinskas [1978] proposed to use the
expected improvement function to decide which arm
to choose in each iteration, that is, the arm is chosen
with the maximal expected improvement. The advan-
tage of this method is that the expected improvement
can be computed analytically [J. Mockus and Zilin-
skas, 1978, Jones et al., 1998]. Recently, Snoek et al.
[2012] extended the idea of expected improvement to
the time sensitive case by evaluating the expected im-
provement per second to make selection. We also adopt
this concept in this paper, namely,EIrate . There are
also some works on analyzing the asymptotically con-
vergence of EI method. Ryzhov [2016] analyzed the
hit number of each non-optimal arm and the work by
Bull [2011] provides the lower and upper bound of
instantaneous regret when values of all arms are in
Reproducing-Kernel Hilbert Space. Expected improve-
ment methods have many application scenarios, see
[Malkomes et al., 2016].

GP-UCB GP-UCB is a type of approaches consider-
ing the correlation among all arms, while the standard
UCB [Auer et al., 2002] does not consider the correla-
tion. GP-UCB chooses the arm with the largest UCB
value in each iteration where the UCB value uses the
correlation information. The proven regret achieves the
rate O(

p
T logT log |L| ! T) where T is running time,

L is the set of arms, and! T is the maximum infor-
mation gain at time T. Some variants of GP-UCB
include Branch and Bound algorithm [de Freitas et al.,
2012], EGP algorithm [Rana et al., 2017], distributed

Chen Yu, Bojan Karlaÿs, Jie Zhong, Ce Zhang, Ji Liu

batch GP-UCB [Daxberger and Low, 2017], MF-GP-
UCB [Kandasamy et al., 2016], BOCA [Kandasamy
et al., 2017], GP-(UCB/EST)-DPP-(MAX/SAMPLE)
[Kathuria et al., 2016], to name a few.

Parallelization bandit algorithms To improve
the e!ciency of bandit algorithms, multiple agents
can be employed and they can perform simultaneous
investigation. Zhong et al. [2017] designed an asyn-
chronous parallel bandit algorithm that allows multiple
agents working in parallel without waiting for each
other. Both theoretical analysis and empirical studies
validate that the nearly linear speedup can be achieved.
Kandasamy et al. [2018] designed an asynchronous
version of Thompson sampling algorithm to solve paral-
lelization Bayesian bandit optimization problem. While
they consider the single user scenario, our work extends
the setup to the multi-user case, which leads to our
new notation to reßect the global happinessand needs
some new technique in theoretical analysis.

AutoML Closely related to this work is the emerg-
ing trend of AutoML system and services. Model se-
lection and hyperparameter tuning is the key tech-
nique behind such services. Prominent systems in-
clude Spark TuPAQ [Sparks et al.], Auto-WEKA [Kot-
tho" et al., Thornton et al.], Google Vizier [Golovin
et al.], Spearmint [Snoek et al., 2012], GPyOpt [GPy-
Opt, 2016], and Auto scikit-learn [Feurer et al.] and
prominent online services include Google Cloud Au-
toML and Microsoft Cognitive Services. Most of these
systems focus on a single-tenant setting. Recently, Li
et al. [2018] describes a system for what the authors call
Òmulti-tenant model selectionÓ. Our paper is motivated
by this multi-tenant setting, however, we focus on a
much more realistic choice of algorithm, GP-EI, that
is actually used by real-world AutoML services.

3 MATHEMATICAL PROBLEM
STATEMENT

In this section, we give the mathematical expression of
the problem. We Þrst introduce the multi-device, multi-
tenant (MDMT) AutoML problem, which is a more
general scenario of single-device, single-tenant (SDST)
AutoML problem. Then in Section 3.1, we propose a
new notion Ð time sensitive hierarchical bandit (TSHB)
problem to abstract the MDMT AutoML problem. At
last in Section 3.2, we deÞne a new metric to quantify
the goal.

Single-device, single-tenant (SDST) AutoML
AutoML often refers to the single-device, single-tenant
scenario, in which a single user aims Þnding the best
model (or hyper parameter) for his or her individual

dataset as soon as possible. Here the device is an ab-
stract concept, it can refer to a server, or a CPU, GPU.
The problem is usually formulated into a Bayesian opti-
mization problem or a bandit problem using Gaussian
process to characterize the connection among di"erent
models (or hyper parameters).

Multi-device, multi-tenant (MDMT) AutoML
The MDMT AutoML considers the scenario where there
are multiple devices available and multiple tenants who
seek the best model for each individual dataset (one
tenant corresponds to one dataset). While the objective
of the SDST AutoML is purely from the perspective of
a customer, the objective of MDMT AutoML is from
the service provider, because it is generally impossible
to optimize performance for each single one, given the
limited computing resource. There are two fundamen-
tal challenges: 1) When there are multiple devices are
available, how to coordinate all computing resources
to maximize the e!ciency? Simply extending the al-
gorithms in SDST AutoML often let multiple devices
to run the same model on the same dataset, which
apparently wastes the computing resource; 2) To serve
multiple customer, we need to Þnd a global metric to
guide us to specify the most appropriate customer to
serve besides of choosing the most promising the model
for his / her dataset for each time. The overall problem
is how to utilize all devices to achieve a certain global
happiness. Each device is considered to be atomic, that
is, each device can only run one algorithm (model) on
one dataset at the same time.

3.1 Time sensitive hierarchical bandit
(TSHB) problem

To Þnd a systematic solution to the MDMT AutoML
problem, we develop a new notion Ð time sensitive
hierarchical bandit (TSHB) problem to formulate the
MDMT AutoML problem.

DeÞnition of TSHB problem Now we formally
propose theime sensitive hierarchical bandit problemto
abstract the multi-device, multi-tenant autoML frame-
work. Suppose that there areN users (or datasets
in autoML framework) and M devices. Each user has
a candidate set ofmodels (or algorithms in autoML
framework) he or she is interested, speciÞcally,L i is the
candidate model set for useri " [N]. Here we consider
a more general situation, that is we do not assume that
L i and L j are disjoint for i, j " [N]. Denote the set
of all models by L = L 1 # L 2 # á á á # LN . Running a
model x " L on a device will take c(x) units of time.
One model can only be run on one device at the same
time and one device can only run one model at the
same time. Since one model has been assigned to an
idle device, c(x) units time later, the performance of

AutoML from Service Provider’s Perspective: Multi-device, Multi-tenant Model Selection with GP-EI

model x will be observed, denoted byz(x). For ex-
ample, the performance could be the accuracy of the
model. W.L.O.G., we assume that the larger the value
of z(x), the better. Roughly saying, the overall goal
is to utilize M devices to help N users to Þnd out
each individual optimal model from the corresponding
candidate set as soon as possible. More technically,
the goal (from the perspective of service provider) is
to maximize the cumulative global happinessover all
users. We will deÞne a regret to reßect this metric in
the next subsection.

Remark 1. Here we simply assumec(x) to be known
beforehand. Although it is usually unknown beforehand,
it is easy to estimate an approximate (but high accurate)
value by giving the dataset set size, the computational
hardware parameters, historical data, and other infor-
mation. Therefore, for simplicity in analysis, we just
use estimated value so that we can assume the runtime
of each model to be exactly known beforehand. In our
empirical study, this approximation does not degrade
the performance of our algorithm.

3.2 Regret deÞnition for cumulative global
happiness

To quantify the goal Ð cumulative global happiness, we
deÞne the corresponding regret. Let us Þrst introduce
some more notations and deÞnitions:

¥ L (t): the set of models whose performances have
beenobserved up to time t;

¥ x!
i : the best model for user i , that is, x!

i :=
arg maxx "L i

z(x);

¥ x!
i (t): the best model for useri observed up to time

t, that is,
x!

i (t) := arg max
x "L (t)#L i

z(x). (1)

We deÞne the individual regret (or negative individual
happiness) of useri at time t by the gap between the
currently best and the optimal, i.e., z(x!

i) $ z(x!
i (t)) .

In most AutoML systems, the user experience goes be-
yond the regret at a single time point for a single user.
Instead, the regret is deÞned by the integration over
time and the sum over all usersÕ regrets. It is worth
noting that the regret for each user is not the same
as the one in the SDST scenario since even a user is
not served currently, he or she still receives the penalty
(measured by the gap between the optimal modelÕs per-
formance and the currently best performance). More
formally, the regret at time T is deÞned by

Regret T =
NX

i=1

Z T

0

⇣
z(x!

i) $ z
�
x!

i (t)
�⌘

dt. (2)

Our goal is to utilize all devices to minimize this regret.

Discussion: Why is Multi-Device Important?
Having multiple devices in the pool of computation
resources does not necessarily mean that we need to
have a multi-device GP-EI algorithm to do the schedul-
ing. One naive solution, which is adopted by ease.ml Li
et al. [2018] is to treat all devices as a single device to
do distributed training for each training task. In fact, If
the training process can scale up linearly to all devices
in the computation pool, such a baseline strategy might
not be too bad. However, the availability of resources
provided on a modern cloud is far larger than the cur-
rent limitation of distributed training Ñ Whenever the
scalability becomes sublinear, some resources could be
used to serve other users instead. Given the growth
rate of online machine learning services, we believe the
multi-device setting will only become more important.

4 ALGORITHM
The proposed Multi-device Multi-tenant GP-EI (MM-
GP-EI) algorithm follows a simple philosophy Ð as long
as there is a device available, select a model to run on
this device. To minimize the regret (or equivalently
maximize the cumulative global happiness), the key is
to select a promising model to run whenever there is
an available device. We use the expected improvement
rate (EIrate) to measure the quality of each model in
the set of models that have not yet been selected before
(selected models include the ones whose performance
have been observed or that are under test currently).
The EIrate value for model x depends on two factors:
the running time of model x and its expected improve-
ment (EI) value (deÞned as Expected Improvement
Function in Section 4.1)

EIrate (x) := EI (x)/c (x).

This measures the averaged expected improvement.
This concept also appeared in Snoek et al. [2012].

4.1 Expected Improvement Function
Every Bayesian-based optimization algorithm has a
function called acquisition function [Brochu et al., 2010]
that guides the search for the next model to test. In
our algorithm, we will call it expected improvement
function (EI function).

Suppose at timet there is a device free, we Þrst compute
posterior distributions for all models given all current
observation and then use these posterior distributions
to construct EI function for every model.

First, for each modelx and any user who has this model
(notice that di"erent users can share the same model),
we useEI i,t (x) to denote expected improvement of user
iÕs best performance if modelx is observed. Formally,

Chen Yu, Bojan Karlaÿs, Jie Zhong, Ce Zhang, Ji Liu

we have

EI i,t (x) = E
h

max
�

z(x) $ z
�
x!

i (t)
�
, 0
 i

. (3)

Here E means taking expectation of posterior distribu-
tion of z(x) at time t.

Then, we sum this value over all users who have model
x to represent the total expected improvementEI t (x)
if model x is observed. Formally, we have

EI t (x) =
NX

i=1

(x " L i)EI i,t (x), (4)

where (A) = 1 if A happens, and (A) = 0 if A does
not happen. At last, we deÞne theEIrate value of x
at time t as follows:

EIrate t (x) =
EI t (x)
c(x)

. (5)

Now, we can choose the model with the max value of
EIrate as the next one to run at time t:

xnext to run at time t = arg max
x "L\L (t)

EIrate t (x). (6)

Algorithm 1 MM-GP-EI Algorithm

Input: µ(x), k(x, x $), c(x), L , {L i } N
i=1 and the total

time budget T.
1: x(i)

initial = arg maxx "L i
µ(x), %i " [N].

2: L ob =
�

x(i)
initial

 N
i=1

3: while there is a device available and the elapsed
time t is less thanT do

4: Refresh L ob to include all observed models at
present

5: Update posterior mean µt (á), posterior covari-
ancekt (á, á$) of z(x) given { z(x)} x "L ob

6: Update x!
i (t) = arg max x "L ob #L i

z(x), %i " [N]

7: EI (x) =
NP

i=1

P
x "L i \L ob

" t (x)#
⇣

µ t (x)%z
�

x ⇤
i (t)

�

! t (x)

⌘
, %x "

L
8: Run xnext = arg max

x "L\L ob

EI(x)
c(x) on this free device

9: end while
Output: x!

1(T), x!
2(T), á á á, x!

N (T).

4.2 Choosing Prior: Gaussian Process
Next, we must choose a suitable prior ofz(x) to es-
timate EI function in (3). Here, we choose Gaussian
Process (GP) as the prior like many other Bayesian
optimization algorithms [Bull, 2011, Srinivas et al.,
2012], mainly because of its convenience of computing
posterior distribution and EI function.

A Gaussian ProcessGP(µ(x), k(x, x $)) is determined
by its mean function µ(x) and covariance function
k(x, x $). If z(x) has a GP prior GP(µ(x), k(x, x $)) ,
then after observing models inL (t) at time t, the pos-
terior distribution of z(x) given { z(x)} x "L (t) is also a
Gaussian ProcessGP(µt (x), kt (x, x $)) . Here, posterior
mean µt (x) and variance kt (x, x $) can be computed
analytically. We give the formulas in Supplemental
Meterials (Section A).

EI function can also be computed analytically if z(x)
obeys Gaussian Process (whatever prior or posterior).
The following lemma gives the expression.

Lemma 1. Let !(x) denote cumulative distribution
function (CDF) of standard normal distribution and
$(x) denote probability density function (PDF) of stan-
dard normal distribution. Also, let #(x) = x!(x)+ $(x).
Then, if X & N (µ, " 2), and a " R is a constant, we
have

E
h

max
�

X $ a,0
 i

= "#
⇣µ $ a

"

⌘
.

This section ends by the detailed description of the
proposed MM-GP-EI algorithm in Algorithm 1.

Discussion: How to Choose Prior Mean µ(x)
and Prior Covariance k(x, x $) Prior mean µ(x)
and prior covariance k(x, x $) are chosen according to
the speciÞc problem. They often characterize some
properties of models in the problem, such as expected
value of models and correlations among di"erent mod-
els. In our multi-device multi-tenant example, the
parameters of Gaussian process can be obtained from
historical experiences and the correlation depends on
two factors: the similarity of algorithms and the similar-
ity of usersÕ datasets. We following standard AutoML
practice (used in Google Vizier or ease.ml) to construct
the kernel matrix from historical runs.

5 MAIN RESULT
Before we introduce the main theoretical result, let us
propose a new notationMaximum Incremental Uncer-
tainty (MIU), which plays a key role in our theory.

5.1 Maximum Incremental Uncertainty
Suppose that K is the kernel matrix, that is, K :=
[k(x, x $)](x,x 0"L), where k(x, x $) is the kernel function
and L is the set of all models as deÞned in Section3.1.
So, K is an |L| ! |L| positive semi-deÞnite (covariance)
matrix. SupposeS is a subset of[|L|] := { 1, 2, á á á, |L|} .
Let K S be a submatrix of K with columns and rows
indexed by S.

We deÞne thes-MIU score of matrix K (1 ' s ' |L|)
by

AutoML from Service Provider’s Perspective: Multi-device, Multi-tenant Model Selection with GP-EI

MIU s(K) := max
S0& S' [L],

|S|=s, |S0|=s%1

(q
det(K S)
det(K S 0)

, det(K S0) (= 0;

0, otherwise,

where we deÞnedet(K !) = 1 .

Let us understand the meaning of the notationMIU .
Given |L| Gaussian random variables with covariance
matrix K " R|L|(|L| , det(K S0) denotes the total quan-
tity of uncertainty for all random variables in S$) L .
det(K S)/ det(K S0) denotes the incremental quantity
of uncertainty by adding one more random variable
into S$ to form S. If the added random variable can
be linearly represented by random variables inS$, the
incremental uncertainty is zero. If the added random
variable is independent to all variables inS, the incre-
mental uncertainty is the variance of the added variable.
Therefore, MIU s(K) measures thelargest incremental
quantity of uncertainty from s $ 1 random variables to
s random variables in L .

Remark 2. Why do not use Information Gain?
People who are familiar with the concept of information
gain (IG) may ask ÒIG is a commonly used metric to
measure how much uncertainty reduced after observed
a sample. Why not use it here?Ó Although IG and
MIU essentially follow the same spirit, the IG metric
is not suitable in our setup. Based on the mathemati-
cal deÞnition of IG (see Lemma 5.3 in Srinivas et al.
[2012]), it requires the observation noise of the sample
to be nonzero to make it valid (otherwise it is inÞnity),
which makes it inappropriate in the main target sce-
nario in this paper. In our motivating example Ð cloud
computing platform, the observation noise is usually
considered to be zero, since no people run the same
experiment twice. That motivates us to deÞne a slightly
di!erent metric, (i.e., Maximum Incremental Uncer-
tainty), to Þx the non-observation-noise issue.

5.2 Main Theorem
To simplify the analysis and result, we make the follow-
ing assumption commonly used for analyzing EI [Bull,
2011] and GP-UCB [Srinivas et al., 2012].

Assumption 1. Assume that

¥ there exists a constantR such that: |z(x) $ µt (x)| '
" t (x)R, for any model x " L and any t * 0;

¥ " (x) ' 1.

Now we are ready to provide the upper bound for the
regret deÞned in (2).

Theorem 2. Let MIU (T, K) :=
P|L (t)|

s=2 MIU s(K).
Under Assumption 1, the regret of the output of Al-
gorithm 1 up to time T admits the following upper
bound

Regret T ! (MIU (T, K) + M)
N 2

M
øc.

where øc := 1
N

NP
i=1

c(x!
i) is the average time cost of all

optimal models, and! means Òless than equal toÓ up
to a constant multiplier.

The proof of Theorem 2 can be found in the Supple-
mental Materials. To the best of our knowledge, this is
the Þrst bound for time sensitive regret. We o"er the
following general observations:

¥ (convergence to optimum) If the growth of
MIU (T, K) with respect to T is o(T), then average
regret converges to zero, that is,

1
T

Regret T + 0.

In other words, the service provider will Þnd the optimal
model for each individual user.

¥ (nearly linear speedup) When more and more
devices are employed, that is, increasingM , then the
regret will decrease roughly by a factorM as long as
M is dominated by MIU (T, K).

Convergence Rate of the Average Regret. We
consider the scenario whereM , MIU (T, K) and
|L (t)| increases linearly with respect toT. Then the
growth of MIU (T, K) will dominate the convergence
rate of the average regret. Note thatMIU (T, K) is
bounded by

MIU (T, K) '
X

i " top |L (t)| elements in diag (K)

p
K (i, i).

Discussion: Special Cases. Consider the following
special cases:

¥ (O(1/T) rate) The convergence rate for 1T Regret T
achievesO(1/T), if MIU (T, K) is bounded, for exam-
ple, all random variables (models) are linearly combi-
nation of a Þnite number of hidden Gaussian random
variables.

¥ (not converge) If all models are independent, then
K is a diagonal matrix, and MIU s(K) is a constant,
which meansMIU (T, K) is linearly increased ofT. In
such a case, the regret is of orderT, which implies no
convergence for the average regret. This is plausible in
that the algorithm gains no information from previous
observations to decide next because of independence.

¥ (O(1/T (1%")) rate with %" (0, 1)) This rate can
be achieved ifMIU (T, K) grows with the rate O(T").

Chen Yu, Bojan Karlaÿs, Jie Zhong, Ce Zhang, Ji Liu

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

0

100 K

200 K

300 K

C
um

m
ul

at
iv

e
re

gr
et

GP-EI-Random

GP-EI-Round-Robin

GP-EI-MDMT

(a) Azure - 1 device

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

0

1 K

2 K

3 K

C
um

m
ul

at
iv

e
re

gr
et

GP-EI-Random
GP-EI-Round-Robin

GP-EI-MDMT

(b) DeepLearning - 1 device

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

10! 5

10! 4

10! 3

10! 2

10! 1

100

In
st

an
ta

ne
ou

s
re

gr
et

GP-EI-Random

GP-EI-Round-Robin
GP-EI-MDMT

5.0x

(c) Azure - 1 device

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

10! 4

10! 3

10! 2

10! 1

100

In
st

an
ta

ne
ou

s
re

gr
et

GP-EI-Random

GP-EI-Round-RobinGP-EI-MDMT

(d) DeepLearning - 1 device

Figure 2: Performance of Di"erent Model Selection Algorithms with a Single Computation Device.

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

0

10 K

20 K

30 K

40 K

50 K

60 K

C
um

m
ul

at
iv

e
re

gr
et

1

2

4
8

(a) Azure

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

0

500

1 K

1 K

2 K

2 K

C
um

m
ul

at
iv

e
re

gr
et 1

2
4
8

(b) DeepLearning

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

10! 6

10! 4

10! 2

100

In
st

an
ta

ne
ou

s
re

gr
et

1
2
4
8

(c) Azure

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

10! 6

10! 5

10! 4

10! 3

10! 2

10! 1

100

In
st

an
ta

ne
ou

s
re

gr
et

1

2

4
8

(d) DeepLearning

Figure 3: The Impact of Multiple Devices on Our Approach.

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

0

20 K

40 K

60 K

80 K

100 K

C
um

m
ul

at
iv

e
re

gr
et

GP-EI-Random

GP-EI-Round-Robin

GP-EI-MDMT

(e) Azure - 4 devicess

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

0

500

1 K

2 K

2 K

C
um

m
ul

at
iv

e
re

gr
et GP-EI-RandomGP-EI-Round-Robin

GP-EI-MDMT

(f) DeepLearning - 4 devicess

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

10! 6

10! 5

10! 4

10! 3

10! 2

10! 1

100

In
st

an
ta

ne
ou

s
re

gr
et

GP-EI-Random
GP-EI-Round-Robin

GP-EI-MDMT

(g) Azure - 4 devicess

0.0 0.1 0.2 0.3 0.4 0.5
Normalized time

10! 6

10! 5

10! 4

10! 3

10! 2

10! 1

100

In
st

an
ta

ne
ou

s
re

gr
et

GP-EI-Random

GP-EI-Round-Robin

GP-EI-MDMT

(h) DeepLearning - 4 devicess

Figure 4: Performance of Di"erent Model Selection Algorithms with Four Computation Devices.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time

10! 5

10! 4

10! 3

10! 2

10! 1

100

In
st

an
ta

ne
ou

s
re

gr
et

Cuto�

1 Device248

(a) Synthetic - Multi Device

0 2 4 6 8
Number of devices

0

2

4

6

8

S
pe

ed
up

(b) Synthetic - Multi Device Speedup

Figure 5: Speedup of using Multiple Devices for Our
Approach on Synthetic Data

6 EXPERIMENTS
We validate the e"ectiveness of the multi-device, multi-
tenant GP-EI algorithm.

6.1 Data Sets and Protocol

We use two datasets for our experiments, namely (1)
DeepLearning and (2) Azure . Both datasets are
from the ease.ml paper Li et al. [2018] in which the
authors evaluate their single-device, multi-tenant GP-
UCB algorithm. The DeepLearning dataset is col-
lected from 22 users, each runs an image classiÞca-
tion task. The system needs to select from 8 deep
learning models, including NIN, GoogLeNet, ResNet-
50, AlexNet, BNAlexNet, ResNet-18, VGG-16, and
SqueezeNet. TheAzure dataset is collected from 17
users, each runs a Kaggle competition. The system
needs to select from 8 binary classiÞers, including Av-
eraged Perceptron, Bayes Point Machine, Boosted De-

AutoML from Service Provider’s Perspective: Multi-device, Multi-tenant Model Selection with GP-EI

cision Tree, Decision Forests, Decision Jungle, Logistic
Regression, Neural Network, and SVM.

Protocol We run all experiments with the following
protocol. In each run we randomly select 8 users which
we will isolate and use to estimate the mean and the
covariance matrix of the prior for the Gaussian process.
We test di"erent model selection algorithms using the
remaining users.

For all model selection strategies, we warm start by
training two fastest models for each user, and then
switching to each speciÞc automatic model selection
algorithm:

¥ GP-EI-Random: Each user runs their own GP-
EI model selection algorithm; the system chooses
the next user to serve uniformly at random and
trains one model for the selected user;

¥ GP-EI-Round-Robin: Each user runs their own
GP-EI model selection algorithm; the system picks
the next user to serve in a round robin manner;

¥ GP-EI-MDMT: Our proposed approach in
which each user runs their own GP-EI model selec-
tion algorithm; the system picks the next user to
serve using the MM-GP-EI algorithm we proposed.

Metrics We measure the performance of a model
selection system in two ways: (1) Cumulative Regret
Regret T and (2) Instantaneous Regret: at time T, we
calculate the average among all users of the di"erence
between the best possible accuracy for each user and
the current best accuracy the user gets. Intuitively,
this measures the global ÒunhappinessÓ among all users
at time T.

6.2 Single device experiments

We validate the hypothesis that, given a single device,
multi-tenant GP-EI outperforms both round robin and
random strategies for picking the next user to serve.

Figure 2 shows the result on both datasets. The col-
ored region around the curve shows the 1" conÞdence
interval. On Azure , our approach outperforms both
round robin and random signiÞcantly Ñ we reach the
same instantaneous regret up to 5! faster than round
robin. This is because, by prioritizing di"erent users
with respect to their expected improvement, the global
happiness of all users can increase faster than treating
all users equally. On the other hand, forDeepLearn-
ing , we do not observe a signiÞcant speedup for our
approach. This is because the Þrst two trials of mod-
els already give a reasonable quality. If we measure
the standard deviation of the accuracy of models for
each user, the average forAzure is 0.12 while for

DeepLearning it is 0.04. This means that, once the
system trains the Þrst two initial models for each user
in Azure , there could be more potential performance
gain still undiscovered among models that have not yet
been sampled.

6.3 Multiple device experiments

We validate the hypothesis that using multiple devices
speeds up our multi-device, multi-tenant model selec-
tion algorithm. Figure 3 shows the result of using
multiple devices for our algorithm. We see that the
more devices we use, the faster the instantaneous regret
drops. In terms of speedup, sinceDeepLearning has
more users thanAzure (14 vs. 9), we see that the
speedup is larger onDeepLearning . The signiÞcant
speedup of reaching instantaneous regret of0.03 for
Azure is most probably due to the small number of
users compared to the number of devices (9 vs. 8).

We now compare our approach against GP-EI-Round-
Robin and GP-EI-Random when there are multiple
devices available. Figure 4 shows the result. We see
that, up to 4 devices (9 users in total), our approach
outperforms round robin signiÞcantly onAzure . When
we use 8 devices for Azure, because there are only
9 users, both our approach and round robin achieve
almost the same performance.

We also conduct an experiment using a synthetic
dataset with 50 users and50 models (Figure 5). We
model the performance as a Gaussian Process and
generate random samples independently for each user.
The Gaussian Process has zero mean and a covariance
matrix derived from the MatŽrn kernel with & = 5 / 2.
Each generated sample is upwards in order to be non-
negative. We run our approach on the same dataset
while varying the number of devices. For each device
count we repeat the experiment5 times. To quan-
tify speed gains we measure the average time it takes
the instantaneous regret to hit a cuto" point of 0.01.
We can observe that adding more devices makes the
convergence time drop at a near-linear rate.

7 CONCLUSION
In this paper, we introduced a novel multi-device, multi-
tenant algorithm using GP-EI to maximize the Òglobal
happinessÓ for all users, who share the same set of com-
puting resources. We formulated the Òglobal happinessÓ
in terms of a cumulative regret and Þrst time provided
a theoretical upper bound for the time sensitive regret
in the GP-EI framework. We evaluated our algorithm
on two real-world datasets, which signiÞcantly outper-
forms the standard GP-EI serving users randomly or in
a round robin fashion. Both our theoretical results and
experiments show that our algorithm can provide near
linear speedups when multiple devices are available.

Chen Yu, Bojan Karlaÿs, Jie Zhong, Ce Zhang, Ji Liu

Acknowledgements

Chen Yu and Ji Liu are in part supported by NSF
CCF1718513, IBM faculty award, and NEC fellowship.
Ce Zhang and the DS3Lab gratefully acknowledge the
support from Mercedes-Benz Research & Development
North America, MeteoSwiss, Oracle Labs, Swiss Data
Science Center, Swisscom, Zurich Insurance, Chinese
Scholarship Council, and the Department of Computer
Science at ETH Zurich.

References

R. Arora, O. Dekel, and A. Tewari. Online bandit
learning against an adaptive adversary: from regret
to policy regret. In Proceedings of the 29th Inter-
national Coference on International Conference on
Machine Learning, pages 1747Ð1754, 2012.

J.-Y. Audibert and S. Bubeck. Minimax policies for
adversarial and stochastic bandits. InConference on
Learning Theory, pages 217Ð226, 2009.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235Ð256, 2002.

E. Brochu, V. M. Cora, and N. De Freitas. A tuto-
rial on bayesian optimization of expensive cost func-
tions, with application to active user modeling and
hierarchical reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

S. Bubeck, N. Cesa-Bianchi, et al. Regret analysis
of stochastic and nonstochastic multi-armed bandit
problems. Foundations and TrendsR- in Machine
Learning, 5(1):1Ð122, 2012.

A. D. Bull. Convergence rates of e!cient global opti-
mization algorithms. Journal of Machine Learning
Research, 12(Oct):2879Ð2904, 2011.

E. A. Daxberger and B. K. H. Low. Distributed batch
Gaussian process optimization. In D. Precup and
Y. W. Teh, editors, Proceedings of the 34th Interna-
tional Conference on Machine Learning, volume 70
of Proceedings of Machine Learning Research, pages
951Ð960, International Convention Centre, Sydney,
Australia, 06Ð11 Aug 2017. PMLR.

N. de Freitas, A. Smola, and M. Zoghi. Regret bounds
for deterministic gaussian process bandits.arXiv
preprint arXiv:1203.2177, 2012.

A. A. Deshmukh, U. Dogan, and C. Scott. Multi-
task learning for contextual bandits. In Advances in
Neural Information Processing Systems, pages 4851Ð
4859, 2017.

M. Feurer, A. Klein, K. Eggensperger, J. Springenberg,
M. Blum, and F. Hutter. E!cient and Robust Auto-
mated Machine Learning. In NIPS, pages 2962Ð2970.

V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best
arm identiÞcation: A uniÞed approach to Þxed bud-
get and Þxed conÞdence. InAdvances in Neural
Information Processing Systems, pages 3212Ð3220,
2012.

D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. E.
Karro, and D. Sculley. Google Vizier: A Service for
Black-Box Optimization. In KDD .

D. Golovin, B. Solnik, S. Moitra, G. Kochanski,
J. Karro, and D. Sculley. Google vizier: A service for
black-box optimization. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 1487Ð1495.
ACM, 2017.

GPyOpt. {GPyOpt}: A Bayesian
Optimization framework in python.
\ url{http://github.com/She!eldML/GPyOpt},
2016.

E. Hazan et al. Introduction to online convex optimiza-
tion. Foundations and TrendsR- in Optimization , 2
(3-4):157Ð325, 2016.

R. Huang, M. M. Ajallooeian, C. Szepesv‡ri, and
M. MŸller. Structured best arm identiÞcation with
Þxed conÞdence. InInternational Conference on
Algorithmic Learning Theory , pages 593Ð616, 2017.

V. T. J. Mockus and A. Zilinskas. Toward Global
Optimization , volume 2, chapter The application of
Bayesian methods for seeking the extremum, pages
117Ð128. Elsevier, 1978.

D. R. Jones, M. Schonlau, and W. J. Welch. E!cient
global optimization of expensive black-box functions.
Journal of Global optimization, 13(4):455Ð492, 1998.

S. Kalyanakrishnan, A. Tewari, P. Auer, and P. Stone.
Pac subset selection in stochastic multi-armed ban-
dits. In International Conference on Machine Learn-
ing, volume 12, pages 655Ð662, 2012.

K. Kandasamy, G. Dasarathy, J. B. Oliva, J. Schnei-
der, and B. Poczos. Gaussian process bandit opti-
misation with multi-Þdelity evaluations. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 29, pages 992Ð1000. Curran
Associates, Inc., 2016.

K. Kandasamy, G. Dasarathy, J. Schneider, and B. P—c-
zos. Multi-Þdelity Bayesian optimisation with contin-
uous approximations. In D. Precup and Y. W. Teh,
editors, Proceedings of the 34th International Confer-
ence on Machine Learning, volume 70 ofProceedings
of Machine Learning Research, pages 1799Ð1808, In-
ternational Convention Centre, Sydney, Australia,
06Ð11 Aug 2017. PMLR.

AutoML from Service Provider’s Perspective: Multi-device, Multi-tenant Model Selection with GP-EI

K. Kandasamy, A. Krishnamurthy, J. Schneider, and
B. P—czos. Parallelised bayesian optimisation via
thompson sampling. In International Conference on
ArtiÞcial Intelligence and Statistics, pages 133Ð142,
2018.

T. Kathuria, A. Deshpande, and P. Kohli. Batched
gaussian process bandit optimization via determi-
nantal point processes. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems
29, pages 4206Ð4214. Curran Associates, Inc., 2016.

E. Kaufmann and W. M. Koolen. Monte-carlo tree
search by best arm identiÞcation. InAdvances in
Neural Information Processing Systems, pages 4904Ð
4913, 2017.

L. Kocsis, C. Szepesv‡ri, and J. Willemson. Improved
monte-carlo search.Univ. Tartu, Estonia, Tech. Rep ,
1, 2006.

L. Kottho", C. Thornton, H. H. Hoos, F. Hutter, and
K. Leyton-Brown. Auto-WEKA 2.0: Automatic
model selection and hyperparameter optimization
in WEKA. Journal of Machine Learning Research,
(25):1Ð5.

T. L. Lai and H. Robbins. Asymptotically e!cient
adaptive allocation rules. Advances in applied math-
ematics, 6(1):4Ð22, 1985.

J. Langford and T. Zhang. The epoch-greedy algorithm
for multi-armed bandits with side information. In
Advances in neural information processing systems,
pages 817Ð824, 2008.

T. Li, J. Zhong, J. Liu, W. Wu, and C. Zhang. Ease.ml:
Towards multi-tenant resource sharing for machine
learning workloads. The Proceedings of the Very
Large Database Endowment, 2018.

G. Malkomes, C. Scha", and R. Garnett. Bayesian
optimization for automated model selection. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 2900Ð2908. Curran As-
sociates, Inc., 2016.

S. Rana, C. Li, S. Gupta, V. Nguyen, and S. Venkatesh.
High dimensional bayesian optimization with elastic
gaussian process. InInternational Conference on
Machine Learning, pages 2883Ð2891, 2017.

I. O. Ryzhov. On the convergence rates of expected
improvement methods. Operations Research, 64(6):
1515Ð1528, 2016.

J. Snoek, H. Larochelle, and R. P. Adams. Practical
bayesian optimization of machine learning algorithms.
In Advances in neural information processing sys-
tems, pages 2951Ð2959, 2012.

E. R. Sparks, A. Talwalkar, D. Haas, M. J. Franklin,
M. I. Jordan, and T. Kraska. Automating model
search for large scale machine learning. InProceed-
ings of the Sixth ACM Symposium on Cloud Com-
puting - SoCC Õ15, pages 368Ð380, New York, New
York, USA. ACM Press. ISBN 9781450336512. doi:
10.1145/2806777.2806945.

N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger.
Information-theoretic regret bounds for gaussian pro-
cess optimization in the bandit setting. IEEE Trans-
actions on Information Theory, 58(5):3250Ð3265,
2012.

C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-
Brown. Auto-WEKA. In Proceedings of the 19th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining - KDD Õ13, page
847, New York, New York, USA. ACM Press. ISBN
9781450321747. doi: 10.1145/2487575.2487629.

J. Zhong, Y. Huang, and J. Liu. Asynchronous
parallel empirical variance guided algorithms for
the thresholding bandit problem. arXiv preprint
arXiv:1704.04567, 2017.

