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Abstract

We investigate how to train kernel approxi-
mation methods that generalize well under
a memory budget. Building on recent theo-
retical work, we define a measure of kernel
approximation error which we find to be more
predictive of the empirical generalization per-
formance of kernel approximation methods
than conventional metrics. An important con-
sequence of this definition is that a kernel
approximation matrix must be high rank to
attain close approximation. Because storing a
high-rank approximation is memory intensive,
we propose using a low-precision quantiza-
tion of random Fourier features (LP-RFFs)
to build a high-rank approximation under a
memory budget. Theoretically, we show quan-
tization has a negligible effect on generaliza-
tion performance in important settings. Em-
pirically, we demonstrate across four bench-
mark datasets that LP-RFFs can match the
performance of full-precision RFFs and the
Nyström method, with 3x-10x and 50x-460x
less memory, respectively.

1 INTRODUCTION

Kernel methods are a powerful family of machine learn-
ing methods. A key technique for scaling kernel meth-
ods is to construct feature representations whose inner
products approximate the kernel function, and then
learn a linear model with these features; important ex-
amples of this technique include the Nyström method
(Williams and Seeger, 2000) and random Fourier fea-
tures (RFFs) (Rahimi and Recht, 2007). Unfortunately,
a large number of features are typically needed for at-
taining strong generalization performance with these
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methods on big datasets (Rahimi and Recht, 2008; Tu
et al., 2016; May et al., 2017). Thus, the memory re-
quired to store these features can become the training
bottleneck for kernel approximation models. In this
paper we work to alleviate this memory bottleneck by
optimizing the generalization performance for these
methods under a fixed memory budget.

To gain insight into how to design more memory-
efficient kernel approximation methods, we first in-
vestigate the generalization performance vs. memory
utilization of Nyström and RFFs. While prior work
(Yang et al., 2012) has shown that the Nyström method
generalizes better than RFFs under the the same num-
ber of features, we demonstrate that the opposite is
true under a memory budget. Strikingly, we observe
that 50,000 standard RFFs can achieve the same held-
out accuracy as 20,000 Nyström features with 10x less
memory on the TIMIT classification task. Further-
more, this cannot be easily explained by the Frobenius
or spectral norms of the kernel approximation error ma-
trices of these methods, even though these norms are
the most common metrics for evaluating kernel approx-
imation methods (Gittens and Mahoney, 2016; Yang
et al., 2014; Sutherland and Schneider, 2015; Yu et al.,
2016; Dao et al., 2017); the above Nyström features
attain 1.7x smaller Frobenius error and 17x smaller
spectral error compared to the RFFs. This observa-
tion suggests the need for a more refined measure of
kernel approximation error—one which better aligns
with generalization performance, and can thus better
guide the design of new approximation methods.

Building on recent theoretical work (Avron et al., 2017),
we define a measure of approximation error which we
find to be much more predictive of empirical generaliza-
tion performance than the conventional metrics. In par-
ticular, we extend Avron et al.’s definition of ∆-spectral
approximation to our definition of (∆1,∆2)-spectral ap-
proximation by decoupling the two roles played by ∆
in the original definition.1 This decoupling reveals that

1The original definition uses the same scalar ∆ to upper
and lower bound the approximate kernel matrix in terms
of the exact kernel matrix in the semidefinite order.
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Table 1: Memory utilization for kernel approximation methods. We consider data x ∈ Rd, kernel features
z(x) ∈ Rm, mini-batch size s, # of classes c (for regression/binary classification c = 1). We assume full-precision
numbers are 32 bits. We measure a method’s memory utilization as the sum of the three components in this table.

Approximation Method Feature generation Feature mini-batch Model parameters

Nyström 32(md+m2) 32ms 32mc
RFFs 32md 32ms 32mc
Circulant RFFs 32m 32ms 32mc
Low-precision RFFs, b bits (ours) 32m bms 32mc

∆1 and ∆2 impact generalization differently, and can
together much better explain the relative generalization
performance of Nyström and RFFs than the original
∆, or the Frobenius or spectral errors. This (∆1,∆2)
definition has an important consequence—in order for
an approximate kernel matrix to be close to the exact
kernel matrix, it is necessary for it to be high rank.

Motivated by the above connection between rank and
generalization performance, we propose using low-
precision random Fourier features (LP-RFFs) to attain
a high-rank approximation under a memory budget.
Specifically, we store each random Fourier feature in a
low-precision fixed-point representation, thus achieving
a higher-rank approximation with more features in the
same amount of space. Theoretically, we show that
when the quantization noise is much smaller than the
regularization parameter, using low precision has negli-
gible effect on the number of features required for the
approximate kernel matrix to be a (∆1,∆2)-spectral
approximation of the exact kernel matrix. Empiri-
cally, we demonstrate across four benchmark datasets
(TIMIT, YearPred, CovType, Census) that in the mini-
batch training setting, LP-RFFs can match the perfor-
mance of full-precision RFFs (FP-RFFs) as well as the
Nyström method, with 3x-10x and 50x-460x less mem-
ory, respectively. These results suggest that LP-RFFs
could be an important tool going forward for scaling
kernel methods to larger and more challenging tasks.

The rest of this paper is organized as follows: In Section
2 we compare the performance of the Nyström method
and RFFs in terms of their training memory footprint.
In Section 3 we present a more refined measure of kernel
approximation error to explain the relative performance
of Nyström and RFFs. We introduce the LP-RFF
method and corresponding analysis in Section 4, and
present LP-RFF experiments in Section 5. We review
related work in Section 6, and conclude in Section 7.

2 NYSTRÖM VS. RFFS: AN
EMPIRICAL COMPARISON

To inform our design of memory-efficient kernel approx-
imation methods, we first perform an empirical study
of the generalization performance vs. memory utiliza-

tion of Nyström and RFFs. We begin by reviewing
the memory utilization for these kernel approximation
methods in the mini-batch training setting; this is a
standard setting for training large-scale kernel approxi-
mation models (Huang et al., 2014; Yang et al., 2015;
May et al., 2017), and it is the setting we will be us-
ing to evaluate the different approximation methods
(Sections 2.2, 5.1). We then show that RFFs outper-
form Nyström given the same training memory budget,
even though the opposite is true given a budget for
the number of features (Yang et al., 2012). Lastly, we
demonstrate that the Frobenius and spectral norms of
the kernel approximation error matrix align poorly with
generalization performance, suggesting the need for a
more refined measure of approximation error for eval-
uating the quality of a kernel approximation method;
we investigate this in Section 3.

For background on RFFs and the Nyström method,
and for a summary of our notation, see Appendix A.

2.1 Memory Utilization

The optimization setting we consider is mini-batch
training over kernel approximation features. To un-
derstand the training memory footprint, we present in
Table 1 the memory utilization of the different parts
of the training pipeline. The three components are:

1. Feature generation: Computing m RFFs over data
in Rd requires a random projection matrix W ∈
Rm×d. The Nyström method stores m “landmark
points” x̂i ∈ Rd, and a projection matrix in Rm×m.

2. Feature mini-batch: Kernel approximation features
z(xi) ∈ Rm for all xi in a mini-batch are stored.2

3. Model parameters: For binary classification and
regression, the linear model learned on the z(x) fea-
tures is a vector θ ∈ Rm; for c-class classification,
it is a matrix θ ∈ Rm×c.

In this work we focus on reducing the memory occupied
by the mini-batches of features, which can occupy a

2For simplicity, we ignore the memory occupied by the
mini-batches of d-dim. inputs and c-dim. outputs, as gener-
ally the number of kernel approx. features m� d, c.
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Figure 1: Generalization performance of full-precision RFFs and Nyström with respect to the number of features
and training memory footprint on TIMIT (a,b). Nyström performs better for a fixed number of features, while
RFFs perform better under a memory budget. We also see that the generalization performance of these methods
does not align well with the Frobenius or spectral norms of their respective kernel approximation error matrices
(c,d). For results on YearPred, CovType, and Census, see Appendix D.2.

significant fraction of the training memory. Our work
is thus orthogonal to existing work which has shown
how to reduce the memory utilization of the feature
generation (Le et al., 2013; Yu et al., 2015) and the
model parameters (Sainath et al., 2013a; Sindhwani
et al., 2015; De Sa et al., 2018) (e.g., using structured
matrices or low precision). Throughout this paper, we
measure the memory utilization of a kernel approxima-
tion method as the sum of the above three components.

2.2 Empirical Comparison

We now compare the generalization performance of
RFFs and the Nyström method in terms of their train-
ing memory footprint. We demonstrate that RFFs
can outperform the Nyström method given a memory
budget, and show that the difference in performance
between these methods cannot be explained by the
Frobenius or spectral norms of their kernel approxima-
tion error matrices.

In experiments across four datasets (TIMIT, YearPred,
CovType, Census (Garofolo et al., 1993; Dheeru and
Karra Taniskidou, 2017)), we use up to 20k Nyström
features and 400k RFFs to approximate the Gaus-
sian kernel;3 we train the models using mini-batch
stochastic gradient descent with early stopping, with
a mini-batch size of 250. We present results averaged
from three random seeds, with error bars indicating
standard deviations (for further experiment details,
see Appendix D.2). In Figure 1(a) we observe that
as a function of the number of kernel approximation
features the Nyström method generally outperforms
RFFs, though the gap narrows as m approaches 20k.
However, we see in Figure 1(b) that RFFs attain better
generalization performance as a function of memory.
Interestingly, the relative performance of these meth-

3We consider different ranges for the number of Nyström
vs. RFF features because the memory footprint for training
with 400k RFFs is similar to 20k Nyström features.

ods cannot simply be explained by the Frobenius or
spectral norms of the kernel approximation error ma-
trices;4 in Figure 1(c,d) we see that there are many
cases in which the RFFs attain better generalization
performance, in spite of having larger Frobenius or
spectral approximation error. This is a phenomenon
we observe on other datasets as well (Appendix D.2).
This suggests the need for a more refined measure of the
approximation error of a kernel approximation method,
which we discuss in the following section.

3 A REFINED MEASURE OF
KERNEL APPROX. ERROR

To explain the important differences in performance be-
tween Nyström and RFFs, we define a more refined mea-
sure of kernel approximation error—(∆1,∆2)-spectral
approximation. Our definition is an extension of Avron
et al.’s definition of ∆-spectral approximation, in which
we decouple the two roles played by ∆ in the original
definition. This decoupling allows for a more fine-
grained understanding of the factors influencing the
generalization performance of kernel approximation
methods, both theoretically and empirically. Theoret-
ically, we present a generalization bound for kernel
approximation methods in terms of (∆1,∆2) (Sec. 3.1),
and show that ∆1 and ∆2 influence the bound in dif-
ferent ways (Prop. 1). Empirically, we show that ∆1

and ∆2 are more predictive of the Nyström vs. RFF
performance than the ∆ from the original definition,
and the Frobenius and spectral norms of the kernel
approximation error matrix (Sec. 3.2, Figure 2). An
important consequence of the (∆1,∆2) definition is
that attaining a small ∆1 requires a large number of
features; we leverage this insight to motivate our pro-
posed method, low-precision random Fourier features,
in Section 4.

4We consider the Frobenius and spectral norms of K−K̃,
where K and K̃ are the exact and approximate kernel
matrices for 20k randomly sampled heldout points.
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3.1 (∆1,∆2)-spectral Approximation

We begin by reviewing what it means for a matrix
A to be a ∆-spectral approximation of a matrix B
(Avron et al., 2017). We then extend this definition
to (∆1,∆2)-spectral approximation, and bound the
generalization performance of kernel approximation
methods in terms of ∆1 and ∆2 in the context of fixed
design kernel ridge regression.

Definition 1. For ∆ ≥ 0, a symmetric matrix A is a
∆-spectral approximation of another symmetric matrix
B if (1−∆)B � A � (1 + ∆)B.

We extend this definition by allowing for different values
of ∆ in the left and right inequalities above:

Definition 2. For ∆1,∆2 ≥ 0, a symmetric matrix
A is a (∆1,∆2)-spectral approximation of another
symmetric matrix B if (1−∆1)B � A � (1 + ∆2)B.

Throughout the text, we will use ∆ to denote the
variable in Def. 1, and (∆1,∆2) to denote the variables
in Def. 2. In our discussions and experiments, we
always consider the smallest ∆, ∆1, ∆2 satisfying the
above definitions; thus, ∆ = max(∆1,∆2).

In the paragraphs that follow we present generalization
bounds for kernel approximation models in terms of
∆1 and ∆2 in the context of fixed design kernel ridge
regression, and demonstrate that ∆1 and ∆2 influence
generalization in different ways (Prop. 1). We consider
the fixed design setting because its expected generaliza-
tion error has a closed-form expression, which allows us
to analyze generalization performance in a fine-grained
fashion. For an overview of fixed design kernel ridge
regression, see Appendix A.3.

In the fixed design setting, given a kernel matrix K ∈
Rn×n, a regularization parameter λ ≥ 0, and a set of
labeled points {(xi, yi)}ni=1 where the observed labels
yi = ȳi+εi are randomly perturbed versions of the true
labels ȳi ∈ R (εi independent, E [εi] = 0, E

[
ε2i
]

= σ2 <
∞), it is easy to show (Alaoui and Mahoney, 2015) that
the optimal kernel regressor5 fK has expected error

R(fK) =
λ2

n
ȳT (K +λI)−2ȳ+

σ2

n
tr
(
K2(K +λI)−2

)
,

where ȳ = (ȳ1, . . . , ȳn) is the vector of true labels.

This closed-form expression for generalization error
allows us to bound the expected loss R(fK̃) of a kernel
ridge regression model fK̃ learned using an approximate

kernel matrix K̃ in place of the exact kernel matrix K.
In particular, if we define

R̂(fK) :=
λ

n
ȳT (K + λI)−1ȳ +

σ2

n
tr
(
K(K + λI)−1

)
,

5fK(x) =
∑

i αik(x, xi) for α = (K + λI)−1y.

which is an upper bound on R(fK), we can bound the
expected loss of fK̃ as follows:

Proposition 1. (Extended from (Avron et al., 2017))
Suppose K̃ + λI is (∆1,∆2)-spectral approximation of
K + λI, for ∆1 ∈ [0, 1) and ∆2 ≥ 0. Let m denote
the rank of K̃, and let fK and fK̃ be the kernel ridge
regression estimators learned using these matrices, with
regularizing constant λ ≥ 0 and label noise variance
σ2 <∞. Then

R(fK̃) ≤ 1

1−∆1
R̂(fK) +

∆2

1 + ∆2

m

n
σ2. (1)

We include a proof in Appendix B.1. This result shows
that smaller values for ∆1 and ∆2 imply tighter bounds
on the generalization performance of the model trained
with K̃. We can see that as ∆1 approaches 1 the bound
diverges, and as ∆2 approaches ∞ the bound plateaus.
We leverage this generalization bound to understand
the difference in performance between Nyström and
RFFs (Sec. 3.2), and to motivate and analyze our pro-
posed low-precision random Fourier features (Sec. 4).

Remark The generalization bound in Prop. 1 as-
sumes the regressor fK is computed via the closed-
form solution for kernel ridge regression. However, in
Sections 4-5 we focus on stochastic gradient descent
(SGD) training for kernel approximation models. Be-
cause SGD can also find the model which minimizes
the regularized empirical loss (Nemirovski et al., 2009),
the generalization results carry over to our setting.

3.2 Revisiting Nyström vs. RFF Comparison

In this section we show that the values of ∆1 and ∆2

such that the approximate kernel matrix is a (∆1,∆2)-
spectral approximation of the exact kernel matrix cor-
relate better with generalization performance than the
original ∆, and the Frobenius and spectral norms of
the kernel approximation error; we measure correlation
using Spearman’s rank correlation coefficient ρ.

To study the correlation of these metrics with gen-
eralization performance, we train Nyström and RFF
models for many feature dimensions on the Census
regression task, and on a subsampled version of 20k
train and heldout points from the CovType classifica-
tion task. We choose these small datasets to be able
to compute the various measures of kernel approxima-
tion error over the entire heldout set. We measure the
spectral and Frobenius norms of K − K̃, and the ∆
and (∆1,∆2) values between K + λI and K̃ + λI (λ
chosen via cross-validation), where K and K̃ are the
exact and approximate kernel matrices for the heldout
set. For more details about these experiments and how
we compute ∆ and (∆1,∆2), see Appendix D.3.

In Figure 2, we plot the generalization performance on
these tasks as a function of these metrics; while the
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Figure 2: The correlation between generalization performance and different measures of kernel approximation
error for the full-precision RFF and Nyström methods. We see that generalization performance aligns well with
1/(1−∆1) (Spearman rank correlation coefficient ρ = 0.958), while aligning poorly with ∆ and the spectral and
squared Frobenius norms of the kernel approximation error matrix. See Appendix D.3 for results on CovType.

original ∆ and the Frobenius and spectral norms gener-
ally do not align well with generalization performance,
we see that 1

1−∆1
does. Specifically, 1

1−∆1
attains a

Spearman rank correlation coefficient of ρ = 0.958,
while squared Frobenius norm, spectral norm, and the
original ∆ attain values of 0.594, 0.540, and 0.759.6

In Appendix D.3 we show these trends are robust to
different kernel approximation methods and datasets.
For example, we show that while other approximation
methods (e.g., orthogonal RFFs (Yu et al., 2016)), like
Nyström, can attain much lower Frobenius and spectral
error than standard RFFs, this does not translate to
improved ∆1 or heldout performance. These results
mirror the generalization bound in Proposition 1, which
grows linearly with 1

1−∆1
. For simplicity, we ignore

the role of ∆2 here, as ∆1 appears to be sufficient for
explaining the main differences in performance between
these full-precision methods.7 In Sections 4.2 and 5.2,
however, we show that ∆2 has a large influence on
generalization performance for low-precision features.

Now that we have seen that ∆1 has significant theoreti-
cal and empirical impact on generalization performance,
it is natural to ask how to construct kernel approxi-
mation matrices that attain small ∆1. An important
consequence of the definition of ∆1 is that for K̃+λI to
have small ∆1 relative to K+λI, K̃ must be high-rank ;

in particular, a necessary condition is ∆1 ≥ λm+1(K)
λm+1(K)+λ ,

where m is the rank of K̃ and λi(K) is the ith largest
eigenvalue of K.8 This sets a lower bound on the rank
necessary for K̃ to attain small ∆1 which holds regard-
less of the approximation method used, motivating us
to design high-rank kernel approximation methods.

6One reason ∆1 correlates better than ∆ is because
when ∆2 > ∆1, ∆ = max(∆1,∆2) hides the value of ∆1.
This shows why decoupling the two roles of ∆ is important.

7While 1/(1 −∆1) aligns well with performance, it is
not perfect—for a fixed ∆1, Nyström generally performs
slightly better than RFFs. In App. D.3.1 we suggest this is
because Nyström has ∆2 = 0 while RFFs has larger ∆2.

8By definition, (K + λI)(1−∆1) � K̃ + λI. By Weyl’s

inequality this implies ∀i (λi(K) + λ)(1−∆1) ≤ λi(K̃) + λ.

If K̃ is rank m, then λm+1(K̃) = 0, and the result follows.

4 LOW-PRECISION RANDOM
FOURIER FEATURES (LP-RFFS)

Taking inspiration from the above-mentioned connec-
tion between the rank of the kernel approximation
matrix and generalization performance, we propose
low-precision random Fourier features (LP-RFFs) to
create a high-rank approximation matrix under a mem-
ory budget. In particular, we quantize each random
Fourier feature to a low-precision fixed-point represen-
tation, thus allowing us to store more features in the
same amount of space. Theoretically, we show that
when the quantization noise is small relative to the
regularization parameter, using low precision has mini-
mal impact on the number of features required for the
approximate kernel matrix to be a (∆1,∆2)-spectral
approximation of the exact kernel matrix; by Propo-
sition 1, this implies a bound on the generalization
performance of the model trained on the low-precision
features. At the end of this section (Section 4.3), we
discuss a memory-efficient implementation for training
a full-precision model on top of LP-RFFs.

4.1 Method Details

The core idea behind LP-RFFs is to use b bits to store
each RFF, instead of 32 or 64 bits. We implement
this with a simple stochastic rounding scheme. We use
the parametrization zi(x) =

√
2/m cos(wTi x + ai) ∈

[−
√

2/m,
√

2/m] for the RFF vector z(x) ∈ Rm
(Rahimi and Recht, 2007), and divide this interval

into 2b − 1 sub-intervals of equal size r =
2
√

2/m

2b−1
. We

then randomly round each feature zi(x) to either the
top or bottom of the sub-interval [z, z] containing it,
in such a way that the expected value is equal to zi(x);
specifically, we round zi(x) to z with probability z−z

z−z
and to z with probability z−z

z−z . The variance of this

stochastic rounding scheme is at most δ2
b/m, where

δ2
b := 2/(2b − 1)2 (Prop. 7 in App. C.2). For each low-

precision feature z̃i(x) we only need to store the integer
j ∈ [0, 2b − 1] such that z̃i(x) = −

√
2/m + jr, which

takes b bits. Letting Z̃ ∈ Rn×m denote the matrix
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Figure 3: Empirical validation of Theorem 2. In the left and middle plots (shared legend), we see that as the #
of features grows, LP-RFFs approach ∆1 = 0, but plateau at larger ∆2 values (at most δ2

b/λ, marked by dashed
lines) for very low precisions. In the right plot we see that the larger λ is, the lower the precision at which using
low precision does not impact ∆2. For ∆1 and ∆2 vs. # features plots on CovType, see Appendix D.4.

of quantized features, we call K̃ = Z̃Z̃T an m-feature
b-bit LP-RFF approximation of a kernel matrix K.

As a way to further reduce the memory footprint during
training, we leverage existing work on using circulant
random matrices (Yu et al., 2015) for the RFF random
projection matrix to only occupy 32m bits.9 All our
LP-RFF experiments use circulant projections.

4.2 Theoretical Results

In this section we show quantization has minimal im-
pact on the number of features required to guarantee
strong generalization performance in certain settings.
We do this in the following theorem by lower bounding
the probability that K̃ + λI is a (∆1,∆2)-spectral ap-
proximation of K+λI, for the LP-RFF approximation
K̃ using m features and b bits per feature.10

Theorem 2. Let K̃ be an m-feature b-bit LP-
RFF approximation of a kernel matrix K, assume
‖K‖ ≥ λ ≥ δ2

b := 2/(2b − 1)2, and define a :=
8 tr

(
(K + λIn)−1(K + δ2

b In)
)
. Then for any ∆1 ≥ 0,

∆2 ≥ δ2
b/λ,

P
[
(1−∆1)(K + λI) � K̃ + λI � (1 + ∆2)(K + λI)

]
≥

1−a
(
exp

( −m∆2
1

4n
λ (1 + 2

3∆1)

)
+exp

(
−m(∆2 − δ2b

λ )2

4n
λ (1 + 2

3 (∆2 − δ2b
λ ))

))
.

The proof of Theorem 2 is in Appendix C. To provide
more intuition we present the following corollary:

Corollary 2.1. Assuming ∆1 ≤ 3/2, it follows that
(1−∆1)(K+λIn) � K̃+λIn with probability at least 1−ρ
if m ≥ 8n/λ

∆2
1

log
(
a
ρ

)
. Similarly, assuming ∆2 ∈

[ δ2b
λ ,

3
2

]
,

it follows that K̃ + λIn � (1 + ∆2)(K + λIn) with

probability at least 1− ρ if m ≥ 8n/λ
(∆2−δ2b/λ)2

log
(
a
ρ

)
.

9Technically, m additional bits are needed to store a
vector of Rademacher random variables in {−1, 1}m.

10This theorem extends directly to the quantization of
any kernel approximation feature matrix Z ∈ Rn×m with
i.i.d. columns and with entries in [−

√
2/m,

√
2/m].

The above corollary suggests that using low precision
has negligible effect on the number of features necessary
to attain a certain value of ∆1, and also has negligible
effect for ∆2 as long as δ2

b/λ� ∆2.

Validation of Theory We now empirically validate
the following two predictions made by the above theory:
(1) Using low precision has no effect on the asymptotic
behavior of ∆1 as the number of features m approaches
infinity, while having a significant effect on ∆2 when
δ2
b/λ is large. Specifically, as m → ∞, ∆1 converges

to 0 for any precision b, while ∆2 converges to a value
upper bounded by δ2

b/λ.11 (2) If δ2
b/λ� ∆2, using b-

bit precision will have negligible effect on the number of
features required to attain this ∆2. Thus, the larger λ
is, the smaller the impact of using low precision should
be on ∆2.

To validate the first prediction, in Figure 3 (left, middle)
we plot ∆1 and ∆2 as a function of the number of
features m, for FP-RFFs and LP-RFFs; we use the
same λ as in the Section 2 Census experiments. We
show that for large m, all methods approach ∆1 = 0;
in contrast, for precisions b ≤ 4 the LP-RFFs converge
to a ∆2 value much larger than 0, and slightly less than
δ2
b/λ (marked by dashed lines).

To validate the second prediction, in Figure 3 (right)
we plot ∆2 vs. precision for various values of λ, using
m = 2000 features for all precisions; we do this on
a random subsample of 8000 Census training points.
We see that for large enough precision b, the ∆2 is
very similar to the value from using 32-bit precision.
Furthermore, the larger the value of λ, the smaller the
precision b can be without significantly affecting ∆2.

11By Lemma 3 in Appendix C, we know that E
[
Z̃Z̃T

]
=

K + D for a diagonal matrix D satisfying 0 � D � δ2b In,
where D is independent of m. As m → ∞, ∆2 converges
to ‖(K + λI)−1/2D(K + λI)−1/2‖ ≤ δ2b/λ.
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Figure 4: Generalization performance of FP-Nyström, FP-RFFs, circulant FP-RFFs, and LP-RFFs with respect
to memory (sum of components in Table 1) on TIMIT, YearPred and CovType. LP-RFFs attain the best
performance across a wide range of memory budgets. The same trend holds for Census in Appendix D.5.

Table 2: The compression ratios achieved by LP-RFFs
relative to the best performing full-precision baselines.

FP-RFFs Cir. FP-RFFs Nyström

Census 2.9x 15.6x 63.2x
YearPred 10.3x 7.6x 461.6x
Covtype 4.7x 3.9x 237.2x
TIMIT 5.1x 2.4x 50.9x

4.3 Implementation Considerations

In this paper, we focus on training full-precision models
using mini-batch training over low-precision features.
Here we describe how this mixed-precision optimization
can be implemented in a memory-efficient manner.

Naively, to multiply the low-precision features with the
full-precision model, one could first cast the features to
full-precision, requiring significant intermediate mem-
ory. We can avoid this by casting in the processor
registers. Specifically, to perform multiplication with
the full-precision model, the features can be streamed
to the processor registers in low precision, and then cast
to full precision in the registers. In this way, only the
features in the registers exist in full precision. A similar
technique can be applied to avoid intermediate memory
in the low-precision feature computation—after a full-
precision feature is computed in the registers, it can be
directly quantized in-place before it is written back to
main memory. We leave a more thorough investigation
of these systems issues for future work.

5 EXPERIMENTS

In this section, we empirically demonstrate the per-
formance of LP-RFFs under a memory budget, and
show that (∆1,∆2) are predictive of generalization
performance. We show in Section 5.1 that LP-RFFs
can attain the same performance as FP-RFFs and
Nyström, while using 3x-10x and 50x-460x less memory.
In Section 5.2, we show the strong alignment between
(∆1,∆2) and generalization performance, once again
validating the importance of this measure.

5.1 Empirical Evaluation of LP-RFFs

To empirically demonstrate the generalization perfor-
mance of LP-RFFs, we compare their performance
to FP-RFFs, circulant FP-RFFs, and Nyström fea-
tures for various memory budgets. We use the same
datasets and protocol as the large-scale Nyström vs.
RFF comparisons in Section 2.2; the only significant ad-
ditions here are that we also evaluate the performance
of circulant FP-RFFs, and LP-RFFs for precisions
b ∈ {1, 2, 4, 8, 16}. Across our experiments, we com-
pute the total memory utilization as the sum of all
the components in Table 1. We note that all our low-
precision experiments are done in simulation, which
means we store the quantized values as full-precision
floating-point numbers. We report average results from
three random seeds, with error bars showing standard
deviations. For more details about our experiments, see
Appendix D.5. We use the above protocol to validate
the following claims on the performance of LP-RFFs.12

LP-RFFs can outperform full-precision fea-
tures under memory budgets. In Figure 4, we
plot the generalization performance for these experi-
ments as a function of the total training memory for
TIMIT, YearPred, and CovType. We observe that LP-
RFFs attain better generalization performance than
the full-precision baselines under various memory bud-
gets. To see results for all precisions, as well as results
on additional benchmark datasets (Census, Adult, Cod-
RNA, CPU, Forest) from the UCI repository (Dheeru
and Karra Taniskidou, 2017), see Appendix D.5.

LP-RFFs can match the performance of full-
precision features with significantly less mem-
ory. In Table 2 we present the compression ratios we
achieve with LP-RFFs relative to the best performing
baseline methods. For each baseline (FP-RFFs, circu-
lant FP-RFFs, Nyström), we find the smallest LP-RFF
model, as well as the smallest baseline model, which
attain within 10−4 relative performance of the best-
performing baseline model; we then compute the ratio

12Our code: github.com/HazyResearch/lp_rffs.
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Figure 5: Generalization perf. vs. ∆2 (left plots, shared legend), and vs. 1/(1−∆1) and max (1/(1−∆1),∆2)
(right plots, shared legend). Left: heldout performance deteriorates as ∆2 gets larger due to lower precision.
Right: max (1/(1−∆1),∆2) aligns well with performance across LP-RFF precisions (Spearman rank correlation
coefficient ρ = 0.959), while 1/(1−∆1) aligns poorly (ρ = 0.403). See Appendix D.6 for CovType results.

of the memory used by these two models (baseline/LP-
RFF) for three random seeds, and report the aver-
age. We can see that LP-RFFs demonstrate significant
memory saving over FP-RFFs, circulant FP-RFFs, and
Nyström, attaining compression ratios of 2.9x-10.3x,
2.4x-15.6x, and 50.9x-461.6x, respectively.

5.2 Generalization Performance vs. (∆1,∆2)

In this section we show that ∆1 and ∆2 are together
quite predictive of generalization performance across all
the kernel approximation methods we have discussed.
We first show that performance deteriorates for larger
∆2 values as we vary the precision of the LP-RFFs,
when keeping the number of features constant (thereby
limiting the influence of ∆1 on performance). We then
combine this insight with our previous observation
(Section 3.2) that performance scales with 1

1−∆1
in the

full-precision setting by showing that across precisions
the performance aligns well with max

(
1

1−∆1
,∆2

)
. For

these experiments, we use the same protocol as for the
(∆1,∆2) experiments in Section 3.2, but additionally
consider LP-RFFs for precisions b ∈ {1, 2, 4, 8, 16}.
We show in Figure 5 (left plots) that for a fixed number
of random Fourier features, performance deteriorates
as ∆2 grows. As we have shown in Figure 3 (left), ∆1

is primarily governed by the rank of the approxima-
tion matrix, and thus holding the number of features
constant serves as a proxy for holding ∆1 roughly con-
stant. This allows us to isolate the impact of ∆2 on
performance as we vary the precision.

To integrate the influence of ∆1 and ∆2 on general-
ization performance into a single scalar, we consider
max

(
1

1−∆1
,∆2

)
. In Figure 5 (right plots) we show that

when considering both low-precision and full-precision
features, max

(
1

1−∆1
,∆2

)
aligns well with performance

(ρ = 0.959, incorporating all precisions), while 1
1−∆1

aligns poorly (ρ = 0.403).

In Appendix B we argue that performance scales
roughly as ∆2 instead of as ∆2/(1 + ∆2) (as suggested
by Prop. 1) due to looseness in the Prop. 1 bound.

6 RELATED WORK

Low-Memory Kernel Approximation For RFFs,
there has been work on using structured random pro-
jections (Le et al., 2013; Yu et al., 2015, 2016), and
feature selection (Yen et al., 2014; May et al., 2016) to
reduce memory utilization. Our work is orthogonal, as
LP-RFFs can be used with both. For Nyström, there
has been extensive work on improving the choice of
landmark points, and reducing the memory footprint
in other ways (Kumar et al., 2009; Hsieh et al., 2014;
Si et al., 2014; Musco and Musco, 2017). In our work,
we focus on the effect of quantization on generalization
performance per bit, and note that RFFs are much
more amenable to quantization. For our initial experi-
ments quantizing Nyström features, see Appendix D.7.

Low Precision for Machine Learning There has
been much recent interest in using low precision for
accelerating training and inference of machine learning
models, as well as for model compression (Gupta et al.,
2015; De Sa et al., 2015; Hubara et al., 2016; De Sa
et al., 2018, 2017; Han et al., 2016). There have been
many advances in hardware support for low precision
as well (Jouppi et al., 2017; Caulfield et al., 2017).

This work is inspired by the Nyström vs. RFF exper-
iments in the PhD dissertation of May (2018), and
provides a principled understanding of the prior results.
For more related work discussion, see Appendix E.

7 CONCLUSION

We defined a new measure of kernel approximation error
and demonstrated its close connection to the empirical
and theoretical generalization performance of kernel
approximation methods. Inspired by this measure,
we proposed LP-RFFs and showed they can attain
improved generalization performance under a memory
budget in theory and in experiments. We believe these
contributions provide fundamental insights into the
generalization performance of kernel approximation
methods, and hope to use these insights to scale kernel
methods to larger and more challenging tasks.
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Christopher Ré. Taming the wild: A unified analysis
of Hogwild-style algorithms. In NIPS, pages 2674–
2682, 2015.

Christopher De Sa, Matthew Feldman, Christopher Ré,
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A NOTATION AND BACKGROUND

In this appendix, we first discuss the notation we use throughout the paper, and then provide an overview of
random Fourier features (RFFs) (Rahimi and Recht, 2007) and the Nyström method (Williams and Seeger, 2000).
After this, we briefly extend our discussion in Section 3 on fixed design kernel ridge regression.

A.1 Notation

We use {(xi, yi)}ni=1 to denote a training set, for xi ∈ Rd, and yi ∈ Y, where Y = R for regression, and
Y = {1, . . . , c} for classification. We let K ∈ Rn×n denote the kernel matrix corresponding to a kernel function
k : Rd × Rd → R, where Kij = k(xi, xj), and let K̃ denote an approximation to K. We let z : Rd → Rm denote

a feature map for approximating a kernel function, such that K̃ij = z(xi)
T z(xj). We use s to denote the size

of the mini-batches during training, and b to denote the precision used for the random features. We let ‖K‖2
and ‖K‖F denote the spectral and Frobenius norms of a matrix K, respectively; if the subscript is not specified,
‖K‖ denotes the spectral norm. For vectors x, ‖x‖ will denote the `2 norm of x, unless specified otherwise. In
will denote the n× n identity matrix. For symmetric matrices A and B, we will say A � B if B −A is positive
semidefinite. We will use λi(A) to denote the ith largest eigenvalue of A, and λmax(A), λmin(A) to denote the
largest and smallest eigenvalues of A, respectively.

A.2 Kernel Approximation Background

The core idea behind kernel approximation is to construct a feature map z : X → R such that z(x)T z(y) ≈ k(x, y).
Given such a map, one can then learn a linear model on top of {(z(xi), yi)}ni=1, and this model will approximate
the model trained using the exact kernel function. We now review RFFs and the Nyström method, two of the
most widely used and studied methods for kernel approximation.

Random Fourier features (RFFs) For shift-invariant kernels (k(x, x′) = k̂(x − x′)), the random Fourier
feature method (Rahimi and Recht, 2007) constructs a random feature representation z(x) ∈ Rm such that
E
[
z(x)T z(x′)

]
= k(x, x′). This construction is based on Bochner’s Theorem, which states that any positive

definite kernel is equal to the Fourier transform of a nonnegative measure. This allows for performing Monte
Carlo approximations of this Fourier transform in order to approximate the function. The resulting features
have the following functional form: zi(x) =

√
2/m cos(wTi x+ ai), where wi is drawn from the inverse Fourier

transform of the kernel function k̂, and ai is drawn uniformly from [0, 2π] (see Appendix A in May et al. (2017)
for a derivation).

One way of reducing the memory required for storing W = [w1, . . . , wm], is to replace W by a structured matrix;
in this work, we let W be a concatenation of many square circulant random matrices (Yu et al., 2015).

Nyström method The Nyström method constructs a finite-dimensional feature representation z(x) ∈ Rm
such that 〈z(x), z(x′)〉 ≈ k(x, x′). It does this by picking a set of landmark points {x̂1, . . . , x̂m} ∈ X , and
taking the SVD K̂ = UΛUT of the m by m kernel matrix K̂ corresponding to these landmark points (K̂i,j =
k(x̂i, x̂j)). The Nyström representation for a point x ∈ X is defined as z(x) = Λ−1/2UT kx, where kx =
[k(x, x̂1), . . . , k(x, x̂m)]T . Letting Km,n = [kx1

, . . . , kxn
] ∈ Rm×n, the Nyström method can be thought of

as an efficient low-rank approximation K ≈ KT
m,nUΛ−1/2Λ−1/2UTKm,n of the full n by n kernel matrix K

corresponding to the full dataset {xi}ni=1. One can also consider the lower-dimensional Nyström representation

zr(x) = Λ
−1/2
r UTr kx ∈ Rr, where only the top r eigenvalues and eigenvectors of K̂ are used, instead of all m. In

this paper, we will always use m = r, and thus will not specify the subscript r.

A.3 Fixed Design Kernel Ridge Regression

We consider the problem of fixed design kernel ridge regression, which has a closed-form equation for the
generalization error, making it a particularly tractable problem to analyze. In fixed design regression, one is
given a set of labeled points {(xi, yi)}ni=1, where xi ∈ Rd, yi = ȳi + εi ∈ R, and the εi are zero-mean uncorrelated
random variables with shared variance σ2 > 0; here, the ȳi represent the “true labels.” Given such a sample,
the goal is to learn a regressor f(x) such that R(f) = Eε

[
1
n

∑n
i=1(f(xi)− ȳi)2

]
is small. Note that for a fixed

learning method, the learned regressor f can be seen as a random function based on the random label noise εi.
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One approach to solving this problem is kernel ridge regression. In kernel ridge regression, one chooses a kernel
function k : Rd × Rd → R, and a regularizing constant λ, and learns a function of the form f(x) =

∑
i αik(x, xi).

Letting K ∈ Rn×n denote the kernel matrix such that Kij = k(xi, xj), and y = (y1, . . . , yn), the closed-form
solution for this problem (the one minimizing the regularized empirical loss), is α = (K + λI)−1y. It is then easy
to show (Alaoui and Mahoney, 2015) that the expected error of this regressor fK under the fixed design setting is

R(fK) =
1

n
λ2ȳT (K + λI)−2ȳ +

1

n
σ2Tr

(
K2(K + λI)−2

)
,

where ȳ = (ȳ1, . . . , ȳn) is the vector of “true labels.”

B GENERALIZATION BOUNDS FOR FIXED DESIGN REGRESSION

B.1 Generalization Bound in Terms of (∆1,∆2)

Proposition 1. (Extended from (Avron et al., 2017)) Suppose K̃ + λI is (∆1,∆2)-spectral approximation of
K+λI, for ∆1 ∈ [0, 1) and ∆2 ≥ 0. Let m denote the rank of K̃, and let fK and fK̃ be the kernel ridge regression
estimators learned using these matrices, with regularizing constant λ ≥ 0 and label noise variance σ2 <∞. Then

R(fK̃) ≤ 1

1−∆1
R̂(fK) +

∆2

1 + ∆2

m

n
σ2, (2)

where R (expected risk) and R̂ (upper bound on R) are defined in Section 3.1.

Proof. This proof closely follows the proof of Lemma 2 in Avron et al. (2017), with the primary difference being
that we replace (1−∆) and (1 + ∆) with (1−∆1) and (1 + ∆2), respectively.

We begin by replacing K with K̃ in the definition for R̂(fK):

R(fK̃) ≤ 1

n
λȳT (K̃ + λI)−1ȳ +

1

n
σ2 tr

(
K̃(K̃ + λI)−1

)
= R̂(fK̃).

We now continue this chain of inequalities, using the fact that A � B implies B−1 � A−1. Thus, (1−∆1)(K+λI) �
K̃ + λI ⇒ (K̃ + λI)−1 � (1 −∆1)−1(K + λI)−1 ⇒ ȳT (K̃ + λI)−1ȳ ≤ (1 −∆1)−1ȳT (K + λI)−1ȳ. This upper
bounds the first term in the above sum.

We now consider the second term. Let m = rank(K̃), and let sλ(K̃) = tr
(
K̃(K̃ + λI)−1

)
.

sλ(K̃) = tr
(
K̃(K̃ + λI)−1

)
=

m∑
i=1

λi(K̃)

λi(K̃) + λ

= m−
m∑
i=1

λ

λi(K̃) + λ

≤ m−
m∑
i=1

λ

(1 + ∆2)(λi(K) + λ)

= m− (1 + (1 + ∆2)−1 − 1)

m∑
i=1

λ

λi(K) + λ

= m−
m∑
i=1

λ

λi(K) + λ
+

∆2

1 + ∆2

m∑
i=1

λ

λi(K) + λ

≤ n−
n∑
i=1

λ

λi(K) + λ
+

∆2

1 + ∆2
m

= sλ(K) +
∆2

1 + ∆2
m
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≤ 1

1−∆1
sλ(K) +

∆2

1 + ∆2
m

Combining the above results, we get that:

R(fK̃) ≤ 1

n
λȳT (K̃ + λI)−1ȳ +

1

n
σ2sλ(K̃)

≤ 1

n
λ

(
1

1−∆1
ȳT (K + λI)−1ȳ

)
+

1

n
σ2

(
1

1−∆1
sλ(K) +

∆2

1 + ∆2
m

)
=

1

1−∆1

(
1

n
λȳT (K + λI)−1ȳ +

1

n
σ2sλ(K)

)
+

∆2

1 + ∆2

m

n
σ2

=
1

1−∆1
R̂(fK) +

∆2

1 + ∆2

m

n
σ2

Remark Above, ∆1 ∈ [0, 1] and ∆2 ≥ 0. Note that as ∆1 approaches 1, the above upper bound diverges to
infinity. Whereas as ∆2 approaches ∞, the second term in the upper bound approaches m

n σ
2. This suggests

that choosing K̃ and λ such that ∆1 does not get too close to 1 is very important. A necessary condition for
(1−∆1)(K + λI) � K̃ + λI is for K̃ to be high rank, as discussed in Section 3.

B.2 Heuristic Effort to Better Understand Influence of (∆1,∆2) on Generalization Error

Here we present a heuristic argument to explain how ∆1 and ∆2 in the spectral approximation affects the
generalization error. We are particularly interested in demonstrating that ∆2 can have an important influence on

the bias squared term (λ
2

n ȳ
T (K̃ + λI)−2ȳ) of the generalization error, even though the upper bound λ2

n ȳ
T (K̃ +

λI)−2ȳ ≤ 1
1−∆1

R̂(fK) on the bias squared term (from Proposition 1) is only in terms of ∆1.

Suppose that the approximate kernel matrix K̃ is a (∆1,∆2)-spectral approximation of the true kernel matrix K,
that is:

(1−∆1)(K + λIn) � K̃ + λIn � (1 + ∆2)(K + λIn).

We focus on the bias squared term of K̃ (λ
2

n ȳ
T (K̃ + λIn)−2ȳ), and compare it to the bias squared term of K.

Following Theorem 15 of Musco and Musco (2017), we first bound the bias (not squared):

‖(K̃ + λIn)−1ȳ‖ ≤ ‖(K + λIn)−1ȳ‖+ ‖((K̃ + λIn)−1 − (K + λIn)−1)ȳ‖
= ‖(K + λIn)−1ȳ‖+ ‖(K̃ + λIn)−1((K + λIn)− (K̃ + λIn))(K + λIn)−1ȳ‖
= ‖(K + λIn)−1ȳ‖+ ‖(K̃ + λIn)−1(K − K̃)(K + λIn)−1ȳ‖
≤ ‖(K + λIn)−1ȳ‖+ ‖(K̃ + λIn)−1(K − K̃)‖‖(K + λIn)−1ȳ‖
= ‖(K + λIn)−1ȳ‖

(
1 + ‖(K̃ + λIn)−1(K − K̃)‖

)
. (3)

Now it reduces to bounding ‖(K̃ + λIn)−1(K − K̃)‖. As K̃ + λIn � (1 + ∆2)(K + λIn), we have

K̃ −K � ∆2(K + λIn) � ∆2

1−∆1
(K̃ + λIn) � 1 + ∆2

1−∆1
(K̃ + λIn).

Similarly, since K + λIn � 1
1−∆1

(K̃ + λIn),

K − K̃ � ∆1

1−∆1
(K̃ + λIn) � 1 + ∆2

1−∆1
(K̃ + λIn).

Hence

−1 + ∆2

1−∆1
(K̃ + λIn) � K − K̃ � 1 + ∆2

1−∆1
(K̃ + λIn).
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Because t 7→ t2 is not operator monotone, it is not easy to obtain a bound on (K − K̃)2 from the bound on
K − K̃. However, under a restricted setting where K and K̃ have the same eigenvectors, we can square the
corresponding eigenvalues to obtain

(K − K̃)2 � (1 + ∆2)2

(1−∆1)2
(K̃ + λIn)2.

Thus

(K̃ + λIn)−1(K − K̃)2(K̃ + λIn)−1 � (1 + ∆2)2

(1−∆1)2
.

And hence ‖(K̃ + λIn)−1(K − K̃)‖ ≤ 1+∆2

1−∆1
. Plugging this into the bound (Eq. 3) yields

‖(K̃ + λIn)−1ȳ‖ ≤
(

1 +
1 + ∆2

1−∆1

)
‖(K + λIn)−1ȳ‖.

Thus

λ2

n
ȳT (K̃ + λIn)−2ȳ =

λ2

n
‖(K̃ + λIn)−1ȳ‖2

≤
(

1 +
1 + ∆2

1−∆1

)2
λ2

n
‖(K + λIn)−1ȳ‖2

=

(
1 +

1 + ∆2

1−∆1

)2
λ2

n
ȳT (K + λIn)−2ȳ.

In other words, in this restricted setting the bias squared of K̃ is at most a factor (1 + 1+∆2

1−∆1
)2 larger than the bias

squared of K. Though this heuristic analysis only holds when K and K̃ have the same eigenvectors, it reveals
the dependency of the generalization performance on ∆1 and ∆2; in particular, it reveals that ∆2 could have an
important influence on the bias squared term of the generalization error.

B.3 The Empirical Influence of ∆2 on the Bias Squared Term

We now empirically validate that ∆2 can have a large impact on the bias squared term, as suggested by the
theoretical discussion in the previous section. The influence of ∆2 on the bias squared term helps explain our
empirical observations on the influence of ∆2 on generalization performance from Section 5.2. Though the
generalization bound in Proposition 1 suggests that performance should scale roughly linearly in ∆2/(1 + ∆2),
we empirically found that generalization performance does not asymptote as ∆2 grows (as ∆2/(1 + ∆2) would
suggest it would). In this section, we empirically validate our hypothesis that this is due to looseness in the
generalization bound. Specifically, the expected mean squared error for fixed design kernel ridge regression is

R(fK̃) =
λ2

n
ȳT (K̃ + λI)−2ȳ +

σ2

n
tr
(
K̃2(K̃ + λI)−2

)
,

where K̃ is an approximate kernel matrix. We show in experiments that the bias squared term (λ
2

n ȳ
T (K̃+λI)−2ȳ)

can be strongly influenced by ∆2, even though the upper bound on it (λ
2

n ȳ
T (K̃ + λI)−2ȳ ≤ 1

1−∆1
R̂(fK)) in

Proposition 1 is only in terms of ∆1.

In our experiments, we compute the value of the bias squared term and ∆2 on the Census dataset. To gain

statistically meaningful insights, we collect and average the value of λ
2

n ȳ
T (K̃+λI)−2ȳ and ∆2 using 3 independent

runs with different random seeds. In Figure 6, we plot the value of λ2

n ȳ
T (K̃ + λI)−2ȳ as a function of ∆2 for

3 different numbers of features; by controlling the number of features, we can demonstrate the influence of ∆2

while ∆1 is held roughly fixed. In each curve in Figure 6, the data points are collected from FP-RFFs, circulant
FP-RFFs, as well as LP-RFFs using {1, 2, 4, 8} bit precision. We can see that for each number of features, the

value of λ2

n ȳ
T (K̃ + λI)−2ȳ grows with ∆2. These results demonstrate that the upper bound on the bias term in

Proposition 1 is quite loose, and is not capturing the influence of ∆2 properly.
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Figure 6: In the fixed design setting, the bias squared term of the generalization performance grows with ∆2.

C THEORETICAL GUARANTEES FOR LP-RFFS

In this section, we first lower bound the probability that using LP-RFFs results in a kernel approximation matrix
that is a (∆1,∆2)-spectral approximation of the exact kernel matrix (Section C.1). We then present bounds on
the Frobenius kernel approximation error for LP-RFFs (Section C.2).

C.1 (∆1,∆2)-Spectral Approximation Bounds for LP-RFFs

As usual, let K ∈ Rn×n denote the kernel matrix, and Z ∈ Rn×m be the random Fourier feature matrix, where n
is the number of data points and m is the number of features. We can write Z = 1√

m

[
z1, . . . , zm

]
where zi are

the (scaled) columns of Z. Each entry of Z has the form
√

2/m cos(wTx+ a) for some w, x ∈ Rd and a ∈ Rm,
where d is the dimension of the original dataset. Then E[ziz

T
i ] = K, so E[ZZT ] = K.

Now suppose we quantize Z to b bits using the quantization method described in Section 4.1, for some fixed
b ≥ 1. Then the quantized feature matrix is Z + C for some random C ∈ Rn×m whose entries are independent
conditioned on Z (but not identically distributed) with E[C | Z] = 0. We can write C = 1√

m

[
c1, . . . , cm

]
where

ci are the (scaled) columns of C. Moreover, the ci are independent conditioned on Z. Defining δ2
b := 2

(2b−1)2
, the

entries Cij have variance E[C2
ij | Zij ] ≤ δ2

b/m by Proposition 7 in Appendix C.2. In terms of the vectors ci, we

can also see that E[c2i,j | Zij ] ≤ δ2
b , where ci,j denotes the jth element of ci.

We first analyze the expectation of (Z + C)(Z + C)T (over both the randomness of Z and of C).

Lemma 3. E[(Z+C)(Z+C)T ] = K+D, where D := E[c1c
T
1 ] = sbIn is a multiple of the identity, for 0 ≤ sb ≤ δ2

b .
D does not depend on the number of random features m.

Proof.

E[(Z + C)(Z + C)T ] = E
[

1

m

m∑
i=1

(zi + ci)(zi + ci)
T

]
= E[(z1 + c1)(z1 + c1)T ]

Since Ec1 [c1 | z1] = 0, it follows that

E[(z1 + c1)(z1 + c1)T ] = Ez1
[
Ec1 [(z1 + c1)(z1 + c1)T | z1]

]
= Ez1 [z1z

T
1 ] + Ez1

[
Ec1 [c1c

T
1 | z1]

]
= K + E[c1c

T
1 ]

It is clear that D := E[c1c
T
1 ] is a diagonal matrix, because each element of c1 is a zero-mean independent random

variable. It is also easy to see that the jth entry on the diagonal of D is equal to E[c21,j | z1,j ] ≤ δ2
b . Lastly, we

argue that each element z1,j =
√

2 cos(wT1 xj + a1) has the same distribution, because it is distributed the same
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as
√

2 cos(a1) for a1 uniform in [0, 2π]. Thus, E[c21,j | z1,j ] is independent of j. Letting sb := E[c21,1 | z1,1] ≤ δ2
b

completes the proof.

With D := E[c1c
T
1 ], we can use matrix concentration to show that the quantized kernel matrix K̃ = (Z+C)(Z+C)T

is close to its expectation K +D. We first strengthen the matrix Bernstein inequality with intrinsic dimension
(Theorem 7.7.1 in Tropp (2015)) by removing the requirement on the deviation.13

Theorem 4 (Matrix Bernstein: Hermitian Case with Intrinsic Dimension). Consider a finite sequence {Xk} of
random Hermitian matrices of the same size, and assume that

E[Xk] = 0 and λmax(Xk) ≤ L for each index k.

Introduce the random matrix
Y =

∑
k
Xk.

Let V be a semidefinite upper bound for the matrix-valued variance VAR [Y ]:

V � VAR [Y ] = E[Y 2] =
∑

k
E[X2

k ].

Define the intrinsic dimension bound and variance bound

intdim(V ) =
tr(V )

‖V ‖ and v = ‖V ‖.

Then, for t ≥ 0,

P (λmax(Y ) ≥ t) ≤ 4 intdim(V ) · exp

( −t2/2
v + Lt/3

)
. (4)

Proof. The case of t ≥ √v +L/3 is exactly Theorem 7.7.1 in Tropp (2015). We just need to show that the bound
is vacuous when 0 ≤ t < √v + L/3.

Suppose that 0 ≤ t <
√
v + L/3. We show that then t2 ≤ 2(v + Lt/3). Indeed, t2 − 2Lt/3 − 2v has roots

L
3 ±

√
L2

9 + 2v. The condition t2 ≤ 2(v + Lt/3) is then equivalent to

L

3
−
√
L2

9
+ 2v ≤ t ≤ L

3
+

√
L2

9
+ 2v.

The lower bound is negative since v ≥ 0, and t <
√
v + L/3 implies t < L/3 +

√
L2/9 + 2v, satisfying the upper

bound. Thus 0 ≤ t < √v + L/3 implies that t2 ≤ 2(v + Lt/3). The bound in equation (4) becomes

4 intdim(V ) exp

(
− t2/2

v + Lt/3

)
≥ 4 intdim(V ) exp(−1) ≥ 4/e > 1,

since intdim(V ) ≥ 1. Thus (4) holds vacuously for 0 ≤ t < √v + L/3.

We now present Lemma 5, in which we lower bound the probability that K̃ is “close” to its expectation K +D,
in the specific sense we describe below.

Lemma 5. Let K be an exact kernel matrix, and K̃ = (Z + C)(Z + C)T be an m-features b-bit LP-RFF
approximation of K with expectation K + D. For any deterministic matrix B, let L := 2n‖B‖2 and M :=
B(K + δ2

b In)BT , then for any t1, t2 ≥ 0,

P
[
− t1In � B

(
(Z + C)(Z + C)T − (K +D)

)
B � t2In

]
≥ 1− 4 tr(M)

‖M‖

[
exp

( −mt21
2L(‖M‖+ 2t1/3)

)
+ exp

( −mt22
2L(‖M‖+ 2t2/3)

)]
.

13Theorem 7.7.1 in Tropp (2015) requires that t ≥ √v + L/3, where t, v, and L are as defined in Theorem 4.
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Proof. Let Si = 1
m

(
B(zi + ci)(zi + ci)

TBT −B(K +D)BT
)

and S =
∑m
i=1 Si =

B
(
(Z + C)(Z + C)T − (K +D)

)
B. We see that E[Si] = 0. We will bound λmax(S) and λmin(S) by

applying the matrix Bernstein inequality for symmetric matrices with intrinsic dimension (Theorem 4). Thus we
need to bound ‖Si‖ and ‖∑m

i=1 E[S2
i ]‖.

Let ui = B(zi + ci) ∈ Rn, then Si = 1
m (uiu

T
i − E[uiu

T
i ]). We first bound ‖uiuTi ‖. Since this is a rank 1 matrix,

‖uiuTi ‖ = ‖ui‖2 = ‖B(zi + ci)‖2 ≤ ‖B‖2‖zi + ci‖2 ≤ 2n‖B‖2,
where we have used the fact that zi + ci is a vector of length n whose entries are in [−

√
2,
√

2]. This gives a
bound on ‖Si‖:

‖Si‖ =
1

m
‖uiuTi − E[uiu

T
i ]‖ ≤ 1

m
‖uiuTi ‖+

1

m
E‖uiuTi ‖ ≤

4n‖B‖2
m

= 2L/m.

Thus λmax(Si) ≤ 2L/m and λmax(−Si) = −λmin(Si) ≤ 2L/m.

Now it’s time to bound E[S2
i ]. We will use

E[S2
i ] =

1

m2

(
E
[
(uiu

T
i )2
]
− E

[
uiu

T
i

]2) � 1

m2
E[(uiu

T
i )2] =

1

m2
E[uiu

T
i uiu

T
i ]

=
1

m2
E[‖ui‖2uiuTi ] � 2n‖B‖2

m2
E[uiu

T
i ].

Thus
m∑
i=1

E[S2
i ] � 2n‖B‖2

m
E[v1v

T
1 ] =

2n‖B‖2
m

B(K +D)BT � 2n‖B‖2
m

B(K + δ2
b In)BT = LM/m.

Applying Theorem 4 with S, for any t2 ≥ 0, we have

P
[
λmax(B

(
(Z + C)(Z + C)T − (K +D)

)
B) � t2In

]
≤ 4 tr(M)

‖M‖ exp

( −mt22
2L(‖M‖+ 2t2/3)

)
.

Similarly, applying Theorem 4 with −S and using the fact that λmax(−S) = −λmin(S), for any t1 ≥ 0, we have

P
[
λmin(B

(
(Z + C)(Z + C)T − (K +D)

)
B) � −t1In

]
≤ 4 tr(M)

‖M‖ exp

( −mt21
2L(‖M‖+ 2t1/3)

)
.

Combining the two bounds with the union bound yields the desired inequality.

We are now ready to show that low-precision features yield close spectral approximation to the exact kernel
matrix.

Theorem 2. Let K̃ be an m-feature b-bit LP-RFF approximation of a kernel matrix K, and assume ‖K‖ ≥ λ ≥
δ2
b := 2/(2b − 1)2. Then for any ∆1 ≥ 0, ∆2 ≥ δ2

b/λ,

P
[
(1−∆1)(K + λI) � K̃ + λI � (1 + ∆2)(K + λI)

]
≥

1− 8 tr
(
(K + λIn)−1(K + δ2

b In)
)(

exp

( −m∆2
1

4n
λ (1 + 2

3∆1)

)
+ exp

(
−m(∆2 − δ2b

λ )2

4n
λ (1 + 2

3 (∆2 − δ2b
λ ))

))
.

Proof. We conjugate the desired inequality with B := (K + λIn)−1/2 (i.e., multiply by B on the left and right),
noting that semidefinite ordering is preserved by conjugation:

(1−∆1)(K + λIn) � K̃ + λIn � (1 + ∆2)(K + λIn)

⇐⇒ (1−∆1)In � B(K̃ + λIn)B � (1 + ∆2)In

⇐⇒ −∆1In � B(K̃ + λIn)B − In � ∆2In

⇐⇒ −∆1In � B(K̃ + λIn −K − λIn)B � ∆2In

⇐⇒ −∆1In � B(K̃ −K)B � ∆2In.
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We show that −∆1In � B(K̃ − K − D)B � (∆2 − δ2
b/λ)In implies −∆1In � B(K̃ − K)B � ∆2In. Indeed,

‖BDB‖ ≤ δ2
b/λ because ‖B‖2 = ‖B2‖ = ‖(K + λIn)−1‖ ≤ 1/λ and ‖D‖ ≤ δ2

b , so BDB � (δ2
b/λ)In. Moreover,

since D � 0 by Lemma 3 and B is symmetric, BDB � 0. Thus the condition −∆1In � B(K̃ −K −D)B �
(∆2 − δ2

b/λ)In implies:

B(K̃ −K)B = B(K̃ −K −D)B +BDB � (∆2 − δ2
b/λ)In + δ2

b/λIn = ∆2In,

B(K̃ −K)B = B(K̃ −K −D)B +BDB � −∆1In + 0 = −∆1In.

Hence P
[
−∆1In � B(K̃ −K)B � ∆2In

]
≥ P

[
−∆1In � B(K̃ −K −D)B � (∆2 − δ2

b/λ)In

]
. It remains to

show that −∆1In � B(K̃ −K −D)B � (∆2 − δ2
b/λ)In with the desired probability, by applying Lemma 5. We

apply Lemma 5 for B := (K + λIn)−1/2, L := 2n‖B‖2 ≤ 2n/λ, and M := B(K + δ2
b In)B.

To simplify the bound one gets from applying Lemma 5 with the above B, L, and M , we will use the following

expression for tr(M), and the following upper and lower bounds on ‖M‖. tr(M) = tr
(
B2(K + δ2

b In)
)

=

tr
(

(K + λIn)−1(K + δ2
b In)

)
. Letting K = USUT be the SVD of K, we get that M = U(S + λIn)−1/2UTU(S +

δ2
b In)UTU(S +λIn)−1/2UT = U(S +λIn)−1(S + δ2

b In)UT . Thus, letting λ1 be the largest eigenvalue of K (recall
λ1 ≥ λ by assumption), ‖M‖ = (λ1 + δ2

b )/(λ1 + λ) ≥ (λ1 + δ2
b )/(2λ1) ≥ 1/2. We also assume that δ2

b ≤ λ, so
‖M‖ ≤ 1. Lemma 5 allows us to conclude the following:

P
[
(1−∆1)(K + λIn) � K̃ + λIn � (1 + ∆2)(K + λIn)

]
= P

[
−∆1In � B(K̃ −K)B � ∆2In

]
≥ P

[
−∆1In � B(K̃ − (K +D))B � (∆2 − δ2

b/λ)In

]
≥ 1− 4 tr(M)

‖M‖

[
exp

( −m∆2
1

2L(‖M‖+ 2∆1/3)

)
+ exp

( −m(∆2 − δ2
b/λ)2

2L(‖M‖+ 2(∆2 − δ2
b/λ)/3)

)]
≥ 1− 8 tr

(
(K + λIn)−1(K + δ2

b In)
) [

exp

( −m∆2
1

4n/λ(1 + 2∆1/3)

)
+ exp

( −m(∆2 − δ2
b/λ)2

4n/λ(1 + 2(∆2 − δ2
b/λ)/3)

)]
.

There is a bias-variance trade-off: as we decrease the number of bits b, under a fixed memory budget we can use
more features, and (Z + C)(Z + C)T concentrates more strongly (lower variance) around the expectation K +D
with 0 � D � δ2

b In. However, this expectation is further away from the true kernel matrix K (larger bias). Thus
there should be an optimal number of bits b∗ that balances the bias and the variance.

Proof of Corollary 2.1. Letting ∆2 →∞ in Theorem 2 gives

P
[
(1−∆1)(K + λIn) � K̃ + λIn

]
≥ 1− 8 tr

(
(K + λIn)−1(K + δ2

b In)
)

exp

( −m∆2
1

4n/λ(1 + 2∆1/3)

)
.

Using the assumption that ∆1 ≤ 3/2, we can simplify the bound:

P
[
(1−∆1)(K + λIn) � K̃ + λIn

]
≥ 1− 8 tr

(
(K + λIn)−1(K + δ2

b In)
)

exp

(−m∆2
1

8n/λ

)
.

Letting the RHS be 1− ρ and solving for m yields

m ≥ 8n/λ

∆2
1

log
(a
ρ

)
.

Similarly, letting ∆1 →∞ in Theorem 2 gives

P
[
K̃ + λIn � (1−∆2)(K + λIn)

]
≥ 1− 8 tr

(
(K + λIn)−1(K + δ2

b In)
)

exp

( −m(∆2 − δ2
b/λ)2

4n/λ(1 + 2(∆2 − δ2
b/λ)/3)

)
.
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Using the assumption that ∆1 ≤ 3/2, we can simplify the bound:

P
[
(1−∆1)(K + λIn) � K̃ + λIn

]
≥ 1− 8 tr

(
(K + λIn)−1(K + δ2

b In)
)

exp

(−m(∆2 − δ2
b/λ)2

8n/λ

)
.

Letting the RHS be 1− ρ and solving for m yields

m ≥ 8n/λ

(∆2 − δ2
b/λ)2

log
(a
ρ

)
.

If we let the number of bits b go to ∞ and set ∆1 = ∆2 = ∆, we get the following corollary, similar to the result
from Avron et al. (2017):

Corollary 5.1. Suppose that K̃ = ZZT , ‖K‖ ≥ λ. Then for any ∆ ≤ 1/2,

P
[
(1−∆)(K + λIn) � K̃ + λIn � (1 + ∆)(K + λIn)

]
≥ 1− 16 tr((K + λIn)−1K) exp

(
−3m∆2

16n/λ

)
.

Thus if we use m ≥ 16
3∆2n/λ log(16 tr((K + λIn)−1K)/ρ) features, then (1 − ∆)(K + λIn) � K̃ + λIn �

(1 + ∆)(K + λIn) with probability at least 1− ρ.

The constants are slightly different from that of Avron et al. (2017) as we use the real features
√

2 cos(wTx+ a)
instead of the complex features exp(iwTx).

From these results, we now know that the number of features required depends linearly on n/λ; more precisely,
we know that if we use m ≥ c0 · n/λ features (for some constant c0 > 0), K̃ + λIn will be a (∆,∆)-spectral
approximation of K + λIn with high probability. Avron et al. (2017) further provide a lower bound, showing that
if m ≤ c1 · n/λ (for some other constant c1 > 0), K̃ + λIn will not be a (∆,∆)-spectral approximation of K + λIn
with high probability. This shows that the number of random Fourier features must depend linearly on n/λ.

C.2 Frobenius Kernel Approximation Error Bounds for LP-RFFs

We begin this section by bounding the variance of the quantization noise C added to the random feature matrix
Z. We prove this as a simple consequence of the following Lemma.14

Lemma 6. For z ∈ [a, c], let Xa,c
z be the random variable which with probability z−a

c−a equals c − z, and with

probability c−z
c−a equals a− z. Then E [Xa,c

z ] = 0, and VAR [Xa,c
z ] = (c− z)(z − a) ≤ (c−a)2

4 .

Proof.

E [Xa,c
z ] = (c− z) · z − a

c− a + (a− z) · c− z
c− a

= 0.

VAR [Xa,c
z ] = (c− z)2 · z − a

c− a + (a− z)2 · c− z
c− a

=
(c− z)(z − a)((c− z + z − a))

c− a
= (c− z)(z − a)

d

dz
[VAR [Xa,c

z ]] =
d

dz
[−z2 + (c+ a)z − ac]

= −2z + c+ a.

Now, setting the derivative to 0 gives z∗ = c+a
2 . Thus, arg maxz∈[a,c](c − z)(z − a) = c+a

2 , and maxz∈[a,c](c −
z)(z − a) = (c− c+a

2 )( c+a2 − a) = (c−a)2

4 .

14This lemma is also a direct consequence of Popoviciu’s inequality on variances (Popoviciu, 1935). Nonetheless, we
include a stand-alone proof of the lemma here for completeness.
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Proposition 7. E[C2
ij | Zij ] ≤ δ2

b/m, for δ2
b := 2

(2b−1)2
.

Proof. Given a feature Zij ∈ [−
√

2/m,
√

2/m], we quantize it to b bits by dividing this interval into 2b − 1

equally-sized sub-intervals (each of size
2
√

2/m

2b−1
), and randomly rounding to the top or bottom of the sub-interval

containing Zij (in an unbiased manner). Let a, c denote the boundaries of the sub-interval containing Zij , where

c = a +
2
√

2/m

2b−1
. We can now see that Cij = Xa,c

Zij
is the unique random variable such that Zij + Cij ∈ {a, c}

and E [Cij | Zij ] = 0. Because c− a =
2
√

2/m

2b−1
, it follows from Lemma 6 that E[C2

ij | Zij ] = VAR
[
Xa,c
Zij
| Zij

]
≤

(c−a)2

4 = 8/m
4(2b−1)2

= δ2
b/m.

We now prove an upper bound on the expected kernel approximation error for LP-RFFs, which applies for any
quantization function with bounded variance. This error corresponds exactly to the variance of the random
variable which is the product of two quantized random features.

Theorem 8. For x, y ∈ X , assume we have random variables Zx, Zy satisfying E [ZxZy] = k(x, y), VAR [ZxZy] ≤
σ2, and that k(x, x) = k(y, y) = 1.15 For any unbiased random quantization function Q with bounded variance
VAR [Q(z)] ≤ σ̃2 for any (fixed) z, it follows that E [Q(Zx)Q(Zy)] = k(x, y), and that VAR [Q(Zx)Q(Zy)] ≤
2σ̃2 + σ̃4 + σ2.

Proof. Let Q(Zx) = Zx + εx, and Q(Zy) = Zy + εy, where E [εx] = E [εy] = 0, E
[
ε2x
]
≤ σ̃2, E

[
ε2y
]
≤ σ̃2, and εx,εy

are independent random variables.

E [Q(Zx)Q(Zy)] = E [(Zx + εx)(Zy + εy)]

= E [ZxZy + Zyεx + Zxεy + εxεy]

= E [ZxZy]

= k(x, y).

VAR [Q(Zx)Q(Zy)] = E
[(
Q(Zx)Q(Zy)− k(x, y)

)2
]

= E
[(

(Zx + εx)(Zy + εy)− k(x, y)
)2
]

= E
[(
Zyεx + Zxεy + εxεy + ZxZy − k(x, y)

)2
]

= E
[(
Zyεx + Zxεy + εxεy

)2
]

+ E
[(
ZxZy − k(x, y)

)2
]

≤ E
[
Z2
yε

2
x + Z2

xε
2
y + ε2xε

2
y

]
+ σ2

≤ k(y, y)σ̃2 + k(x, x)σ̃2 + σ̃4 + σ2

= 2σ̃2 + σ̃4 + σ2.

Note that if x = y, for this proof to hold, we would need to randomly quantize Zx twice, giving two independent

quantization noise samples ε
(1)
x and ε

(2)
x .

This theorem suggests that if 2σ̃2 + σ̃4 � σ2, quantizing the random features will have negligable effect on the
variance. In practice, for the random quantization method we use with random Fourier features (described in
Section 4.1), we have σ̃2 = 2

(2b−1)2
. Thus, for a large enough precision b, the quantization noise will be tiny

relative to the variance inherent to the random features.

We note that the above theorem applies to one-dimensional random features, but can be trivially extended to m
dimensional random features. We show this in the following corollary.

15For example, one specific instance of the random variables Zx, Zy is given by random Fourier features, where zx =√
2 cos(wTx+b), zy =

√
2 cos(wT y+b), zx, zy ∈ [−

√
2,
√

2], for random w, b. We need not assume that k(x, x) = k(y, y) = 1,
but this simplifies the final expression, as can be seen in the last step of the proof.
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Table 3: Dataset details. For classification tasks, we write the number of classes in parentheses in the “task”
column.

Dataset Task Train Heldout Test # Features

Census Reg. 16k 2k 2k 119
YearPred Reg. 417k 46k 52k 90
CovType Class. (2) 418k 46k 116k 54
TIMIT Class. (147) 2.3M 245k 116k 440

Table 4: The Gaussian kernel bandwidths used, and the search grid for initial learning rate on the Census,
YearPred, Covtype and TIMIT datasets. Optimal learning rate in bold.

Dataset 1/2σ2 Initial learning rate grid

Census 0.0006 0.01, 0.05, 0.1, 0.5, 1.0
YearPred 0.01 0.05, 0.1, 0.5, 1.0, 5.0
Covtype 0.6 1.0, 5.0, 10.0, 50.0, 100.0
TIMIT 0.0015 5.0, 10.0, 50.0, 100.0, 500.0

Corollary 8.1. For x, y ∈ X , assume we have random variables Zx, Zy satisfying E [ZxZy] = k(x, y), and
VAR [Zx] ,VAR [Zy] ≤ σ2, and that k(x, x) = k(y, y) = 1. Let Q be any unbiased quantization function with
bounded variance (E [Q(z)] = z, VAR [Q(z)] ≤ σ̃2 for any z). Let S = ZxZy, T = Q(Zx)Q(Zy), and (S1, . . . , Sn),
(T1, . . . , Tn) be a random sequence of i.i.d. draws from S and T respectively. Define S̄n = 1

n

∑n
i=1 Si, and

T̄n = 1
n

∑n
i=1 Ti, to be the empirical mean of these draws. It follows that E

[
S̄n
]

= E
[
T̄n
]

= k(x, y), and that

VAR
[
S̄n
]
≤ σ2

n , and VAR
[
T̄n
]
≤ 2σ̃2+σ̃4+σ2

n .

Proof.

VAR
[
S̄n
]

= VAR

[
1

n

n∑
i=1

Si

]

=

n∑
i=1

VAR
[

1

n
Si

]
≤ n · σ

2

n2

=
σ2

n

The result for VAR
[
T̄n
]

follows in the same way, using the result from Theorem 8.

D EXPERIMENT DETAILS AND EXTENDED RESULTS

D.1 Datasets and Details Applying to All Experiments

In this work, we present results using FP-Nyström, FP-RFFs, circulant FP-RFFs, and LP-RFFs on the TIMIT,
YearPred, CovType, and Census datasets. These datasets span regression, binary classification, and multi-class
classification tasks. We present details about these datasets in Table 3. In these experiments we use the Gaussian
kernel with the bandwidth σ specified in Table 4; we use the same bandwidths as May et al. (2017). To evaluate
the performance of these kernel models, we measure the classification error for classification tasks, and the mean
squared error (MSE) for regression tasks ( 1

n

∑n
i=1(fK̃(xi) − yi)2), on the heldout set. We compute the total

memory utilization as the sum of all the components in Table 1.

For all datasets besides TIMIT, we pre-processed the features and labels as follows: We normalized all continuous
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features to have zero mean and unit variance. We did not normalize the binary features in any way. For regression
datasets, we normalized the labels to have zero mean across the training set.

TIMIT (Garofolo et al., 1993) is a benchmark dataset in the speech recognition community which contains
recordings of 630 speakers, of various English dialects, each reciting ten sentences, for a total of 5.4 hours of
speech. The training set (from which the heldout set is then taken) consists of data from 462 speakers each
reciting 8 sentences (SI and SX sentences). We use 40 dimensional feature space maximum likelihood linear
regression (fMLLR) features (Gales, 1998), and concatenate the 5 neighboring frames in either direction, for a
total of 11 frames and 440 features. This dataset has 147 labels, corresponding to the beginning, middle, and end
of 49 phonemes. For reference, we use the exact same features, labels, and divisions of the dataset, as (Huang
et al., 2014; Chen et al., 2016; May et al., 2017).

We acquired the CovType (binary) and YearPred datasets from the LIBSVM webpage,16 and the Census dataset
from Ali Rahimi’s webpage.17 For these datasets, we randomly set aside 10% of the training data as a heldout set
for tuning the learning rate and kernel bandwidth.

The specific files we used were as follows:

• CovType: We randomly chose 20% of “covtype.libsvm.binary” as test, and used the rest for training/heldout.

• YearPred: We used “YearPredictionMSD” as training/heldout set, and “YearPredictionMSD.t” as test.

• Census: We used the included matlab dataset file “census.mat” from Ali Rahimi’s webpage. This Matlab file
had already split the data into train and test. We used a random 10% of the training data as heldout.

D.2 Nyström vs. RFFs (Section 2.2)

We compare the generalization performance of full-precision RFFs and the Nyström method across four
datasets, for various memory budgets. We sweep the following hyperparameters: For Nyström, we use
m ∈ {1250, 2500, 5000, 10000, 20000}. For RFFs, we use m ∈ {1250, 2500, 5000, 10000, 20000, 50000, 100000,
200000, 400000}. We choose these limits differently because 20k Nyström features have roughly the same memory
footprint as 400k FP-RFFs. For all experiments, we use a mini-batch size of 250. We use a single initial learning
rate per dataset across all experiments, which we tune via grid search using 20k Nyström features. We choose
to use Nyström features to tune the initial learning rate in order to avoid biasing the results in favor of RFFs.
We use an automatic early-stopping protocol, as in (Morgan and Bourlard, 1990; Sainath et al., 2013b,a), to
regularize our models (Zhang et al., 2005; Wei et al., 2017) and avoid expensive hyperparameter tuning. It works
as follows: at the end of each epoch, we decay the learning rate in half if the heldout loss is less than 1% better
relative to the previous best model, using MSE for regression and cross entropy for classification. Furthermore, if
the model performs worse than the previous best, we revert the model. The training terminates after the learning
rate has been decayed 10 times.

We plot our results comparing the Nyström method to RFFs in Figure 7. We compare the performance of these
methods in terms of their number of features, their training memory footprint, and the squared Frobenius norm
and spectral norm of their kernel approximation error.

D.3 Nyström vs. RFFs Revisited (Section 3.2)

D.3.1 Small-Scale Experiments

In order to better understand what properties of kernel approximation features lead to strong generalization
performance, we perform a more fine-grained analysis on two smaller datasets from the UCI machine learning
repository—we consider the Census regression task, and a subset of the CovType task with 20k randomly sampled
training points and 20k randomly sampled heldout points. The reason we use these smaller datasets is because
computing the spectral norm, as well as (∆1,∆2) are expensive operations, which requires instantiating the kernel
matrices fully, and performing singular value decompositions. For the Census experiments, we use the closed-form
solution for the kernel ridge regression estimator, and choose the λ which gives the best performance on the

16https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
17https://keysduplicated.com/ ali/random-features/data/
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Figure 7: Generalization performance of FP-RFFs and Nyström with respect to # features (a) and training
memory footprint (b) on Census, CovType, Yearpred and TIMIT. Nyström performs better for a fixed number
of features, while FP-RFFs perform better under a memory budget. We also see that the relative performance
between these methods cannot be fully explained by the Frobenius norms (c) or spectral norms (d) of their
respective kernel approximation error matrices; in particular, we see many example of Nyström models that have
lower Frobenius or spectral error, but worse heldout performance, than various RFF models. To quantify the
degree of alignment between these error metrics and generalization performance (right plots), we show in the
figure titles the Spearman rank correlation coefficients ρ between the corresponding x and y metrics. We see
in Figure 11 that 1/(1−∆1) attains notably higher values of ρ than the Frobenius and spectral norms of the
kernel approximation error. Note that although we plot the average performance across three random seeds for
each experimental setting (error bars indicate standard deviation), when we compute the ρ values we treat each
experimental result independently (without averaging).



Jian Zhang∗, Avner May∗, Tri Dao, Christopher Ré
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Figure 8: The correlation between generalization performance and squared Frobenius norm, spectral norm, ∆,
and 1/(1−∆1) for FP-RFFs and FP-Nyström on the Census and subsampled CovType datasets. To quantify
the alignment between these metrics and downstream performance, we include the Spearman rank correlation
coefficients ρ computed between these metrics and the downstream performance of our trained models in the
figure titles. Note that although we plot the average performance across five random seeds for each experimental
setting (error bars indicate standard deviation), when we compute the ρ values we treat each experimental result
independently (without averaging).

Table 5: Number of features used for the different kernel approximation methods in the experiments on
generalization performance vs. (∆1,∆2) in Sections 3.2 and 5.2.

Methods Number of features

FP-Nyström 25, 50, 100, 200, 500, 1250, 2500, 5000, 10000, 20000
FP-RFF 200, 500, 1000, 2000, 5000, 10000, 20000

Cir. FP-RFF 200, 500, 1000, 2000, 5000, 10000, 20000
LP-RFF 16 500, 1000, 2000, 5000, 10000, 20000, 50000

LP-RFF 8, 4, 2, 1 1000, 2000, 5000, 10000, 20000, 50000

heldout set. For CovType, because there is no closed-form solution for logistic regression, we used the following
training protocol to (approximately) find the model which minimizes the regularized training loss (just like the
closed-form ridge regression solution does). For each value of λ, we train the model to (near) convergence using 300
epochs of SGD (mini-batch size 250) at a constant learning rate, and pick the learning rate which gives the lowest
regularized training loss for that λ. We then evaluate this converged model on the heldout set to see which λ gives
the best performance. We pick the best learning rate, as well as regularization parameter, by using 20k Nyström
features as a proxy for the exact kernel (note that because there are only 20k training points, this Nyström
approximation is exact). We choose the learning rate 5.0 from the set {0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0, 50.0}, and
the regularization parameter λ = 5e−6 from {5e−8, 1e−7, 5e−7, 1e−6, 5e−6, 1e−5, 5e−5, 1e−4}. For the Census
dataset, we pick λ = 5e−4 from {1e−5, 5e−5, 1e−4, 5e−4, 1e−3, 5e−3, 1e−2, 5e−2, 1e−1}. We sweep the number
of features shown in Table 5. For both datasets, we report the average squared Frobenius norm, spectral norm,
∆, (∆1,∆2) and the average generalization performance, along with standard deviations, using five different
random seeds. The results are shown in Figure 8. As can be seen in Figure 8, 1/(1−∆1) aligns much better with
generalization performance than the other metrics.

It is important to note that although 1/(1−∆1) aligns quite well with generalization performance (Spearman
rank correlation coefficients ρ equal to 0.958 and 0.948 on Census and CovType, respectively), it does not align
perfectly. In particular, we see that for a fixed value of ∆1, Nyström generally attains better heldout performance
than RFFs. We believe this is largely explained by the fact that Nyström always has ∆2 = 0, while RFFs can have
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Figure 9: The correlation between generalization performance and squared Frobenius norm, spectral norm, ∆,
and 1/(1−∆1) for various types of full-precision RFFs. The Spearman rank correlation coefficients ρ between the
x and y metrics of each figure are included in the figure titles. For these full-precision RFF experiments, we see
that the original ∆ (Avron et al., 2017) as well as 1/(1−∆1) both align very well with downstream performance
(ρ = 0.940 and ρ = 0.938, respectively), while the Frobenius and spectral norms do not (ρ = 0.705 and ρ = 0.652,
respectively). Note that although we plot the average performance across five random seeds for each experimental
setting (error bars indicate standard deviation), when we compute the ρ values we treat each experimental result
independently (without averaging).
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relatively large values of ∆2 when the number of features is small (see Figure 3). As we show in the generalization
bound in Proposition 1, in Figure 5, as well as in the empirical and theoretical analysis in Appendix B, we expect
generalization performance to deteriorate as ∆2 increases.

D.3.2 Experiments with Different Types of RFFs

In Figure 9 we repeat the above experiment on the Census dataset using a number of variations of RFFs.
Specifically, we run experiments using the [sin(wTx), cos(wTx)] parameterization of RFFs, which Sutherland
and Schneider (2015) show has lower variance than the cos(wTx+ a) parameterization (we denote the [sin, cos]
method by “FP-RFF (SC)”, and the cos method by “FP-RFF (C)”). We additionally use Quasi-Monte Carlo
features (Yang et al., 2014), as well as orthogonal random features and its structural variant (Yu et al., 2016); we
denote these by “FP-QMC (SC)”, “FP-ORF (SC)”, “FP-SORF (SC)” respectively, because we implement them
using the [sin, cos] parameterization. We can see in Figure 9 that although these methods attain meaningful
improvements in the Frobenius and spectral norms of the approximation error, these improvements do not
translate into corresponding gains in heldout performance. Once again we see that 1/(1−∆1) is able to much
better explain the relative performance between different kernel approximation methods than Frobenius and
spectral error. In Figure 10 we see that LP-RFFs outperform these other methods in terms of performance under
a memory budget.

D.3.3 Large-Scale (∆1,∆2) Experiments

In Figure 11 we plot the performance vs. 1/(1−∆1) on the large-scale experiments from Section 2.2. We measure
∆1 using the exact and approximate kernel matrices on a random subset of 20k heldout points (except for Census,
where we use the entire heldout set which has approximately 2k points). We pick several λ values between the
smallest and largest eigenvalues of the exact (subsampled) training kernel matrix. The strong alignment between
generalization performance and 1/(1−∆1) is quite robust to the choice of λ.

D.3.4 Measuring ∆ and (∆1,∆2)

In order to measure the ∆1 and ∆2 between a kernel matrix K and an approximation K̃, we first observe that
the following statements are equivalent. Note that to get the second statement, we multiply the expressions in
the first statement by (K + λIn)−1/2 on the left and right.

(1−∆1)(K + λIn) � K̃ + λIn � (1 + ∆2)(K + λIn)

(1−∆1)In � (K + λIn)−1/2(K̃ + λIn)(K + λIn)−1/2 � (1 + ∆2)In

−∆1In � (K + λIn)−1/2
(
K̃ + λIn − (K + λIn)

)
(K + λIn)−1/2 � ∆2In

−∆1In � (K + λIn)−1/2(K̃ −K)(K + λIn)−1/2 � ∆2In.

For A = (K + λIn)−1/2(K̃ −K)(K + λIn)−1/2, this is equivalent to −∆1 ≤ λmin
(
A
)

and λmax
(
A
)
≤ ∆2. Thus,

we choose ∆1 := −λmin
(
A
)

and ∆2 := λmax
(
A
)
. Lastly, we note that ∆ = max(∆1,∆2).

D.4 Theory Validation (Section 4.2)

To validate our theory in Section 4.2, we perform two sets of experiments to (1) demonstrate the asymptotic
behavior of ∆1 and ∆2 as the number of features increases, and (2) demonstrate that quantization has negligible
effect on ∆2 when δ2

b/λ� ∆2.

To demonstrate the behavior of ∆1 and ∆2 as a function of the number of features, we collect ∆1, and ∆2 using
Nyström features, circulant FP-RFFs, and LP-RFFs using b ∈ {1, 4, 8}, on both the Census and the sub-sampled
CovType datasets (20k random heldout points). For each approximation, we sweep the number of features as
listed in Table 6. We use the same value of λ as we used in Section 3.2 for each dataset. In Figure 12, we plot
the values of ∆1 and ∆2 attained by these methods as a function of the number of features. As discussed in
Section 4.2, ∆1 is primarily determined by the rank of the approximation, and approaches 0 for all the methods
as the number of features grows. ∆2, on the other hand, only approaches 0 for the high-precision methods—for
b ∈ {1, 4}, ∆2 converges to higher values (at most δ2

b/λ, marked by dashed lines).
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Figure 11: Generalization performance vs. 1
1−∆1

, where we measure ∆1 using regularizer strength λ equal to the
0, 25, 50, 75, or 99 percentile eigenvalues of the exact kernel matrix (0 percentile indicates largest eigenvalue).
Note for the Census dataset, we plot the heldout MSE as a function of 1/(1−∆1)− 1 to avoid cluttering the
data points on the left end of the figure. For comparison to spectral and Frobenius norm plots, see Figure 7. To
quantify the degree of alignment between 1/(1−∆1) and generalization performance for these different values of
λ, we compute the Spearman rank correlation coefficients ρ. We see 1/(1−∆1) generally attains much higher
values of ρ than the Frobenius and spectral approximation errors (Figure 7). Although we plot performance
averaged across three random seeds (error bars indicate standard deviations), when we compute ρ we treat each
experimental result independently.
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Figure 12: Empirical validation of Theorem 2. As the number of features grows, LP-RFFs approach ∆1 values of
0 (left), but plateau at larger ∆2 for very low precisions (right). These are an extended version of the results
from Figure 3 (left, middle) in Section 4.2. We plot average results across five random seeds, with error bars
indicating standard deviations.

Table 6: Number of features used for the different kernel approximation methods in the theory validation
experiments in Section 4.2 (Figure 3 (left,middle)).

Methods Number of features

FP-Nyström 25, 50, 100, 200, 500, 1250, 2500, 5000, 10000, 20000
Cir. FP-RFF 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 400000

LP-RFF 8, 4, 2, 1 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 400000

To demonstrate that quantization has negligible effect on ∆2 when δ2
b/λ � ∆2, we use 8000 random training

points from the Census dataset. For λ ∈ {10−4, 100, 104}, and b ∈ {1, 2, 4, 8, 16, 32}, we measure the ∆2 attained
by the LP-RFFs relative to the exact kernel matrix. We see that for larger λ (corresponding to smaller δ2

b/λ) in
Figure 3, lower precisions can be used while not influencing ∆2 significantly; this aligns with the theory.

D.5 Empirical Evaluation of LP-RFFs (Section 5.1)

To empirically demonstrate the generalization performance of LP-RFFs, we compare LP-RFFs to FP-RFFs,
circulant FP-RFFs, and Nyström features for various memory budgets. We use the same datasets as in Section 2,
including Census and YearPred for regression, as well as CovType and TIMIT for classification. We use the same
experimental protocol as in Section 2 (details in Appendix D.2), with the only significant additions being that we
also evaluate the performance of circulant FP-RFFs, and LP-RFFs for precisions b ∈ {1, 2, 4, 8, 16}. As noted in
the main text, all our LP-RFF experiments are done in simulation; in particular, we represent each low-precision
feature as a 64-bit floating point number, whose value is one of the 2b values representable in b bits. For our
full-precision experiments we also use 64-bit floats, but we report the memory utilization of these experiments
as if we used 32 bits, to avoid inflating the relative gains of LP-RFFs over the full-precision approaches. We
randomly sample the quantization noise for each mini-batch independently each epoch.

In Section 5.1 (Figure 4), we demonstrated the generalization performance of LP-RFFs on the TIMIT, YearPred,
and CovType datasets, using 4 bits per feature. In Figure 13, we additionally include results on the Census
dataset, and include results for a larger set of precisions (b ∈ {1, 2, 4, 8, 16}). We also include plots of heldout
performance as a function of the number of features used. We observe that LP-RFFs, using 2-8 bits, systematically
outperform the full-precision baselines under different memory budgets.
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Figure 13: Generalization performance of the kernel approximation methods (Nyström, FP-RFFs, circ. FP-RFFs,
LP-RFFs) with respect to the number of features used, as well as with respect to memory used. We observe
that LP-RFFs demonstrate better generalization performance than the full-precision baselines under memory
constraints, with 2-8 bits typically giving the best performance. Importantly, the relative ranking of the methods
changes depending on whether we compare the methods based on their number of features, or their memory
utilization. For example, the Nyström method shows better generalization performance than the RFF-based
approaches with the same number of features. However, the Nyström method often performs significantly worse
than the RFF methods under fixed memory budgets. We plot results averaged over three random seeds.
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Table 7: Dataset details for the additional datasets from Section D.5. For classification tasks, we write the number
of classes in parentheses in the “Task” column.

Dataset Task Train Heldout Test # Features

Forest Class. (2) 470k 52k 58k 54
Cod-RNA Class. (2) 54k 6k 272k 8
Adult Class. (2) 29k 3k 16k 123
CPU Reg. 6k 0.7k 0.8k 21

Table 8: The Gaussian kernel bandwidths used, and the search grid for initial learning rate on the Forest,
Cod-RNA, Adult, and CPU datasets. Optimal learning rate in bold.

Dataset 1/2σ2 Initial learning rate grid

Forest 0.5 5.0, 10.0, 50.0, 100.0, 500.0
Cod-RNA 0.4 10.0, 50.0, 100.0, 500.0, 1000.0
Adult 0.1 5.0, 10.0, 50.0, 100.0, 500.0, 1000.0
CPU 0.03 0.05, 0.1, 0.5, 1.0, 5.0

We run on four additional classification and regression datasets (Forest, Cod-RNA, Adult, CPU) to compare the
empirical performance of LP-RFFs to full-precision RFFs, circulant RFFs and Nyström. We present the results
in Figure 14, and observe that LP-RFFs can achieve competitive generalization performance to the full-precision
baselines with lower training memory budgets. With these 4 additional datasets, our empirical evaluation of
LP-RFFs now covers all the datasets investigated in Yang et al. (2012). We include details about these datasets
and the hyperparameters we used in Tables 7 and 8.

D.6 Generalization Performance vs. (∆1,∆2) (Section 5.2)

For our experiments in Section 5.2, we use the same protocol and hyperparameters (learning rate, λ) as for the
(∆1,∆2) experiments in Section 3.2. However, we additionally run experiments with LP-RFFs for precisions
b ∈ {1, 2, 4, 8, 16}. We use five random seeds for each experimental setting, and plot the average results, with
error bars indicating standard deviations.

In Figure 15, we plot an extended version of the right plots in Figure 5. We include results for all precisions, and
for both Census and CovType. We observe that on Census, 1/(1−∆1) does not align well with performance
(Spearman rank correlation coefficient ρ = 0.403), because the low-precision features (b = 1 or b = 2) perform
significantly worse than the full-precision features of the same dimensions. In this case, when we consider the
impact of ∆2 by taking max

(
1/(1−∆1),∆2

)
, we see that performance aligns much better (ρ = 0.959).

On CovType, on the other hand, the impact on generalization performance from using low-precision is much less
pronounced, so 1/(1−∆1) and max

(
1/(1−∆1),∆2

)
both align well with performance (ρ = 0.942). Furthermore,

in the case of CovType, ∆2 is generally smaller than 1/(1−∆1), so taking the max does not change the plot
significantly.

To compute the Spearman rank correlation coefficients ρ for these plots, we take the union of all the experiments
which are a part of the plot. In particular, we include FP-RFFs, circulant FP-RFFs, FP-Nyström , and LP-RFFs
with precisions b ∈ {1, 2, 4, 8, 16}. Although we plot the average performance across five random seeds in the plot,
to compute ρ we treat each experiment independently.

D.7 Other Experimental Results

D.7.1 Low-Precision Nyström

We encounter two main obstacles to attaining strong performance with the Nyström method under a memory
budget: (1) For the standard Nyström method, because of the large projection matrix (32m2 space), there are
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Figure 14: Comparison of the performance of LP-RFFs and the full-precision baselines on additional datasets,
with respect to the number of features used, as well as with respect to memory used. We observe that LP-RFFs
can achieve performance competitive with the full-precision baseline methods, with significant memory savings.
We plot the average performance across three random seeds, with error bars indicating standard deviations.
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Figure 15: Generalization performance vs. different kernel approximation metrics on Census and CovType. The
metric max (1/(1−∆1),∆2) is able to incorporate the influence of both ∆1 and ∆2 on performance for LP-RFFs,
aligning well with generalization performance on both Census (Spearman rank correlation coefficient ρ = 0.959)
and CovType (ρ = 0.942). 1/(1−∆1), on the other hand, fails to align well on Census (ρ = 0.403), but does
align on CovType (ρ = 0.942). Note that although we plot the average performance across five random seeds for
each experimental setting (error bars indicate standard deviation), when we compute the ρ values we treat each
experimental result independently (without averaging).
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Figure 16: We plot the heldout performance (MSE) for the full-precision Nyström method, the ensemble Nyström
method, and 8-bit LP-RFFs. We also show the best possible performance for the Nyström methods, assuming only
the kernel approximation features are quantized (denoted “ideal”); we compute this by plotting the full-precision
results but without counting the memory occupied by the features. The LP-RFF method significantly outperforms
the “ideal” Nyström methods as a function of memory.
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Figure 17: The generalization performance of low-precision Nyström and low-precision ensemble Nyström, using
a uniform quantization scheme.
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inherent limits to the memory savings attainable by only quantizing the features, regardless of the quantization
scheme used. (2) While the ensemble Nyström method (Kumar et al., 2009) is a well-known method which can
dramatically reduce the space occupied by the the Nyström projection matrix, it does not attain meaningful gains
in performance under a memory budget. To demonstrate the first issue empirically, we plot in Figure 16 the
performance of the full-precision Nyström methods without counting the memory from the feature mini-batches
(denoted “ideal”). This is the best possible performance under any quantization scheme for these Nyström
methods, assuming only the features are quantized. LP-RFFs still outperform these “ideal” methods for fixed
memory budgets. To demonstrate the second issue, in Figure 16 we also plot the generalization performance of
the ensemble method vs. the standard Nyström method, as a function of memory. We can see that the ensemble
method does not attain meaningful gains over the standard Nyström method, as a function of memory.

Lastly, we mention that quantizing Nyström features is more challenging due to their larger dynamic range.
For Nyström, all we know is that each feature is between −1 and 1, whereas for RFFs, each feature is between
−
√

2/m and
√

2/m. In Figure 17 we plot our results quantizing Nyström features with the following simple
scheme: for each feature, we find the maximum and minimum value on the training set, and then uniformly
quantize this interval using b bits. We observe that performance degrades significantly with less than or equal to
8 bits compared to full-precision Nyström. Although using the ensemble method reduces the dynamic range by a
factor of

√
r with r blocks (we use r = 10, a common setting in (Kumar et al., 2012)), and also saves space on

the projection matrix, these strengths do not result in significantly better performance for fixed memory budgets.

D.7.2 Low-Precision Training for LP-RFFs

As discussed in Section 2.1, there are a number of ways to reduce the memory occupied by the model parameters,
including (1) using a low-rank decomposition of the parameter matrix (Sainath et al., 2013a), (2) using structured
matrices (Sindhwani et al., 2015), and (3) using low-precision (De Sa et al., 2018). Though these methods are
orthogonal to our LP-RFF method, we now present results using a low-precision parameterization of the model,
and show that we can attain similar performance to full-precision training. We use a training algorithm called
LM-HALP (linear model high-accuracy low-precision) (De Sa et al., 2018). By parameterizing the model in low
precision, this algorithm eliminates the need of casting the LP-RFFs back into full precision in order to multiply
them with the model parameters. This approach also allows for these matrix multiplications to be implemented
using fast low-precision matrix operations, and reduces the memory occupied by the model during training.

LM-HALP is based on the stochastic variance-reduced gradient (SVRG) algorithm. The model is parameterized
using a low-precision fixed-point representation during training. In LM-HALP, all of the matrix multiplications
involved in the stochastic model updates are done using low-precision fixed-point operations; however, the periodic
computation of the full gradient is calculated in full precision (this is embarrassingly parallelizable). Importantly,
even though most of training is done in low precision, the final model returned by this training algorithm is a
full-precision model. We can further simplify the LM-HALP algorithm by replacing the SVRG updates with
SGD updates, thus eliminating the need for calculating and storing the full gradient. In Figure 18 we present our
results using LM-HALP on TIMIT, our largest and most challenging dataset; we use 8-bit LM-HALP (SVRG
and SGD) on top of 8-bit LP-RFFs, and compare to full-precision SGD training. For LM-HALP based training,
we perform the bit centering and rescaling operation after each training epoch. Under this setting, we show that
when the number of features is at least 10,000, the performance of both versions of HALP closely matches that of
full-precision training.

D.7.3 Double Sampling

We perform some initial experiments using the double sampling method of Zhang et al. (2017). In particular,
we use a different random quantization of the LP-RFFs on the “forward pass” of our algorithm than in the
“backward pass.” In our initial experiments with double sampling, as shown in Figure 19, we did not observe
noticeable improvements in performance. These experiments were on the YearPred dataset with the Gaussian
kernel. We leave a more extended investigation of these gradient bias reduction methods for future work.

E EXTENDED RELATED WORK

Generalization Performance of Kernel Approximation Methods From a theoretical perspective, there
has been a lot of work analyzing the generalization performance of kernel approximation methods (Rahimi
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Figure 18: Low-precision vs. full-precision training algorithms on TIMIT using 8-bit LP-RFFs.
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Figure 19: Comparison of LP-RFFs with and without double sampling on the YearPred dataset.

and Recht, 2008; Cortes et al., 2010; Sutherland and Schneider, 2015; Rudi and Rosasco, 2017; Avron et al.,
2017; Li et al., 2018). The work most relevant to ours is that of Avron et al. (2017), which defines ∆-spectral
approximation and bounds the generalization performance of kernel approximation methods in terms of ∆. This
approach differs from works which evaluate kernel approximation methods in terms of the Frobenius or spectral
norms of their kernel approximation matrices (Cortes et al., 2010; Gittens and Mahoney, 2016; Yang et al., 2014;
Sutherland and Schneider, 2015; Yu et al., 2016; Dao et al., 2017). Our work shows the promise of Avron et al.’s
approach, and builds upon it.

Large-Scale Kernel Experiments On the topic of scaling kernel methods to large datasets, there have been
a few notable recent papers. Tu et al. (2016) propose a distributed block coordinate descent method for solving
large-scale least squares problems using the Nyström method or RFFs. The recent work of May et al. (2017) uses
a single GPU to train large RFF models on speech recognition datasets, showing comparable performance to
fully-connected deep neural networks. That work was limited by the number of features that could fit on a single
GPU, and thus our proposed method could help scale these results.


