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Abstract
While most Gaussian processes (GP) work focus
on learning single-output functions, many appli-
cations, such as physical simulations and gene ex-
pressions prediction, require estimations of func-
tions with many outputs. The number of outputs
can be much larger than or comparable to the size
of training samples. Existing multi-output GP
models either are limited to low-dimensional out-
puts and restricted kernel choices, or assume over-
simplified low-rank structures within the outputs.
To address these issues, we propose HOGPR, a
High-Order Gaussian Process Regression model,
which can flexibly capture complex correlations
among the outputs and scale up to a large number
of outputs. Specifically, we tensorize the high-
dimensional outputs, introducing latent coordi-
nate features to index each tensor element (i.e.,
output) and to capture their correlations. We then
generalize a multilinear model to a hybrid of a
GP and latent GP model. The model is endowed
with a Kronecker product structure over the inputs
and the latent features. Using the Kronecker prod-
uct properties and tensor algebra, we are able to
perform exact inference over millions of outputs.
We show the advantage of the proposed model on
several real-world applications.

1 Introduction
Gaussian processes (GPs) are important function learning
models. Due to the nonparametric Bayesian nature, GPs can
automatically capture the complexity of the functions under-
lying the data, and quantify the uncertainty. In the past few
decades, numerous GP models/inference algorithms have
been proposed for various tasks, such as face detection (Lu
and Tang, 2015), collaborative filtering (Lawrence and Ur-
tasun, 2009; Kim et al., 2016) and optimization (Mockus,
2012; Snoek et al., 2012). Most of the work essentially aim
to learn a single-output function from data.
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However, many applications require us to learn a function
with many outputs, from a relatively small number of train-
ing samples. For instance, in computational physics, given
a set of physical conditions (i.e., input), we are interested to
obtain the corresponding field (e.g., pressures or velocities)
represented by a high-dimensional vector. The computation
of the field, typically through the finite element/difference
method (Zienkiewicz et al., 1977; Mitchell and Griffiths,
1980), is very expensive. To minimize the cost, it is urgent
to learn a proxy of this low-to-high mapping, based upon a
limited number of simulation examples.

One can simply learn for each output an independent GP
model. However, among these outputs are often strong and
complex correlations. Ignoring the valuable correlations
is likely to result in inferior performance, especially on
small training samples. To address this problem, several
multi-output GP models were proposed to capture the output
correlations. For example, the convolved GPs (Higdon,
2002; Boyle and Frean, 2005) model the covariance between
outputs through convolution operations. A class of other
methods, such as PCA-GP (Higdon et al., 2008) and IsoMap-
GP (Xing et al., 2015) assume a low-rank structure within
the outputs, and model the outputs as the linear combination
of a group of (fixed) bases; typically, the coefficients are
estimated by separate GP regression models.

Despite their success, the aforementioned work either are
limited to low-dimensional outputs and restricted kernels, or
use oversimplified correlation structures. The time complex-
ity of the convolved GPs is O

(
(Nd)3

)
where N and d are

the numbers of training samples and outputs. Hence, they
are infeasible even for a tiny number of outputs, e.g., 100
outputs/100 samples, and have to seek for sparse approxima-
tions (Alvarez and Lawrence, 2009). In addition, they have
to use easy smoothing/base kernels (e.g., Gaussians and
delta) to obtain analytical convolutions. PCA-GP (Higdon
et al., 2008) and the congenic methods, while being scal-
able to a large-number of outputs, impose linear correlation
structures within the outputs, which might be too restricted,
and inadequate to capture more complex correlations.

To address these issues, we propose HOGPR, a high-order
Gaussian process regression model, which is not only flex-
ible enough to capture complex output correlations, but
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also scalable to very high-dimensional outputs (without
any sparse approximations). Specifically, we first organize
the outputs into a tensor, and for each coordinate in tensor
modes, we introduce a latent feature vector; in this way, we
can index each tensor element, i.e., output, by a set of coor-
dinate feature vectors. Next, we use a multilinear model to
combine the input and latent coordinate features to generate
the tensorized outputs. We further generalize the multilinear
model via feature mapping and kernel tricks into a hybrid
of a GP and latent GP model. The correlations between
different outputs are naturally captured by the covariance of
their latent coordinate features. The model is endowed with
a Kronecker product structure over the inputs and the latent
features in each mode. Using Kronecker product properties
and tensor algebra, we develop an exact inference algorithm
that can linearly scale to the number of outputs.

For evaluation, we first examined HOGPR on three real-
world small datasets with hundreds of samples and hun-
dreds/thousands of outputs for each sample. HOGPR out-
performs sparse convolved GP and low-rank multi-output
GP regression methods in most cases. We then applied
HOGPR in topology structure design — HOGPR predicted
much better structures than the competing methods; on
various training sizes, HOGPR often improved the overall
prediction accuracy upon the competing methods by a large
margin. Finally, we applied HOGPR in physical simulations.
We used HOGPR to predict a pressure field with one million
outputs but only hundreds of training samples. HOGPR
often outperforms the competing low-rank methods.

2 Background
Single-output Gaussian processes. We first review GP
regression to learn a single-output function. Given an ob-
served dataset D = {(x1, y1), . . . , (xN , yN )} where each
xi is a p dimensional input vector, and yi the observed
scalar output, we aim to learn a function f : Rp → R. GP
regression assumes the finite set of function values on X =
[x1, . . . ,xN ]>, namely f = [f(x1), . . . , f(xN )]>, follow
a multivariate Gaussian distribution, p(f |X) = N (f |m,K)
where m = [m(x1), . . . ,m(xn)]

> and K is the covariance
matrix. Here, m(·) is the mean function, usually set to 0.
Each element of K is defined as a kernel function of the
corresponding inputs: [K]i,j = k(xi,xj).The observed out-
puts y = [y1, . . . , yN ]> are assumed to be corrupted, e.g.,
by some Gaussian random noises, p(y|f) = N (y|f , τ−1I)
where τ is the inverse noise variance. We can marginal-
ize out f to obtain the marginal likelihood of y, p(y|X) =
N
(
y|0,K + τ−1I

)
.

The inference of the GP regression is to estimate the covari-
ance (or kernel) parameters and the inverse noise variance
τ . We can optimize these parameters by maximizing the
marginal likelihood. To this end, we need to compute the
N ×N covariance matrix, taking O(N3) and O(N2) time
and space complexity, respectively. To predict the output
for a test input x∗, we use the conditional Gaussian distri-

bution, p
(
f(x∗)|x∗,X,y

)
= N

(
f∗|µ(x∗), v(x∗)

)
, where

µ(x∗) = k>∗ (K+τ−1I)−1y, v(x∗) = k(x∗,x∗)−k>∗ (K+
τ−1I)−1k∗ and k∗ = [k(x∗,x1), . . . , k(x

∗,xN )]>.

Multi-output Gaussian processes. Many applications
require one to learn a function with multiple outputs.
In this case, one input x will correspond to d outputs
[f1(x), . . . , fd(x)]

>(d > 1). Several seminal works have
been proposed for multi-output regression. The convolved
GPs (Higdon, 2002; Boyle and Frean, 2005) assume a set
of latent functions, and each output fq(x) is generated from
a convolution between a smoothing kernel and the latent
functions. Using easy smoothing kernels (typically Gaus-
sians) and covariances for the latent functions, we can derive
a closed-form covariance function between arbitrarily two
outputs for two inputs xi,xj , i.e., cov

(
fq(xi), fr(xj)

)
(1 ≤

q, r ≤ d). Then we can combine all the input and (scalar)
output instances {(xi, yiq)}1≤i≤N,1≤q≤d to learn a single-
output GP regression model. Because the number of training
instances becomes Nd, the time and space complexity are
O((Nd)3) and O((Nd)2), respectively.

Another line of research model the output correlations
by imposing a low-rank structure (Higdon et al., 2008;
Xing et al., 2016, 2015). Typically, they introduce a set
of fixed bases, {b1, . . . ,bK}(K � d), and assume that
y =

∑K
k=1 αk(x)bk. Each coefficient function αk(x) is

learned via a separate GP regression model. For example,
PCA-GP (Higdon et al., 2008) obtains the bases and training
coefficients from Principal Component Analysis (PCA) on
the training output matrix.

3 Model
In many applications, we need to learn a function with many
outputs yet from a relatively small set of training samples.
The reason is that when the output dimension grows higher,
collecting training instances often is more expensive. For
example, in physical simulations, a set of boundary condi-
tions usually correspond to a vector field. The simulations
with higher fidelities (resulting in higher dimensional fields)
are much more costly due to the explosion of computation
overheads. Thus, it is often the case that we are left with a
few hundred samples to learn a function with thousands or
even millions of outputs. To enhance the function learning,
it is critical to exploit the (possibly) strong and complex
correlations among the outputs.

Despite the elegance and success of the existing multi-output
GP models, they might be restricted by the limited scala-
bility to the output dimension and kernel choices, or over-
simplified correlation structures, especially in the “small N ,
large d” scenario. The time complexity of the convolved
GPs is O

(
(Nd)3

)
. Hence, even at a tiny scale, e.g., 100

outputs/100 samples, the convolved GPs will be infeasible,
and have to use inexact, sparse approximations (Alvarez and
Lawrence, 2009). Moreover, to ensure an analytical covari-
ance function, the convolved GPs have to choose easy but
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perhaps less expressive smoothing/base kernels for tractable
convolution operations. PCA-GP and other methods, al-
though are very efficient to handle large output dimensions,
they impose a linear correlation structure within the outputs.
This might be too restrictive and inflexible to capture more
complex correlations among the outputs in practice.

To address these issues, we propose HOGPR, a high-order
GP regression model that is both more flexible to capture
complex output correlations and scalable to a large number
of outputs. We present HOGPR as follows.

3.1 A Motivated Example to Model Output Correla-
tions

To introduce our model, we start with a motivated example,
that is, predicting the pixel values of an image, given the
input x. Obviously, each pixel (i.e., output) is indexed by a
pair of coordinates (c1, c2) (in a 2-dimensional space). Let
us denote each output by yc1c2 . Then how to model the
correlations among these outputs? We can look into their co-
ordinates — intuitively, the closer the two pixels, the more
correlated they are. Hence, we can model the output corre-
lations via a kernel (similarity) function of their coordinates,
e.g., h([c1, c2], [c′1, c

′
2]) = exp(− 1

σ2 ‖(c1, c2)− (c′1, c
′
2)‖2).

3.2 High-Order Gaussian Process Regression
In general, however, the function outputs do not represent
image pixels; we may not have explicit coordinates that in-
dex the outputs and reflect their correlations. To address this
issue, we rearrange all the outputs into a multidimensional
space (i.e., tensor space), and introduce latent coordinate
features to index the outputs and to capture their correlations.
Then we combine the input and latent features to build a GP
regression model for the rearranged outputs, i.e., HOGPR.

Specifically, we organize the outputs as a Q-mode tensor,
Y ∈ Rd1×...×dQ . Suppose there are d outputs for each input,
then d =

∏Q
k=1 dk. Each output in this tensor space can be

located by a tuple of Q coordinates c = (c1, . . . , cQ)(1 ≤
ck ≤ dk, 1 ≤ k ≤ Q). Let us denote it by yc. Note that we
cannot assume outputs at nearby coordinates have strong
correlations, because these (discrete) coordinates can be
assigned arbitrarily. To capture the output correlations, we
introduce a latent feature vector vkck for each coordinate
ck (in mode k). Then we can index each output yc by Q
coordinate feature vectors {v1

c1 , . . . ,v
Q
cQ}. We will use

these coordinate features to model the output correlations.

Next, we combine the original inputs and the latent co-
ordinate features to build our HOGPR model. We will
first introduce a Bayesian multilinear regression model
and then generalize it to HOGPR via feature mapping and
kernel tricks. Specifically, given the training dataset D,
we can use a Q + 1-mode tensor Z ∈ Rd1×···×dQ×N to
represent all the observed outputs for the N training in-
puts. Each slice Z(:, . . . , :, i) is the output tensor Yi for
input i. Hence the training data D can be represented by

(X,Z), where X is the N × p input matrix and Z out-
put tensor. We can stack the latent feature vectors into
Q matrices, V = {V1, . . . ,VQ} where the rows of each
Vk(1 ≤ k ≤ Q) are the feature vectors for the coordinates
in mode k. Hence each Vk is a dk × rk matrix, where
rk is the dimension of the feature vectors in mode k. In
our multilinear regression model, we first sample a weight
tensorW ∈ Rr1×...×rQ×p from a standard Gaussian prior,
p(W) = N

(
vec(W)|0, I

)
. GivenW , we sample the output

tensor Z from p(Z|X,V) = N
(
vec(Z)|vec(F), τ−1I

)
,

where τ is the inverse variance, and

F = W ×1 V1 . . .×Q VQ ×Q+1 X. (1)

Here ×k is the tensor-matrix product at mode k (Kolda,
2006). Given a tensorM ∈ Rr1×...×rQ and a matrix U ∈
Rs×t, we can multiplyM by U at mode k when rk = t.
The result is an r1× . . .×rk−1×s×rk+1× . . .×rQ tensor.
Each entry is computed by (M×k U)i1...ik−1jik+1...iQ =∑rk
ik=1mi1...iQujik . The multilinear form in (1) is referred

to as the Tucker operator (Kolda, 2006). An important
property of the Tucker operator is

vec(F) = (V1 ⊗ . . .⊗VQ ⊗X)vec(W). (2)

The joint probability of our multilinear regression model is

p(Z,W|X,V, τ) = N
(
vec(W)|0, I

)
· N
(
vec(Z)|vec(F), τ−1I

)
. (3)

This model combines the original inputs X and the latent
coordinate features V to generate all the outputs, through
the multilinear Tucker operator in (1).

To generalize (3) to a GP model so as to enable more
powerful regression, say, nonlinear regression, we first
marginalize out the weight tensor W , to obtain the
marginal distribution of the output tensor Z . Obviously,
it is still a Gaussian distribution, with the mean 0 and
the covariance E(vec(F)vec(F)>) + τ−1I. According
to (2), we have E

(
vec(F)vec(F)>

)
= (V1 ⊗ . . . ⊗

VQ⊗X)E
(
vec(W)vec(W)>

)
(V1⊗ . . .⊗VQ⊗X)> =

V1(V1)>⊗ . . .⊗VQ(VQ)>⊗XX>. The marginal prob-
ability of Z is then given by

p(Z|X,V, τ) = N
(
vec(Z)|0,Σ + τ−1I

)
(4)

where Σ = V1(V1)> ⊗ . . .⊗VQ(VQ)> ⊗XX>.

We then perform a (nonlinear) feature mapping of the inputs
X and the latent coordinate features V in (4). Take V1 as
an example. We replace each row v1

j in V1 by the mapped
feature vector φ(v1

j ). Denote by φ(V1) the mapped feature
matrix. Then V1(V1)> in Σ becomes φ(V1)φ(V1)> —
the elements are the inner products between the mapped
feature vectors. We now apply the kernel trick — we replace
φ(V1)φ(V1)> by a kernel matrix K1, where each element



Scalable High-Order Gaussian Process Regression

[K1]i,j = k1(v
1
i ,v

1
j ) is a kernel function that performs

implicit feature mapping and inner product. Now we have

p(Z|X,V, τ)
= N

(
vec(Z)|0,K1 ⊗ . . .⊗KQ ⊗K + τ−1I

)
(5)

where {K1, . . . ,KQ} are the kernel matrices for the latent
coordinate features {V1, . . . ,VQ}, and K for the input X.

The probability in (5) defines our HOGPR model — a GP
regression model for the tensorized outputs Z . If we set
Q = 2, we return to the image case. However, we introduce
latent coordinate features rather than use the coordinates
themselves to capture the output correlations, because in
general these coordinates can be freely assigned and cannot
reflect the correlation strengths between the outputs. In
our model, the covariance between any two outputs yc and
yc′ for samples i and j is given by cov

(
yc(xi), yc′(xj)

)
=

k(xi,xj)
∏Q
j=1 kj(v

j
cj ,v

j
c′j
).

To capture various complex correlations among the outputs,
we can choose arbitrary kernel functions for the coordinate
features {V1, . . . ,VQ} and the input X. Compared with
PCA-GP and other low-rank approaches, we do not impose
any simplified, linear structures. Compared with the con-
volved GPs, we do not need to restrict the kernel forms to
ensure the tractability of the convolution operations. Fur-
thermore, the covariance of HOGPR (5) is endowed with a
Kronecker product structure over the kernel matrices. This
enables exact and scalable inference to a large number of
outputs, as we will present in the following section.

4 Algorithm
We now present the model inference algorithm. Note that
HOGPR is a hybrid of a GP and latent GP model — each
output yc is associated with an observed input vector x, and
Q latent coordinate feature vectors {v1

c1 , . . . ,v
K
cK}. Hence,

given an observed dataset D = (X,Z), the inference needs
to estimate all the latent features in theQ-mode tensor space,
V = {V1, . . . ,VQ}, as well as the kernel parameters for
the latent features and the original inputs, and the inverse
variance τ . We estimate these parameters by maximizing
the log likelihood of the model,

L = log
(
p(Z|X,V, τ)

)
= −1

2
log |S| − 1

2
vec(Z)>S−1vec(Z) + const, (6)

where S = K1⊗. . .⊗KQ⊗K+τ−1I. The major challenge
is the covariance matrix S, of size Nd × Nd. When the
number of outputs is large, say, one million, the covariance
matrix S will be infeasible to compute and so the inverse
and log determinant. However, by exploiting the Kronecker
product in S, we will be able to efficiently compute the log
likelihood and its gradient for model estimation.
4.1 Efficient Likelihood and Gradient Computation
We first represent each kernel matrix in S (see (6)) with
its eigendecomposition, K = U>diag(λ)U> and Kj =

Ujdiag(λj)U
>
j . Then we have S = U1diag(λ1)U

>
1 ⊗

. . . ⊗ UQdiag(λQ)U
>
Q ⊗ U>diag(λ)U> + τ−1I. With

the Kronecker product property, we can derive that

S = PΛP> + τ−1I (7)

where P = U1⊗ . . .⊗UQ⊗U and Λ = diag(λ1⊗ . . .⊗
λQ ⊗ λ). Note that since U and each Uk(1 ≤ k ≤ Q)
are eigenvectors and orthogonal, their Kronecker product is
orthogonal as well, i.e., P>P = PP> = I. Hence, we can
further obtain

S = P(Λ + τ−1I)P>, S−1 = P(Λ + τ−1I)−1P>. (8)

Using (8), we can compute the likelihood (6) very efficiently.
First, we find that log |S| = log |P(Λ + τ−1I)P>| =
log |P>P(Λ+τ−1I)| = log |Λ+τ−1|. Note that Λ+τ−1I
is a diagonal matrix and we only need to know the Nd
diagonal elements. We can compute a corresponding
d1 × . . .× dQ ×N tensor,

A = λ1 ◦ . . . ◦ λQ ◦ λ+ τ−11, (9)

where 1 is a tensor of full ones, and λ1 ◦ . . . ◦ λQ ◦
λ is the Kruskal operator (Kolda, 2006) that generates
a tensor where the element at c = (c1, . . . , cQ+1) is
λcQ+1

∏Q
k=1 λkck . To compute log |Λ + τ−1|, we can sum

over the logarithm of all the elements in A. In this way,
computing log |S| only takes O(Nd) time complexity.

Next, we observe that vec(Z)>S−1vec(Z) = b>b where
b = S−

1
2 vec(Z) = P(Λ + τ−1)−

1
2 P> · vec(Z). Since

P is a Kronecker product, we can recursively apply the
property of the Tucker operator (see (2)) to compute b:

T1 = Z ×1 U>1 . . .×Q U>Q ×Q+1 U>,

T2 = T1 �A•− 1
2 ,

T3 = T2 ×1 U1 . . .×Q UQ ×Q+1 U,

b = vec(T3), (10)

where � is the element-wise product, and (·)•− 1
2 is to take

the power of − 1
2 element-wisely. Hence, A•− 1

2 correspond
to the diagonal of (Λ + τ−1I)−

1
2 . The time complexity of

(10) is O
(
Nd(

∑Q
k=1 dk +N)

)
.

Now, we consider the gradient calculation. Since all the
parameters — V, τ and the kernel parameters — are only
included in the covariance S, we can derive the derivative
for S first and then apply the chain rule to calculate the
gradient w.r.t to different parameters. It is easy to obtain

∇L = −1

2
tr(S−1∇S) +

1

2
g>∇Sg (11)

where g = S−1vec(Z).

We first consider the derivative for the inverse variance τ .
Since ∇S = −τ−2I∇τ , we can obtain

∇L
∇τ

=
1

2
τ−2

(
tr(S−1)− g>g

)
. (12)



Shandian Zhe, Wei Xing, Robert M. Kirby

According to (8), tr(S−1) = tr
(
(Λ + τ−1I)−1

)
. Hence,

to compute this trace term, we can simply sum over all the
elements in the corresponding tensor A•−1. Furthermore,
the computation of g is very similar to that of b (see (10)),
and has the same complexity.

We then consider the derivative for all the other parameters.
They are included in the kernel matrices. We first derive
the derivative w.r.t each kernel matrix, and apply the chain
rule to compute the derivatives w.r.t the latent coordinate
features V and kernel parameters. Take K1 as an exam-
ple. We observe that ∇S = ∇K1 ⊗ K2 ⊗ . . . ⊗ KQ ⊗
K = U1(U

>
1 ∇K1U1)U

>
1 ⊗ U2diag(λ2)U

>
2 ⊗ . . . ⊗

UQdiag(λQ)U
>
Q ⊗ Udiag(λ)U> = P

(
U>1 ∇K1U1 ⊗

diag(λ2) ⊗ . . . ⊗ diag(λQ) ⊗ diag(λ)
)
P>. Combin-

ing with (8), we can derive that tr(S−1∇S) = tr
(
(Λ +

τ−1I)−1(U>1 ∇K1U1 ⊗ diag(λ2) ⊗ . . . ⊗ diag(λQ) ⊗
diag(λ))

)
=
(
diag>(U>1 ∇K1U1) ⊗ λ>2 ⊗ . . . ⊗ λ>Q ⊗

λ>
)
vec(A•−1). Using the property of the Tucker operator

again, we have

tr(S−1∇S) = vec
(
A•−1 ×1 diag

>(U>1 ∇K1U1)×2 λ
>
2

. . .×Q λ>Q ×Q+1 λ
>) = tr(U1diag(b1)U

>
1 ∇K1), (13)

where b1 = A•−1 ×2 λ
>
2 . . .×Q λ>Q ×Q+1 λ

>. Note that
after this multiplication, b1 becomes a d1 dimensional vec-
tor. The cost of (13) (including applying the chain-rule to
calculate the derivatives of kernel parameters and/or latent
coordinate features) is dominated by the calculation of b1,
and only takes O(Nd) time complexity.

We then look into g>∇Sg in (11). Combing (8), Tucker
and Kruskal operators, we follow the similar idea as above
to obtain that g>∇Sg = vec(G)>vec(H×1 U>1 ∇K1U1)
where G = A•−1 � (Z ×1 U>1 . . . ×Q U>Q ×Q+1 U>),
andH = G ×2 diag(λ2) . . .×Q diag(λQ)×Q+1 diag(λ).
We further unfold G and H at mode 1 to obtain two d1 ×
(N
∏Q+1
k=2 dk) matrices, G and H. Then we have

g>∇Sg = tr(U1GH>U>1 ∇K1). (14)

The cost of (14) is obviously dominated by the computa-
tion of G, H and their product, and the time complexity
is O

(
Nd(

∑Q
k=1 dk +N)

)
. We use the same procedure to

derive the derivatives for all the other kernel matrices, ap-
ply the chain rule to calculate the derivatives of the kernel
parameters and latent coordinate features, and finally add
them together to obtain the gradient of the model likelihood.

We can use any gradient-based optimization algorithm to
maximize the model likelihood for inference. We used L-
BFGS throughout our experiments.
4.2 Prediction
Given a new input x∗, the predictive distribution of the d
outputs, tensorized as Y∗, is computed through a conditional
Gaussian distribution,

p(Y∗|x∗,D) = N
(
vec(Y∗)|µ∗,Σ∗

)

where µ∗ = (K1 ⊗ . . .⊗KQ ⊗ k∗)g, Σ∗ = (K1 ⊗ . . .⊗
KQ)k(x∗,x∗)− (K1 ⊗ . . .⊗KQ ⊗ k∗)S

−1(K1 ⊗ . . .⊗
KQ ⊗ k>∗ ), and k∗ = [k(x∗,x1), . . . , k(x

∗,xN )].

We can use the Tucker operator to efficiently compute
the predictive mean µ∗. However, when d is large, it
is not practical to compute the d × d predictive covari-
ance matrix Σ∗. Nonetheless, we can compute the vari-
ance of each individual output efficiently. Specifically, us-
ing (8) and the eigendecomposition of each kernel matrix,
we can derive that Σ∗ = (K1 ⊗ . . . ⊗ KQ)k(x∗,x∗) −
LL> where L =

(
U1 ⊗ . . . ⊗UQ ⊗ k∗K

−1U
)(

Λ(Λ +

τ−1I)−
1
2

)
. Therefore, the variances of all the outputs

are diag(Σ∗) = k(x∗,x∗)diag(K1 ⊗ . . . ⊗ KQ) −
diag(LL>) = k(x∗,x∗)diag(K1 ⊗ . . . ⊗KQ) − L•2 · 1.
We then calculate these variances through tensor algebra,
diag(Σ∗) = vec(M), whereM = k(x∗,x∗)·

(
diag(K1)◦

. . .◦diag(KQ)
)
+S •2×1U

•2
1 . . .×QU•2

Q×Q+1(k∗K
−1U)•2

and S = (λ1◦. . .◦λQ◦λ)�A•− 1
2 . Note that S corresponds

to the diagonal matrix Λ(Λ + τ−1I)−
1
2 in L. Since the

computation for both µ∗ and diag(Σ∗) involves the Tucker
operator, the time complexity is O

(
Nd(

∑Q
k=1 dk +N)

)
.

4.3 Algorithm Complexity
The overall time complexity for inference and prediction is
O
(
Nd(

∑Q
k=1 dk +N)

)
which is dominated by the Tucker

operator. The space complexity isO
(
Nd+N2+

∑Q
k=1(d

2
k+

dkrk)
)
, including the storage of the training data, the latent

coordinate features in each tensor mode, and the kernel
matrices of the latent features and the inputs. Obviously, the
way to tensorize the outputs can significantly influence the
computational complexity.
Lemma 4.1. If we can arrange d outputs into a Q-mode
tensor with an equal dimension in each mode, and Qd

1
Q ≤

N , the time complexity of HOGPR is O(N2d) — linear to
the number of outputs. Such Q always exists when d ≤ eN

e .

The proof is given in the supplementary material. To identify
an appropriate mode number Q, we can start with logdN ,
and gradually increase it until the condition Qd

1
Q ≤ N is

satisfied. The restriction for the number of outputs d is quite
mild — when we have 100 samples, the linear scalability
maintains until d grows to 9.5× 1015 (9, 500 trillion).

5 Related Works
Seminal works were proposed for multi-output GP regres-
sion. One type of methods (Higdon, 2002; Boyle and Frean,
2005; Teh et al., 2005; Bonilla et al., 2008) can be con-
sidered as convolved GPs that convolve smoothing kernels
with a set of latent functions to produce the outputs. De-
spite the elegance, they have to use friendly (but perhaps
less expressive) kernels, e.g., Gaussian and delta, to ensure
analytical convolutions. This might restrict their flexibility
to exploit more expressive kernels. Moreover, their time
complexity (O

(
(Nd)3

)
) is prohibitively expensive and not

scalable to high-dimensional outputs. To alleviate this issue,
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several sparse approximations were proposed (Alvarez and
Lawrence, 2009; Álvarez et al., 2010). Another type of
methods (Higdon et al., 2008; Xing et al., 2015, 2016), use
a linear combination of fixed bases to model the outputs,
and hence can efficiently handle a large number of outputs.
However, the linear structure might be oversimplified and
inflexible to capture more complex output correlations. To
address these issues, we propose HOGPR that does not im-
pose any linear structure, and can exploit arbitrary kernel
functions to model complex correlations. The Kronecker
product in HOGPR further allows us to develop an exact in-
ference algorithm scalable to very high-dimensional outputs.
Recently, the Kronecker product has also been used for effi-
cient approximate inference for single-output GPs (Wilson
and Nickisch, 2015; Izmailov et al., 2018), specifically with
factorized kernels (e.g., RBF). These works place inducing
points and/or their variational posterior on grids of input
dimensions to generate Kronecker products, and combine
with interpolations to speed up computation. Although for
a completely different problem, our model formulation re-
sembles the infinite Tucker (InfTucker) decomposition (Xu
et al., 2012) in multi-aspect data analysis. The key differ-
ence is that our model is a hybrid of a GP and latent GP
model while InfTucker is purely a latent GP without any
observed inputs; our model predicts the test outputs as an
empty full tensor, while InfTucker the missing entry values
in the training tensor. Although both methods use intensive
tensor algebra for efficient inference, our method directly
computes the marginal likelihood and gradient for optimiza-
tion, while InfTucker uses alternative EM steps which seems
unnecessary and could converge more slowly.

The idea of tensorization has been applied in learning com-
pact neural networks (Novikov et al., 2015; Yang et al.,
2017; Ye et al., 2018). In these works, the network weights
are organized as tensors, and then replaced in training by
a low-rank approximation, e.g., the tensor-train (Oseledets,
2011) decomposition, to reduce the number of parame-
ters. HOGPR, however, tensorizes the high-dimensional
(observed) outputs rather than the model parameters.

6 Experiments
6.1 Small-Scale Multi-Output Regression
We first examined HOGPR on small datasets from three
real-world applications: Cantilever, PM2.51 and GeneExp2.
Cantilever are material structures that have the maximum
stiffness when bearing forces from the right side. In each
instance, the input defines a force, and the outputs are a
100 dimensional vector that describes the structure in the
10 × 10 squared domain. PM2.5 measures the particulate
matter pollution (PM) in Salt Lake City during July 4-7,
2018, including 100 spatial measurements (i.e., 100 out-
puts). GeneExp comprise the expressions of 1, 643 genes

1http://www.aqandu.org/
2https://www.synapse.org/#!Synapse:

syn2787209/wiki/70349

(i.e., outputs) measured by different microarrays. Each mi-
croarray is described by a 10 dimensional vector.

Competing Methods. We compared HOGPR with the fol-
lowing multi-output GP methods. (1) SCGPR — sparse
convolved GP regression (Alvarez and Lawrence, 2009).
The standard convolved GPs are infeasible for our datasets
(even the smallest one). Hence, we used sparse approxima-
tions. (2) PCA-GPR (Higdon et al., 2008) — multi-output
GP regression methods using a linear combination of fixed
bases to produce the outputs. Here the bases are obtained
from Principal Component Analysis (PCA) on the training
outputs. We also compared with two cogenetic methods, (3)
IsoMap-GPR (Xing et al., 2015) and (4) KPCA-GPR (Xing
et al., 2016) that obtain the bases by IsoMap (Balasubrama-
nian and Schwartz, 2002) and Kernel PCA (Schölkopf et al.,
1998), respectively.

Parameter Settings. For HOGPR, we organized the out-
puts for Cantilever, PM2.5 and GeneExp, into 2-mode ten-
sors of sizes 10×10, 10×10 and 31×53, respectively. We
employed the same number of latent features in each mode,
i.e., r1 = . . . = rQ = r, and varied r from {1, 2, 5, 10}.
The initialization of the latent features were element-wisely
drawn from the uniform distribution in [0, 1]. For SCGPR,
we set the number of inducing points to one-fourth of the
training sample size, and varied the number of latent func-
tions from {1, 2, 5, 10}. We used Gaussian smoothing ker-
nels. For PCA-GPR, IsoMAP-GPR and KPCA-GPR, we
varied the number of bases from the same range as well. All
the methods were implemented with MATLAB 2017. For
SCGPR, we used the implementation by the authors and
their group — the MULTIGP3 software package. From
each dataset, we randomly selected {128, 256} samples
for training, and from the remaining data 100 samples for
test. All the datasets were normalized. We repeated this
procedure for 5 times, and report the average Root-Mean-
Squared-Error (RMSE). We used the ARD squared expo-
nential kernel for all the methods, and the same initialization
for the kernel parameters and the inverse variance.

The results are reported in Fig. 1. As we can see, HOGPR
outperforms the competing methods in most of the cases,
and often improves upon them by a large margin. It is worth
noting that SCGPR is not very stable when the number of
latent functions is set to 1 (see Fig. 1c,e,f). For example, in
Fig. 1e, the average RMSE of SCGPR (i.e., 8.4) turned out
to be far larger than all the other methods and hence was not
shown. In contrast, our method performed well even when
only taking one latent feature (in each mode).

6.2 Topology Structure Design
We next applied HOGPR to predict optimal topology struc-
tures to withstand specific external forces. A topology struc-
ture is a layout of given materials (e.g., concretes and alloys)
in the designated spatial domain; the optimal structure is

3https://github.com/SheffieldML/multigp

http://www.aqandu.org/
https://www.synapse.org/#!Synapse:syn2787209/wiki/70349
https://www.synapse.org/#!Synapse:syn2787209/wiki/70349
https://github.com/SheffieldML/multigp
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Figure 1: The root-mean-squared-error (RMSE) of all the multi-output regression methods on three small datasets. The results were
averaged from 5 runs. The x-axis represents the number of the latent features for HOGPR, latent functions for SCGPR and bases for
PCA-GPR, IsoMap-GPR and KPCA-GPR. Note that some results of SCGPR are not shown because they are much larger than all the
other methods.
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Figure 2: The mean-absolute-error (MAE) on the topology design
datasets (3, 600 outputs) w.r.t various numbers of training samples.
For each particular training set size, the results were averaged
over 5 runs. Numbers in the legend indicate the number of latent
features, latent functions and bases for HOGPR, SCGPR, and
{PCA-GPR, IsoMap-GPR, KPCA-GPR}, respectively. SCGPR
failed and has no results when the number of training samples is
larger than 1024, 512 or 256 and the latent functions {1, 2}, 5 or
10, respectively.

required to achieve the maximum load or stiffness. Finding
optimal topology structures is critical to many part design
and manufacturing problems, such as 3D printing, airfoil
and slab bridge design. Traditionally, it is modeled as a
constrained optimization problem that minimizes a compli-
ance subject to a total volume constraint (Sigmund, 1997).
However, the numerical computation is usually exceedingly

(a) Ground-truth

(b) HOGPR

(c) PCA-GPR

(d) IsoMap-GPR

(e) KPCA-GPR

Figure 3: The predicted topology structures for 9 different exter-
nal forces. The number of the latent features for HOGPR, and the
bases for PCA-GPR, IsoMAP-GPR and KPCA-GPR were set to
10. All the models were trained on 5, 120 samples.

expensive. Here, we aim to learn a multi-output regression
model to directly predict the optimal structures (given the
force settings) and to prevent the costly optimization.

The dataset was generated by following the stress experi-
ment in (Keshavarzzadeh et al., 2018), within an L-shape
domain. Each structure is represented by a 3, 600 dimen-
sional vector, and the force by a 3 dimensional vector. We
collected 6, 000 structures. For HOGPR, we organized the
outputs (i.e., each structure) into a 2-mode 60× 60 tensor.
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Figure 4: The mean-absolute-error (MAE) in predicting pressure fields with one million outputs. The results were averaged from 5 runs.

We used 128 structures for test, and ran all the methods on
training sets of a wide range of sizes, from 16 to 5, 120. For
each size, we performed 5 runs on the randomly selected
the training/test structures, and calculated the average Mean
Absolute Error (MAE).

The predictive performance of all the methods is shown in
Fig. 2. We found that although using sparse approxima-
tions, SCGPR failed to run due to numerical errors/excessive
memory consumptions when the training set size grows to a
certain degree (e.g., 1, 024 with one latent function). Similar
to the results in Section 6.1, the performance of SCGPR is
not stable, especially when the number of latent functions is
small (1 or 2). In general, the prediction accuracies of all the
methods are close at the beginning, i.e., the training size is
small. When the training size grows, say, over 1K, HOGPR
exhibits evident improvement upon all the competing meth-
ods and the improvement grows as well. This might because
at the beginning the training set is too small to provide ef-
fective information such that all the methods end up with
poor predictive performance. When training samples are
sufficient, HOGPR is able to capture the complex output cor-
relations (better and better) and exhibits superior prediction
accuracy.

To enable a fine-grained comparison, we visualize 9 struc-
tures predicted by all the methods except SCGPR (when the
number of latent features/bases is set to 10, and training sam-
ples 5, 120) and the ground-truth. As shown in Fig. 3, the
structures predicted by HOGPR are closest to the optimal
structures (i.e., the ground-truth). PCA-GPR often predicted
inaccurate material intensity (see the first and last structure
in Fig. 3c) and blurred local structures. While IsoMap-GPR
and KPCA-GPR yielded clearer local structures, their local
details often deviate significantly from the ground-truth (see
the second to sixth and ninth structures in Fig. 3d, third to
seventh structures in Fig. 3e).
6.3 Large Physical Simulations Based on the Incom-

pressible Navier-Stokes Equations
Finally, we examined HOGPR in a large-scale problem to
predict one million outputs for each input. Specifically, the
task is to predict the pressure field of the lid-driven cavity
flow (Bozeman and Dalton, 1973). The liquid inside a cavity
is driven by the walls, causing different pressures locally

and eventually leading to turbulent flow inside the cavity.
The simulation of the field involves solving the incompress-
ible Navier-Stokes equations (Chorin, 1968) which are well
known to be challenging to solve due to their complicated
behaviors under large Reynolds numbers. Hence, in most
cases, fine-grained meshes are required to ensure conver-
gence of the numerical solver. This implies that the output
field is very high dimensional. For each boundary condition
(represented by a 5 dimensional input vector), we simulated
a field of one million dimensions. Due to the computational
cost, we only collected 400 instances. Therefore, this is
a typical “large d, small N” problem. We organized each
output field into a 100 × 100 × 100 tensor. We randomly
selected 128 fields for test, and {64, 128, 256} instances for
training. We only compared with PCA-GPR, IsoMAP-GPR
and KPCA-GPR, because SCGPR is infeasible. We ran-
domly selected the training and test fields, computed the
test MAE for each method, and repeated 5 times to report
the average MAE. The results are shown in Fig. 4. As we
can see, in most of the cases, HOGPR outperforms the com-
peting methods by a large margin, demonstrating superior
predictive performance. The running time of HOGPR on
256 samples are {8.9, 9.2, 9.3, 10.0} minutes per-iteration
for r = 1, 2, 5, 10, while PCA-GPR, IsoMAP-GRP and
KPCA-GPR are much faster, taking less than one minute.
This is as expected, because the competing methods use a
linear combination of fixed bases to predict the outputs, and
only need to estimate the coefficients of the bases. This
will drastically reduce the computation overhead. However,
HOGPR possessed more flexibility to capture complex cor-
relations among outputs (via all kinds of kernels) so as to
improve the predictive power. In the mean time, HOGPR
can achieve a linear scalability to large output dimensions.

7 Conclusion
We have proposed HOGPR, a GP model for high-
dimensional output regression. HOGPR not only is flexible
to incorporate arbitrary kernels to model/capture complex
output correlations, but also enables exact, scalable infer-
ence for a large number of outputs.
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