
LF-PPL: A Low-Level First Order Probabilistic Programming
Language for Non-Di↵erentiable Models

Yuan Zhou*,1 Bradley J. Gram-Hansen*,1 Tobias Kohn2,† Tom Rainforth1

Hongseok Yang3 Frank Wood4

1University of Oxford 2University of Cambridge 3KAIST 4University of British Columbia

Abstract

We develop a new Low-level, First-order Prob-
abilistic Programming Language (LF-PPL)
suited for models containing a mix of contin-
uous, discrete, and/or piecewise-continuous
variables. The key success of this language
and its compilation scheme is in its ability
to automatically distinguish parameters the
density function is discontinuous with respect
to, while further providing runtime checks
for boundary crossings. This enables the in-
troduction of new inference engines that are
able to exploit gradient information, while
remaining e�cient for models which are not
everywhere di↵erentiable. We demonstrate
this ability by incorporating a discontinuous
Hamiltonian Monte Carlo (DHMC) inference
engine that is able to deliver automated and
e�cient inference for non-di↵erentiable mod-
els. Our system is backed up by a mathemat-
ical formalism that ensures that any model
expressed in this language has a density with
measure zero discontinuities to maintain the
validity of the inference engine.

1 Introduction

Non-di↵erentiable densities arise in a huge variety of
common probabilistic models [1, 2]. Often, but not
exclusively, they occur due to the presence of dis-
crete variables. In the context of probabilistic pro-
gramming [3, 4, 5, 6] such densities are often induced
via branching, i.e. if-else statements, where the
predicates depend upon the latent variables of the
model. Unfortunately, performing e�cient and scalable
inference in models with non-di↵erentiable densities

⇤
Equal contribution,

†
Work completed while at Oxford.

Proceedings of the 22
nd

International Conference on Ar-

tificial Intelligence and Statistics (AISTATS) 2019, Naha,

Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by

the author(s).

is di�cult and algorithms adapted for such problems
typically require specific knowledge about the discon-
tinuities [7, 8, 9], such as which variables the target
density is discontinuous with respect to and catching
occurrences of the sampler crossing a discontinuity
boundary. However, detecting when discontinuities oc-
cur is di�cult and problem dependent. Consequently,
automating specialized inference algorithms in proba-
bilistic programming languages (PPLs) is challenging.

To address this problem, we introduce a new Low-level
First-order Probabilistic Programming Language (LF-
PPL), with a novel accompanying compilation scheme.
Our language is based around carefully chosen math-
ematical constraints, such that the set of discontinu-
ities in the density function of any model written in
LF-PPL will have measure zero. This is an essential
property for many inference algorithms designed for
non-di↵erentiable densities [7, 8, 9, 10, 11]. Our accom-
panying compilation scheme automatically classifies
discontinuous and continuous random variables for any
model specified in our language. Moreover, this scheme
can be used to detect transitions across discontinuity
boundaries at runtime, providing important informa-
tion for running such inference schemes.

Relative to previous languages, LF-PPL enables one
to incorporate a broader class of specialized inference
techniques as automated inference engines. In doing
so, it removes the burden from the user of manually
establishing which variables the target is not di↵eren-
tiable with respect to. Its low-level nature is driven
by a desire to establish the minimum language require-
ments to support inference engines tailored to problems
with measure-zero discontinuities, and to allow for a
formal proof of correctness. Though still usable in its
own right, our main intention is that it will be used
as a compilation target for existing systems, or as an
intermediate system for designing new languages.

There are a number of di↵erent derivative-based in-
ference paradigms for which LF-PPL can help ex-
tend to non-di↵erentiable setups [7, 8, 9, 10, 11]. Of
particular note, are stochastic variational inference

LF-PPL

(SVI) [12, 13, 14, 15] and Hamiltonian Monte Carlo
(HMC) [16, 17], two of the most widely used approaches
for probabilistic programming inference.

In the context of the former, [9] recently showed that
the reparameterization trick can be generalized to piece-
wise di↵erentiable models when the non-di↵erentiable
boundaries can be identified, leading to an approach
which provides significant improvements over previous
methods that do not explicitly account for the discon-
tinuities. LF-PPL provides a framework that could be
used to apply their approach in a probabilistic program-
ming setting, thereby paving the way for significant
performance improvements for such models.

Similarly, many variants of HMC have been pro-
posed in recent years to improve the sample e�-
ciency and scalability when the target density is non-
di↵erentiable [7, 8, 18, 19, 20]. Despite this, no prob-
abilitic programming systems (PPSs) support these
tailored approaches at present, as the underlying lan-
guages are not able to extract the necessary information
for their automation. The novel compilation approach
of LF-PPL provides key information for running such
approaches, enabling their implementation as auto-
mated inference engines. We realize this potential by
implementing Discontinuous HMC (DHMC) [8] as an
inference engine in LF-PPL, allowing for e�cient, auto-
mated, HMC-based inference in models with a mixture
of continuous and discontinuous variables.

2 Background and Related Work

There exists a number of di↵erent approaches to prob-
abilistic programming that are built around a variety
of semantics and inference engines. Of particular rel-
evance to our work are PPSs designed around deriva-
tive based inference methods that exploit automatic
di↵erentiation [21], such as Stan [6], PyMC3 [22], Ed-
ward [23], Turing [24] and Pyro [25]. Derivative based
inference algorithms have been an essential component
in enabling these systems to provide e�cient and, in
particular, scalable inference, permitting both large
datasets and high dimensional models.

One important challenge for these systems occurs in
dealing with probabilistic programs that contain discon-
tinuous densities and/or variables. From the statistical
perspective, dealing with discontinuities is often impor-
tant for conducting e↵ective inference. For example, in
HMC, discontinuities can cause statistical ine�ciency
by inducing large errors in the leapfrog integrator, lead-
ing to potentially very low acceptance rates [7, 8]. In
other words, though the leapfrog integrator remains
a valid, reversible, MCMC proposal even when dis-
continuities break the reversibility of the Hamiltonian
dynamics themselves, they can undermine the e↵ective-
ness of this proposal.

Di↵erent methods have been suggested to improve in-
ference performance in models with discontinuous den-
sities. For example, they use sophisticated integrators
in the HMC setting to remain e↵ective when there are
discontinuities. Analogously, in the variational infer-
ence and deep learning literature, reparameterization
methods have been proposed that allow training for
discontinuous targets and discrete variables [9, 26].

However, these advanced methods are, in general, not
incorporated in existing gradient-based PPSs, as ex-
isting systems do not have adequate support to deal
with the discontinuities in the density functions of the
model defined by probabilistic programs. This is usu-
ally necessary to guarantee the correct execution of
those inference methods in an automated fashion, as
many require the set of discontinuities to be of measure
zero. That is, the union of all points where the density
is discontinuous have zero measure with respect to the
Lebesgue measure. In addition to this, some further
methods require knowledge of where the discontinuities
are, or at least catching occurrences of discontinuity
boundaries being crossed.

Of particular relevance to our language and compila-
tion scheme are compilers which compile the program
to an artifact representing a direct acyclic graphical
model (DAG), such as those employed in BUGS [27]
and, in particular, the first order PPL (FOPPL) ex-
plored in [28]. Although the dependency structures
of the programs in our language are established in a
similar manner, unlike these setups, programs in our
language will not always correspond to a DAG, due to
di↵erent restrictions on our density factors, as will be
explained in the next section. We also impose necessary
constraints on the language by limiting the functions
allowed to ensure that the advanced inference processes
remain valid.

3 The Language

LF-PPL adopts a Lisp-like syntax, like that of Church
[4] and Anglican [5]. The syntax contains two key
special forms, sample and observe, between which the
distribution of the query is defined and whose interpre-
tation and syntax is analogous to that of Anglican.

More precisely, sample is used for drawing random
variables, returning that variable, and observe factors
the density of the program using existing variables
and fixed observations, returning zero. Both special
forms are designed to take a distribution object as
input, with observe further taking an observed value.
These distribution objects form the elementary random
procedures of the language and are constructed using
one of a number of internal constructors for common
objects such as normal and bernoulli. Figure 1 shows
an example of an LF-PPL program.

Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, Frank Wood

(let [x (sample (uniform 0 1))]
(if (< (- q x) 0)

(observe (normal 1 1) y)
(observe (normal 0 1) y))

(< (- q x) 0))

Figure 1: An example LF-PPL program sampling
x from a uniform random variable and invoking a
choice between two observe statements that factor
the trace weight using di↵erent Gaussian likelihoods.
The (< (- q x) 0) term, which is usually written as
((q � x) < 0), represents a Bernoulli variable param-
eterized by q and its boolean value also corresponds
to which branch of the if statement is taken. The
slightly unusual writing of the program is due to its
deliberate low-level nature, with almost all syntactic
sugar removed. One sugar that has been left in for
exposition is an additional term in the let block, i.e.
(let [x e] e e), which can be trivially unraveled.

A distribution object constructor of particular note is
factor, which can only be used with observe. Including
the statement (observe (factor log-p) _) will factor
the program density using the value of (exp log-p),
with no dependency on the observed value itself (here
_). The significance of factor is that it allows the spec-
ification of arbitrary unnormalized target distributions,
quantified as log-p which can be generated internally
in the program, and thus have the form of any deter-
ministic function of the variables that can be written
in the language.

Unlike many first-order PPLs, such as that of [28], LF-
PPL programs do not permit interpretation as DAGs
because we allow the observation of internally sampled
variables and the use of factor. This increases the
range of models that can be encoded and is, for example,
critical in allowing undirected models to be written.
LF-PPL programs need not correspond to a correctly
normalized joint formed by the combination of prior
and likelihood terms. Instead we interpret the density
of a program in the manner outlined by [29, §4.3.2
and §4.4.3], noting that for any LF-PPL program, the
number of sample and observe statements (i.e. nx and
ny in their notation) must be fixed, a restriction that
is checked during the compilation.

To formalize the syntax of LF-PPL, let us use x for
a real-valued variable, c for a real number, op for an
analytic primitive operation on reals, such as +, -,
*, / and exp, and d for a distribution object whose
density is defined with respect to a Lebesgue measure
and is piecewise smooth under analytic partition (See
Definition 1). Then the syntax of expressions e in our
language are given as:
e ::=x | c | (op e . . . e) | (if (< e 0) e e) | (let [x e] e)

| (sample (d e . . . e)) | (observe (d e . . . e) c)

Our syntax is deliberately low-level to permit theoret-

ical analysis and aid the exposition of the compiler.
However, common syntactic sugar such as for-loops
and higher-level branching statements can be trivially
included using straightforward unravellings. Similarly,
we can permit discrete variable distribution objects by
noting that these can themselves be desugared to a com-
bination of continuous random variables and branching
statements. Thus, it is straightforward to extend this
minimalistic framework to a more user-friendly lan-
guage using standard compilation approaches, such
that LF-PPL will form an intermediate representation.
For implementation and code, see https://github.
com/bradleygramhansen/PyLFPPL.

4 Compilation Scheme

We now provide a high-level description of how the
compilation process works. Specifically, we will show
how it transforms an arbitrary LF-PPL program to a
representation that can be exploited by an inference
engine that makes of use of discontinuity information.

The compilation scheme performs three core tasks: a)
finding the variables which the target is discontinu-
ous with respect to, b) extracting the density of the
program to a convenient form that can be used by an
inference engine, and c) allowing boundary crossings
to be detected at runtime. Key to providing these fea-
tures is the construction of an internal representation
of the program that specifies the dependency structure
of the variables, the Linearized Intermediate Represen-

tation (LIR). The LIR contains vertices, arc pairs, and
information of the if predicates. Each vertex of the
LIR denotes a sample or observe statement, of which
only a finite and fix number can occur in LF-PPL. The
arcs of the LIR define both the probabilistic and if

condition dependencies of the variables. The former
of these are constructed in same was as is done in the
FOPPL compiler detailed in [28].

Using the dependency structure represented by the
LIR, we can establish which variables are capable of
changing the path taken by a program trace, that is the
change the branch taken by one or more if statements.
Because discontinuities only occur in LF-PPL through
if statements, the target must be continuous with
respect to any variables not capable of changing the
traversed path. We can thus mark these variables
as being “continuous”. Though it is possible for the
target to still be continuous with respect to variables
that appear in, or have dependent variables appearing
in, the branching function of an if statement, such
cases cannot, in general, be statically established. We
therefore mark all such variables as “discontinuous”.

To extract the density to a convenient form for the
inference engine, the compiler transforms the program
into a collection four sets—�,�, D, and F—by recur-

https://github.com/bradleygramhansen/PyLFPPL
https://github.com/bradleygramhansen/PyLFPPL

LF-PPL

sively applying the translation rules given in Section 5.2.
Here � specifies the set of all variables sampled in the
program, while � specifies only the variables marked as
discontinuous. D represents the density associated with
all the sample statements in a program, while F rep-
resents the density factors originating for the observe

statements, along with information on the program re-
turn value. These densities are themselves represented
through a collection of smooth density terms and indi-
cator functions truncating them into disjoint regions,
each corresponding to a particular program path. This
construction will be discussed in depth in Section 5.2.

To catch boundary crossings at run time, each if pred-
icate is assigned a unique boolean variable within the
LIR. We refer to these variables as branching variables.
The boolean value of the branching variable denotes
whether the current sample falls into the true or false
branch of the corresponding if statement and is used
to signal boundary crossings at runtime. Specifically, if
one branching variable changes its boolean value, this
indicates that at least one sampled variables e↵ecting
that if predicate has crossed the boundary. The infer-
ence engine can therefore track changes in the set of
all Boolean values to catch the boundary crossings.

We finish the section by noting two limitations of the
compiler and for discontinuity detection more gener-
ally. Firstly, we note that it is possible to construct
programs which have piecewise smooth densities that
contain regions of zero density. Though it is important
to allow this ability, for example to construct truncated
distributions, it may cause issues for certain inference
algorithms if it causes the target to have disconnected
regions of non-zero density. As analytic densities are
either zero everywhere or “almost-nowhere” (see Sec-
tion 5.1), we (informally) have that all realizations of
a program that take a particular path will either have
zero density or all have a non-zero density. Conse-
quently, it is relatively straight forward to establish if a
program has regions of zero density. However, whether
these regions lead to “gaps” is far more challenging,
and potentially impossible, to establish. Moreover,
constructing inference procedures for such problems is
extremely challenging. We therefore do not attempt to
tackle this issue in the current work.

A second limitation is that changes in the vector of
branching variables is only a su�cient condition for
the occurrence of a boundary crossing. This is because
it is possible for multiple boundaries to be crossed in
a single update that results in the new sample follow-
ing the same path as the old one. For example, when
moving from x = �0.5 to x = 1.5 then a branching
variable corresponding to x3 � x > 0 returns true in
both cases even though we have crossed two bound-
aries. The problem of establishing with certainty that

no boundaries have been crossed when moving between
two points is mathematically intractable in the general
case. As this problem is not specific to the probabilistic
programming setting, we do not give it further con-
sideration here, noting only that it is important from
the perspective of designing inference algorithms that
convergence is not undermined by such occurrences.

5 Mathematical Foundation and
Compilation Details

Our story so far was developed by introducing a low-
level first-order probabilistic programming language
(LF-PPL) and its accompanying compilation scheme.
We shall now expose the underlying mathematical de-
tails, which ensure that discontinuities contained within
the densities of the programs one can compile in LF-
PPL are of a suitable measure. This enables us to
satisfy the requirements of several inference algorithms
for non-di↵erentiable densities. We also provide the
formal translation rules of the LF-PPL, which are built
around these mathematical underpinnings.

5.1 Piecewise Smooth Functions

A function G : Rk ! R is analytic if it is infinitely
di↵erentiable and its multivariate Taylor expansion at
any point x0 2 Rk absolutely converges to G point-wise
in a neighborhood of x0. Most primitive functions that
we encounter in machine learning and statistics are
analytic, and the composition of analytic functions is
also analytic.

Definition 1. A function G : Rk ! R is piecewise
smooth under analytic partition if it has the following

form:

G(x) =
NX

i=1

0

@
MiY

j=1

[pi,j(x) � 0] ·
OiY

l=1

[qi,l(x) < 0] · hi(x)

1

A

where

1. the pi,j , qi,l : Rk ! R are analytic;

2. the hi : Rk ! R are smooth;

3. N is a positive integer or 1;

4. Mi, Oi are non-negative integers; and

5. the indicator functions
MiY

j=1

[pi,j(x) � 0] ·
OiY

l=1

[qi,l(x) < 0]

for the indices i define a partition of Rk
, that is,

the following family forms a partition of Rk
:⇢n

x2Rk

��� 8j pi,j(x)� 0, 8l qi,l(x)< 0
o ��� 1 iN

�
.

Intuitively, G is a function defined by partitioning Rk

into finitely or countably many regions and using a
smooth function hi within region i. The products
of the indicator functions of these summands form a
partition of Rk, so that only one of these products gets

Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, Frank Wood

evaluated to a non-zero value at x. To evaluate the sum,
we just need to evaluate these products at x one-by-one
until we find one that returns a non-zero value. Then,
we have to compute the function hi corresponding to
this product at the input x. Even though the number
of summands (regions) N in the definition is countably
infinite, we can still compute the sum at a given x.

Theorem 1. If an unnormalized density P : Rn ! R+

has the form of Definition 1 and so is piecewise smooth

under analytic partition, then there exists a (Borel)

measurable subset A ✓ Rn
such that P is di↵erentiable

outside of A and the Lebesgue measure of A is zero.

The proof is given in Appendix A. The target density
being almost everywhere di↵erentiable with discontinu-
ities of measure zero is an important property required
by many inference techniques for non-di↵erentiable
models [8]. As we shall prove in Section 5.2, any pro-
gram that can be compiled in LF-PPL constructs a
density in the form of Definition 1, and thus satisfies
this necessary condition.

5.2 Translation Rules

5.2.1 Overview

The compilation scheme e (�,�, D, F) translates
a program, which can be denoted as an expression e
according to the syntax in Section 3, to a quadruple of
sets (�,�, D, F). The first set � represents the set of
all sampled random variables. All variables generated
from sample statements in e will be recognized and
stored in �. Variables that have not occurred in any if

predicate are guaranteed to be continuous. Otherwise,
they will be also put in � ✓ �, as the overall density is
discontinuous with respect to them. D represents the
densities from sample statements and has the form of
a set of the pairs, i.e. D = {(⌘1, k1), . . . , (⌘ND , kND)},
where ND is the number of the pairs, ⌘ denotes a
product of indicator functions indicating the partition
of the space, and k represents the products of the
densities defined by the sample statements. The last
set F contains the densities from observe statements
and the return expression of e. It is a set of tuples
F = {(⇣1, l1, v1), . . . , (⇣NF , lNF , vNF)}, where NF is the
number of the tuples, ⇣ functions similar to ⌘, l is the
product of the densities defined by observe statements
and v denotes the returning expression. Note that it is
a design choice to have v included in F .

Given e (�,�, D, F), one can then construct the
unnormalized density defined by the program e as

P :=
⇣ NDX

i=1

⌘i·ki
⌘
·
⇣ NFX

j=1

⇣j ·lj
⌘

(1)

which by Theorem 2 will be piecewise smooth under
analytic partitions.

Recall that by assumption, the density of each dis-
tribution type d is piecewise smooth under analytic
partition when viewed as a function of a sampled value
and its parameters. Thus, we can assume that the
probability density of a distribution has the form in
Definition 1. For each distribution d, we define a set
of pairs �(d)={(1,�1), . . . , (N� ,�N�)} where N� is
the number of the partitions, denotes the product of
indicator functions indicating the partition of the space,
taking the form of

Q
Mi

j=1 [pi,j(x)�0]·
Q

Oi

l=1 [qi,l(x)<0],
and � represents a smooth probability density func-
tion within that partition. One can then construct the
probability density function Pd for d from �(d). For
given parameters x1, . . . , xs of the distribution d and a
given sample value x0, we let x = (x0, . . . , xs) and the
probability density function defined by d is,

Pd(x0;x1, . . . , xs) =
XN�

n=1
 n(x) · �n(x)

For example, given x0 drawn from normal distribu-
tion N (µ,�), we have �(d) = {(1,N (x0 ;µ,�))} and
Pd(x0;µ,�) = N (x0 ;µ,�). Similarly a uniform U(a, b)
sampled variable x0 has �(d) as�

([x0�a<0], 0) , ([b�x0<0], 0) ,

([x0�a�0]· [b�x0�0], U(x0; a, b))

,

and Pd = [x0�a�0]· [b�x0�0]·U(x0; a, b). Note that
in practice one can omit the pair (n,�n) in �(d) when
�n=0 for simplicity and the probability density in the
region denoting by the corresponding n is zero.

5.2.2 Formal Translation Rules

The translation process e (�,�, D, F), is defined
recursively on the structure of e. We present this
recursive definition using the following notation

premise

conclusion
which says that if the premise holds, then the con-
clusion holds too. Also, for real-valued functions
f(x1, . . . , xn) and f 0(x1, . . . , xn) on real-valued in-
puts, we write f [xi := f 0] to denote the compo-
sition f(x1, . . . , xi�1, f 0(x1, . . . , xn), xi+1, . . . , xn). We
now define the formal translation rules.

The first two rules define how we map the set of vari-
ables x and the set of constants c, to their unnormalized
density and the values at which they are evaluated.

x ({x}, ;, {(1, 1)}, {(1, 1, x)})

c (;, ;, {(1, 1)}, {(1, 1, c)})
The third rule allows one to translate the primitive
operations op defined in the LF-PPL, such as +, -, *
and / with their argument expressions e1 to en, where
e1 to en will be evaluated first. Note that (⌘i, ki) 2 Di

represents the enumeration of all (⌘i, ki) pairs in Di

and the result of this operation among all the Di is the

LF-PPL

possible combination of all their elements. For example,
given three sets D1, D2 and D3 which have three, one
and two pairs respectively as their elements, the result
set D0 will have six pairs. This notation holds to the
rest of the paper.

ei (�i,�i, Di, Fi) for 1 i n

D0 = {(
Q

n

i=1 ⌘i,
Q

n

i=1 ki) | (⌘i, ki) 2 Di}
F 0 = {(

Q
n

i=1 ⇣i,
Q

n

i=1 li, op (v1, . . . , vn)) | (⇣i, li, vi) 2 Fi}
(op e1 . . . en) (

S
n

i=1 �i,
S

n

i=1 �i, D0, F 0)

The fourth rule for control flow operation if enables us
to translate the predicate (< e1 0), its consequent e2
and alternative e3. This provides us with the semantics
to correctly construct a piecewise smooth function, that
can be evaluated at each of the partitions.

ei (�i,�i, Di, Fi) for i = 1, 2, 3

D0 = {(
Q3

i=1 ⌘i,
Q3

i=1 ki) | (⌘i, ki) 2 Di}
F 0 = {(⇣1 · ⇣2 · [v1 < 0], l1 · l2, v2),

(⇣1 · ⇣3 · [v1 � 0], l1 · l3, v3) | (⇣i, li, vi) 2 Fi}
(if (< e1 0) e2 e3) (

S3
i=1 �i,�1 [�2 [�3, D0, F 0)

The translation rule for the sample statement generates
a random variable from a specific distribution. During
translation, we pick a fresh variable, i.e. a variable
with a unique name to represent this random variable
and add it to the � set. Then we compose the density
of this variable according to the distribution d and
corresponding parameters ei.

ei (�i,�i, Di, Fi) for i = 1, . . . , n
pick a fresh variable z

�0 = {z} [
S

n

i=1 �i, �0 =
S

n

i=1 �i

D0 = {(·
Q

n

i=1 ⇣i, �[x := (z, v1, . . . , vn)]) |
(,�) 2 �(d), (⇣i, li, vi) 2 Fi}

D0 = {(
Q

n

i=0 ⌘i,
Q

n

i=0 ki) | (⌘i, ki) 2 Di}
F 0 = {(

Q
n

i=1 ⇣i,
Q

n

i=1 li, z) | (⇣i, li, vi) 2 Fi}
(sample (d e1 . . . en)) (�0,�0, D0, F 0)

The translation rule for the observe statement, di↵erent
from the sample expression, factors the density accord-
ing to the distribution object, with all parameters ei
and the observed data c evaluated.
ei (�i,�i, Di, Fi) for i = 1, . . . , n

�0 =
S

n

i=1 �i, �0 =
S

n

i=1 �i

D0 = {(
Q

n

i=1 ⌘i,
Q

n

i=1 ki) | (⌘i, ki) 2 Di}
F 0 = {(·

Q
n

i=1 ⇣i, �[x := (c, v1, . . . , vn)]·
Q

n

i=1 li, 0) |
(,�) 2 �(d), (⇣i, li, vi) 2 Fi}

(observe (d e1 . . . en) c) (�0,�0, D0, F 0)

The translation rule for let expressions first translates
the definition e1 of x and the body e2 of let, and then
joins the results of these translations. When joining
the � and � sets, the rule checks whether x appears in
the sets from the translation of e2, and if so, it replaces

x by variable names appearing in e1, an expression that
defines x. Although let is defined as single binding, we
can construct the rules to translate the let expression,
defining and binding multiple variables by properly
desugaring.

ei (�i,�i, Di, Fi) for i = 1, 2
�0 = {z | (⇣1, l1, v1) 2 F1 and z occurs free in v1}
�0 = �1 [(�2 \ {x}) [(if (x 2 �2) then �0 else ;)
�0 = �1 [(�2 \ {x}) [(if (x 2 �2) then �0 else ;)
D0 = {(⇣1·⌘1·⌘2[x := v1], k1·k2[x := v1]) |

(⌘i, ki) 2 Di, (⇣1, l1, v1) 2 F1}
F 0 = {(⇣1·⇣2[x := v1], l1·l2[x := v1], v2[x := v1])

| (⇣i, li, vi) 2 Fi}
(let [x e1] e2) (�0, �0, D0, F 0)

Theorem 2. If e is an expression that does not con-

tain any free variables and e (�,�, D, F), then the

unnormalized density defined by e is in the form of

Equation 1. It is a real-valued function on the vari-

ables in �, which is non-negative and piecewise smooth

under analytic partition as per Definition 1.

The proof is provided in Appendix B. By providing
this set of mathematical translations we have been able
to prove that any such program written in LF-PPL
constructs a density in the form of Definition 1, which
is piecewise smooth under analytic partitions. Together
with Theorem 1, we further show that this density is
almost everywhere di↵erentiable and the discontinuities
are of measure zero, a necessary condition for several
inference schemes such as DHMC [8].

5.3 A Compilation Example

We now present a simple example of how the com-
piler transforms the program epp in Figure 1 to the
quadruple (�pp,�pp, Dpp, Fpp). The translation rules
are applied recursively and within each rule, all indi-
vidual components are compiled eagerly first. Namely,
we step into each individual component and step out
until it is fully compiled. A desugared version of epp is:

(let [x (sample (uniform 0 1))]
(let [x_ (if (< (- q x) 0)

(observe (normal 1 1) y)
(observe (normal 0 1) y))]

(< (- q x) 0)))

where q and y are constant and x is not used. It
follows the following steps.

i. Rule (let [x e1,out] e2,out). We start by looking
at the outer let expressions, with e1,out being the
sample statement and e2,out corresponding to the
entire inner let block. Before we can generate the
output of this rule, we step into e1,out and e2,out
and compile them accordingly.

ii. Rule (sample (d e1 e2)). We then apply the
sample rule on e1,out := (sample (uniform 0 1))

Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, Frank Wood

from i, with each of its components evaluated
first. For (uniform 0 1), 0 and 1 are constant
and we have 0 (;, ;, {(1, 1)}, {(1, 1, 0)})
and 1 (;, ;, {(1, 1)}, {(1, 1, 1)}). d repre-
sents uniform distribution and has the form
�(d) = {([x � 0]· [1�x � 0], U(· ; 0, 1))}. Af-
ter combining each set following the rule,
with a fresh variable z, we have e1,out �
{z}, ;, {([z�0]· [1�z�0],U(z; 0, 1))}, {(1, 1, z)}

�
.

iii. Rule (let [x e1,in] e2,in). We now step into e2,out
from i with itself being a let expression. e1,in is the
entire if statement and e2,in is the returning value
(< (- q x) 0). Similarly, we need to compile e1,in
and e2,in first before having the result for e2,out.

iv. Rule (if (< e1 0) e2 e3). To apply the if rule
on e1,in, we again need to compile its each indi-
vidual component first. We start with its predi-
cate e1:=(- q x), which follows the rule (op e1 e2).
Then e1

�
{x}, ;, {(1, 1)}, {(1, 1, (q�x))}

�
with

(q � x) as a operation - applied to q and x.

e2 and e3 both follow (observe (d e1 e2) c).
Take e2 := (observe (normal 1 1) y) as an
example, 1 is constant and d is the normal

distribution and has �(d) = {(1,N (· ; 1, 1))}.
We combine each set and have e2 �
;, ;, {(1, 1)}, {(1, N (y; 1, 1), 0)}

�
. Similarly,

e3 (;, ;, {(1, 1)}, {(1, N (y; 0, 1), 0)}).

With e1, e2 and e3 all evaluated, we can now con-
tinue the if rule. The key features are to extract
variables in e1 and put into � and to construct the
indicator functions from e1 and take the densities
on each branch respectively. As a result, e1,in com-
piles to � = {x}, � = {x}, D = {(1, 1)} and F =��

[q�x<0],N (y; 1, 1), 0
�
,
�

[q�x�0],N (y; 0, 1), 0
�

.

v. Rule (op e1 . . . en). For e2,in in iii, (< (- q x) 0)

compiles to ({x}, ;, {(1, 1)}, {(1, 1, (q�x < 0))}).

vi. Result of the inner let. Together with the outcome
from iv and v, we can continue compiling the inner
let block as in iii, and it is translated to

� = {x}, � = {x},
D =

�
([q�x < 0], 1), ([q�x � 0], 1)

F =
�
([q�x < 0], N (y; 1, 1), (q�x < 0)),
([q�x � 0], N (y; 0, 1), (q�x < 0))

vii. Result of the outer let. Finally, with e1,out com-
piled in ii and e2,out in vi, we step out to i. It is
worth to emphasize that the variables � are the
sampled ones rather than what are named in the
let expression, i.e. x and x . Here x is replaced
by z as declared in e1,out by following the let rule,
and we have the final quadruple output:

Figure 2: Mean Squared Error for the posterior esti-
mates of the true posterior of the cluster means µ1:2.
We compare the results from our unoptimized DHMC
and the optimized PyMC3 NUTS with Metropolis-
within-Gibbs, and show that the performance between
the two is comparable for the same computation budget.
The median of MSE (dashed lines) with 20%/80% con-
fidence intervals (shaded regions) over 20 independent
runs are plotted.

�pp = {z}, �pp = {z},
Dpp =

n�
[z�0]· [1�z�0]· [q�z<0], U(z; 0, 1)

�
,

�
[z�0]· [1�z�0]· [q�z�0], U(z; 0, 1)

�o

Fpp =
n�

[q�z<0], N (y; 1, 1), (q�z<0)
�
,

�
[q�z�0], N (y; 0, 1), (q�z<0)

�o

From the quadruple, we have the overall density as
P = [z�0]· [1�z�0]· [q�z<0]·U(z; 0, 1)·N (y; 1, 1) +
[z�0]· [1�z�0]· [q�z�0]·U(z; 0, 1)·N (y; 0, 1). We

can also detect when any random variable in �, in
this case z, has crossed the discontinuity, by checking
the boolean value of the predicate of the if statement
(< (- q x) 0), as discussed in Section 4

6 Example Inference Engine: DHMC

We shall now demonstrate an example inference al-
gorithm that is compatible with LF-PPL. Specifi-
cally, we provide an implementation of discontinuous
HMC (DHMC)[8], a variant of HMC for performing
statistically e�cient inference on probabilistic models
with non-di↵erentiable densities, using LF-PPL as a
compilation target. This satisfies the necessary require-
ment of DHMC that the target density being piecewise
smooth with discontinuities of measure zero. Given
the quadruple output from LF-PPL, DHMC updates
variables in � by the coordinate-wise integrator and the
rest of the variables in �\� by the standard leapfrog
integrator. In an existing PPS without a special sup-
port, the user would be required to manually specify all
the discontinuous and continuous variables, in addition
to implementing DHMC accordingly. See Appendix C
for further details.

6.1 Gaussian Mixture Model (GMM)

In our first example, we demonstrate how a classic
model, namely a Gaussian mixture model, can be en-
coded in LF-PPL. The density of the GMM contains a
mixture of continuous and discrete variables, where the

LF-PPL

Figure 3: We compare DHMC against HMC on the worst mean absolute error (dashed lines) with the 20%/80%
confidence intervals (shaded regions) over 20 independent runs for dimensions D = 10, 50, 100, 200, 500 (left to
right). We demonstrate how the sample e�ciency decreases with respect to sample size (top row) and with
respect to runtime (bottom row) respectively as dimensionality increases. We see that the performance of HMC
deteriorates significantly more than DHMC as the dimensionality increases.

discrete variables lead to discontinuities in the density.
We construct the GMM as follows:

µk ⇠ N (µ0,�0), k = 1, . . . ,K
zn ⇠ Categorical(p0), n = 1, . . . , N

yn |zn, µzn ⇠ N (µzn ,�zn), n = 1, . . . , N

where µ1:K , z1:N are latent variables, y1:N are
observed data with K as the number of clusters
and N the total number of data. The Categorical
distribution is constructed by a combination of
uniform draws and nested if expressions, as shown
in Appendix D. For our experiments, we consid-
ered a simple case with µ0 =0, �0 =2, �z1:N =1
and p0 = [0.5, 0.5], along with the synthetic dataset:
y1:N = [�2.0,�2.5,�1.7,�1.9,�2.2, 1.5, 2.2, 3, 1.2, 2.8].
We compared the Mean Squared Error (MSE) of
the posterior estimates for the cluster means of
both an unoptimized version of DHMC and an
optimized implementation of NUTS with Metropolis-
within-Gibbs (MwG) in PyMC3 [22], with the same
computation budget. We take 105 samples and
discard 104 for burn in. We find that our DHMC
implementation, performs comparable to the NUTS
with MwG approach. The results are shown in Figure 2
as a function of the number of samples.

6.2 Heavy Tail Piecewise Model

In our next example we show how the e�ciency of
DHMC improves, relative to vanilla HMC, on discon-
tinuous target distributions as the dimensionality of the
problem increases. We consider the following density[7]
which represents a hyperbolic-like potential function,

⇡(x) =

8
><

>:

exp(�
p
xTAx) if ||x||1 3

exp(�
p
xTAx� 1) if 3 < ||x||1 6

0 otherwise

It generates planes of discontinuities along the bound-
aries defined by the if expressions. To write this as

a density in our language we make use of the factor

distribution object as shown in Appendix D.

The results in Figure 3 provide a comparison between
the DHMC and the standard HMC on the worst mean
absolute error [7] as a function of the number of itera-

tions and time, WMAE(N) = 1
N

max
d=1,...,D

��
XN

n=1
x(n)
d

��.
We see that as the dimensionality of the model in-
creases, the per-sample performance of HMC deterio-
rates rapidly as seen in the top row of Figure 3. Even
though DHMC is more expensive per iteration than
HMC due to its sequential nature, in higher dimen-
sions, the additional time costs occurred by DHMC is
much less than the rate at which HMC performance
deteriorates. The reason for this is that the acceptance
rate of the HMC sampler degrades with increasing di-
mension, while the coordinate-wise integrator of the
DHMC sampler circumvents this.

7 Conclusion

In this paper we have introduced a Low-level First-
order Probabilistic Programming Language (LF-PPL)
and an accompanying compilation scheme for programs
that have non-di↵erentiable densities. We have theo-
retically verified the language semantics via a series of
translations rules. This ensures programs that compile
in our language contain only discontinuities that are of
measure zero. Therefore, our language together with
the compilation scheme can be used in conjunction with
other scalable inference algorithms such as adapted ver-
sions of HMC and SVI for non-di↵erentiable densities,
as we have demonstrated with one such variant of HMC
called discontinuous HMC. It provides a road map for
incorporating other inference algorithms into PPSs and
shows the performance improvement of these inference
algorithms over existing ones.

Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, Frank Wood

Acknowledgements

Yuan Zhou is sponsored by China Scholarship Coun-
cil (CSC). Bradley Gram-Hansen is supported by
the UK EPSRC CDT in Autonomous Intelligent Ma-
chines and Systems (CDT in AIMS). Tom Rainforth’s
research leading to these results has received fund-
ing from the European Research Council under the
European Union’s Seventh Framework Programme
(FP7/2007-2013) ERC grant agreement no. 617071.
Yang was supported by the Engineering Research Cen-
ter Program through the National Research Founda-
tion of Korea (NRF) funded by the Korean Govern-
ment MSIT (NRF-2018R1A5A1059921), and also by
Next-Generation Information Computing Development
Program through the National Research Foundation
of Korea (NRF) funded by the Ministry of Science,
ICT (2017M3C4A7068177). Kohn and Wood were sup-
ported by DARPA D3M, Intel as part of the NERSC
Big Data Center, and NSERC under its Discovery grant
and accelerator programs.

References

[1] H. Mohasel Afshar et al., “Probabilistic inference
in piecewise graphical models,” 2016.

[2] A. Gelman, H. S. Stern, J. B. Carlin, D. B. Dun-
son, A. Vehtari, and D. B. Rubin, Bayesian data

analysis. Chapman and Hall/CRC, 2013.

[3] A. D. Gordon, T. A. Henzinger, A. V. Nori, and
S. K. Rajamani, “Probabilistic programming,” in
Proceedings of the on Future of Software Engineer-

ing, pp. 167–181, ACM, 2014.

[4] N. D. Goodman, V. K. Mansinghka, D. M. Roy,
K. Bonawitz, and J. B. Tenenbaum, “Church:
A Language for Generative Models,” in In UAI,
pp. 220–229, 2008.

[5] F. Wood, J. W. Meent, and V. Mansinghka, “A
New Approach to Probabilistic Programming In-
ference,” in Artificial Intelligence and Statistics,
2014.

[6] A. Gelman, D. Lee, and J. Guo, “Stan: A Proba-
bilistic Programming Language for Bayesian Infer-
ence and Optimization,” Journal of Educational

and Behavioral Statistics, vol. 40, no. 5, pp. 530–
543, 2015.

[7] H. M. Afshar and J. Domke, “Reflection, Re-
fraction, and Hamiltonian Monte Carlo,” in Ad-

vances in Neural Information Processing Systems,
pp. 3007–3015, 2015.

[8] A. Nishimura, D. Dunson, and J. Lu, “Dis-
continuous Hamiltonian Monte Carlo for Sam-

pling Discrete Parameters,” arXiv preprint

arXiv:1705.08510, 2017.

[9] W. Lee, H. Yu, and H. Yang, “Reparameterization
gradient for non-di↵erentiable models,” in NIPS,
2018.

[10] V. Dinh, A. Bilge, C. Zhang, I. Matsen, and
A. Frederick, “Probabilistic path hamiltonian
monte carlo,” arXiv preprint arXiv:1702.07814,
2017.

[11] K. Yi and F. Doshi-Velez, “Roll-back hamiltonian
monte carlo,” arXiv preprint arXiv:1709.02855,
2017.

[12] M. D. Ho↵man, D. M. Blei, C. Wang, and J. Pais-
ley, “Stochastic variational inference,” The Jour-

nal of Machine Learning Research, vol. 14, no. 1,
pp. 1303–1347, 2013.

[13] R. Ranganath, S. Gerrish, and D. Blei, “Black box
variational inference,” in Artificial Intelligence and

Statistics, pp. 814–822, 2014.

[14] D. M. Blei, A. Kucukelbir, and J. D. McAuli↵e,
“Variational inference: A review for statisticians,”
Journal of the American Statistical Association,
vol. 112, no. 518, pp. 859–877, 2017.

[15] A. Kucukelbir, R. Ranganath, A. Gelman, and
D. Blei, “Automatic variational inference in stan,”
in Advances in neural information processing sys-

tems, pp. 568–576, 2015.

[16] S. Duane, A. D. Kennedy, B. J. Pendleton, and
D. Roweth, “Hybrid Monte Carlo,” Physics letters

B, 1987.

[17] R. M. Neal, “MCMC Using Hamiltonian dynam-
ics,” Handbook of Markov Chain Monte Carlo,
2011.

[18] Y. Zhang, Z. Ghahramani, A. J. Storkey, and
C. A. Sutton, “Continuous relaxations for discrete
hamiltonian monte carlo,” in Advances in Neural

Information Processing Systems, pp. 3194–3202,
2012.

[19] A. Pakman and L. Paninski, “Auxiliary-variable
exact hamiltonian monte carlo samplers for binary
distributions,” in Advances in neural information

processing systems, pp. 2490–2498, 2013.

[20] A. Pakman and L. Paninski, “Exact hamiltonian
monte carlo for truncated multivariate gaussians,”
Journal of Computational and Graphical Statistics,
vol. 23, no. 2, pp. 518–542, 2014.

LF-PPL

[21] A. G. Baydin, B. A. Pearlmutter, A. A. Radul,
and J. M. Siskind, “Automatic di↵erentiation in
machine learning: a survey.,” Journal of machine

learning research, vol. 18, no. 153, pp. 1–153.

[22] J. Salvatier, T. V. Wiecki, and C. Fonnes-
beck, “Probabilistic Programming in Python Us-
ing PyMC3,” PeerJ Computer Science, vol. 2,
p. e55, 2016.

[23] D. Tran, M. D. Ho↵man, R. A. Saurous, E. Brevdo,
K. Murphy, and D. M. Blei, “Deep probabilistic
programming,” arXiv preprint arXiv:1701.03757,
2017.

[24] H. Ge, K. Xu, and Z. Ghahramani, “Turing: Com-
posable inference for probabilistic programming,”
in International Conference on Artificial Intelli-

gence and Statistics, AISTATS 2018, 9-11 April

2018, Playa Blanca, Lanzarote, Canary Islands,

Spain, pp. 1682–1690, 2018.

[25] UberLabs, “Pyro, a universal probabilistic
programming language.” https://github.com/
uber/pyro, 2017.

[26] C. J. Maddison, A. Mnih, and Y. W. Teh, “The
concrete distribution: A continuous relaxation
of discrete random variables,” arXiv preprint

arXiv:1611.00712, 2016.

[27] D. Spiegelhalter, A. Thomas, N. Best, and
W. Gilks, “BUGS 0.5: Bayesian Inference Us-
ing Gibbs Sampling Manual (version ii),” MRC

Biostatistics Unit, Institute of Public Health, Cam-

bridge, UK, pp. 1–59, 1996.

[28] J.-W. van de Meent, B. Paige, H. Yang, and
F. Wood, “An introduction to probabilistic pro-
gramming,” arXiv preprint arXiv:1809.10756,
2018.

[29] T. Rainforth, Automating Inference, Learning,

and Design using Probabilistic Programming. PhD
thesis.

[30] B. Mityagin, “The Zero Set of a Real Analytic
Function,” arXiv preprint arXiv:1512.07276, 2015.

https://github.com/uber/pyro
https://github.com/uber/pyro

	Introduction
	Background and Related Work
	The Language
	Compilation Scheme
	Mathematical Foundation and Compilation Details
	Piecewise Smooth Functions
	Translation Rules
	Overview
	Formal Translation Rules

	A Compilation Example

	Example Inference Engine: DHMC
	Gaussian Mixture Model (GMM)
	Heavy Tail Piecewise Model

	Conclusion
	Proof of Theorem 1
	Proof of Theorem 2
	Discontinuous Hamiltonian Monte Carlo
	Program code

