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A Proof of Lemma 1

Lemma 1 is technically similar to Lemma 3.4 in [Allen-Zhu, 2017], but since they are not exactly the same, we
include a proof here.
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B Proof of Theorem 1

The proof of Theorem 1 combines the ideas in SAGA [Defazio et al., 2014], Katyusha [Allen-Zhu, 2017] and [Zhou
et al., 2018].

In order to prove Theorem 1, we need the following useful lemma, which can be regarded as using the 3-point
equality of Bregman divergence in the Euclidean norm setting:
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This Lemma is identical to Lemma 3.5 in [Allen-Zhu, 2017], and hence the proof is omitted.

First, we analyze Algorithm 1 at the kth iteration, given that the randomness from previous iterations are fixed.

We start with the convexity of fik(·) at (ykik , x
?). By definition, we have

fik(ykik)− fik(x?) ≤ 〈∇fik(ykik), ykik − x
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where (?) uses the definition of the ikth entry of “coupled table” that ykik = τxk + (1− τ)φkik .

As we will see, the first term on the right side is used to cancel the unwanted inner product term in the variance
bound.



By taking expectation with respect to sample ik and using the unbiasedness that Eik
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Taking expectation with respect to sample Ik and using our choice of φk+1
Ik

= τxk+1 + (1− τ)φkIk as well as the
definition of “coupled table”, we conclude that
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Here we see the effect of the independent sample Ik. It decouples the randomness of xk+1 and the update position
so as to make the above inequalities valid.

Taking expectation with respect to sample ik, we obtain
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By upper bounding (4) using (5) and Lemma 3 (with h(·) µ-strongly convex and u = x?), we obtain
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Here we add a constraint that Lτ ≤ 1
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By applying Lemma 1 to upper bound the variance term, we see that the additional variance term in the variance
bound is canceled by the sampled momentum, which gives
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Combining the above inequality with (6) and using the definition that Fi(·) = fi(·) + h(·), we can write (6) as
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After taking expectation with respect to sample Ik and ik, we obtain
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which means that the constraint is satisfied by our parameter choices.
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After telescoping the above contraction from k = 1 . . .K and taking expectation with respect to all randomness,
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C About the Lyapunov functions for SAGA and SVRG

The Lyapunov functions used to prove the convergence of SAGA (and SSNM) and SVRG (and its variants):

SAGA:
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SVRG: F (x̃)− F (x?) + c2‖x− x?‖2, (11)

where c1 and c2 are constants. Thus, the convergence of SAGA (and SSNM) is built with respect to ‖x−x?‖2 and
that of SVRG (and its variants) is built with respect to F (x̃)−F (x?). If h ≡ 0 in Problem (1), F (x)−F (x?) and
‖x− x?‖2 only have a constant difference. However, when h 6≡ 0, we only have (µ/2)‖x− x?‖2 ≤ F (x)− F (x?).
For SAGA (and SSNM), this subtle difference prevents us from using techniques that involve restart (e.g.,
AdaptSmooth, APPA, Catalyst). In the case where h ≡ 0, we can use them but an additional log(L/µ) factor
will appear in the rate. This difference somehow explains why the SVRG-like variance reduction technique is
more favorable in theory than that of SAGA.

D Experimental setup in Section 6

All the algorithms were implemented in C++ and executed through a MATLAB interface for fair comparison.
We ran experiments on an HP Z440 machine with a single Intel Xeon E5-1630v4 with 3.70GHz cores, 16GB
RAM, Ubuntu 16.04 LTS with GCC 4.9.0, MATLAB R2017b.

We are optimizing the following binary problem with ai ∈ Rd, bi ∈ {−1,+1}, i = 1 . . .m:

`2-Logistic Regression:
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2
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where λ is the regularization parameter and all the datasets used were normalized before the experiments.

The parameter settings used in the experiments:

• SAGA. We set the learning rate as 1
2(µn+L) , which is analyzed theoretically in [Defazio et al., 2014].

• SSNM. We used the same settings as suggested in Algorithm 1, which are η =
√

1
3µnL and τ = nηµ

1+ηµ .

• Katyusha. As suggested by the author, we fixed τ2 = 1
2 , set η = 1

3τ1L
and chose τ1 =

√
m
3κ [Allen-Zhu, 2017]

(In the notations of the original work).

• MiG. We set η = 1
3θL and chose θ =

√
m
3κ as analyzed in [Zhou et al., 2018].

E An empirical comparison with Point-SAGA

Here we report an experiment comparing the performance of SAGA, Point-SAGA and SSNM with respect to
iteration counter. The detailed experimental setting is given in Section 6 in the main paper. Since Point-SAGA
requires the exact proximal operator of each Fi(·) in theory, we focus on training ridge regression in this section:

Ridge Regression:
1

n

n∑
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1

2
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2 +
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2
‖x‖2.

Note that the proximal operator of each Fi(·) = 1
2 (aTi x+ bi)

2 + λ
2 ‖x‖

2 can be efficiently computed as mentioned
in [Defazio, 2016].

A memory issue of Point-SAGA: In fact, when we involve an `2-regularizer in each Fi(·) 11, we cannot use
the trick of representing a gradient by a scalar since the update equation of the new table entry gk+1

j (in original
notations) contains a term that correlates to the weight xk, which leads to an O(nd) memory complexity. A
possible solution is to separate the proximal computations for the component functions and the regularizer, but
it does not fit in the analysis of Point-SAGA.

11An `2-regularizer is always the source of strong convexity for real world problems.
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Figure 3: Comparison of SAGA, Point-
SAGA and SSNM for solving ridge regres-
sion on covtype with λ = 10−8.

We used the same parameter settings for SAGA and SSNM as
in Section 6 in the main paper. For Point-SAGA, we chose the
learning rate γ suggested by the original work [Defazio, 2016],

γ =

√
(n− 1)2 + 4nLµ

2Ln
−

1− 1
n

2L
.

The result is shown in Figure 3. As we can see, the convergence
rates of Point-SAGA and SSNM are quite similar and consistently
faster than SAGA. Although Point-SAGA is shown to be slightly
faster than SSNM in this experiment, considering the general objec-
tive assumption and the memory issue of Point-SAGA mentioned
above, SSNM is a more favorable accelerated variant of SAGA than
Point-SAGA in practice. Interestingly, both accelerated variants
are more unstable than SAGA in this experiment.


