Supplementary Material for
 "Direct Acceleration of SAGA using Sampled Negative Momentum"

A Proof of Lemma 1

Lemma 1 is technically similar to Lemma 3.4 in Allen-Zhu, 2017, but since they are not exactly the same, we include a proof here.

$$
\begin{aligned}
\mathbb{E}_{i_{k}}\left[\left\|\widetilde{\nabla}_{k}-\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(y_{i}^{k}\right)\right\|^{2}\right] & \left.=\mathbb{E}_{i_{k}}\left[\|\left(\nabla f_{i_{k}}\left(y_{i_{k}}^{k}\right)-\nabla f_{i_{k}}\left(\phi_{i_{k}}^{k}\right)\right)-\frac{1}{n} \sum_{i=1}^{n}\left(\nabla f_{i}\left(y_{i}^{k}\right)-\nabla f_{i}\left(\phi_{i}^{k}\right)\right)\right) \|^{2}\right] \\
& \stackrel{(a)}{\leq} \mathbb{E}_{i_{k}}\left[\left\|\nabla f_{i_{k}}\left(y_{i_{k}}^{k}\right)-\nabla f_{i_{k}}\left(\phi_{i_{k}}^{k}\right)\right\|^{2}\right] \\
& \stackrel{(b)}{\leq} 2 L \cdot \mathbb{E}_{i_{k}}\left[f_{i_{k}}\left(\phi_{i_{k}}^{k}\right)-f_{i_{k}}\left(y_{i_{k}}^{k}\right)-\left\langle\nabla f_{i_{k}}\left(y_{i_{k}}^{k}\right), \phi_{i_{k}}^{k}-y_{i_{k}}^{k}\right\rangle\right] \\
& =2 L\left(\frac{1}{n} \sum_{i=1}^{n}\left(f_{i}\left(\phi_{i}^{k}\right)-f\left(y_{i}^{k}\right)\right)-\frac{1}{n} \sum_{i=1}^{n}\left\langle\nabla f_{i}\left(y_{i}^{k}\right), \phi_{i}^{k}-y_{i}^{k}\right\rangle\right)
\end{aligned}
$$

where (a) follows from $\mathbb{E}\left[\|\zeta-\mathbb{E} \zeta\|^{2}\right] \leq \mathbb{E}\|\zeta\|^{2}$ and (b) uses Theorem 2.1.5 in Nesterov, 2004.

B Proof of Theorem 1

The proof of Theorem 1 combines the ideas in SAGA Defazio et al., 2014, Katyusha Allen-Zhu, 2017, and Zhou et al. 2018.
In order to prove Theorem 1, we need the following useful lemma, which can be regarded as using the 3-point equality of Bregman divergence in the Euclidean norm setting:
Lemma 3. If two vectors $x_{k+1}, x_{k} \in \mathbb{R}^{d}$ satisfy $x_{k+1}=\arg \min _{x}\left\{h(x)+\left\langle\widetilde{\nabla}_{k}, x\right\rangle+\frac{1}{2 \eta}\left\|x_{k}-x\right\|^{2}\right\}$ with a constant vector $\widetilde{\nabla}_{k}$ and a μ-strongly convex function $h(\cdot)$, then for all $u \in \mathbb{R}^{d}$, we have

$$
\left\langle\widetilde{\nabla}_{k}, x_{k+1}-u\right\rangle \leq-\frac{1}{2 \eta}\left\|x_{k+1}-x_{k}\right\|^{2}+\frac{1}{2 \eta}\left\|x_{k}-u\right\|^{2}-\frac{1+\eta \mu}{2 \eta}\left\|x_{k+1}-u\right\|^{2}+h(u)-h\left(x_{k+1}\right)
$$

This Lemma is identical to Lemma 3.5 in Allen-Zhu, 2017, and hence the proof is omitted.
First, we analyze Algorithm 1 at the k th iteration, given that the randomness from previous iterations are fixed.
We start with the convexity of $f_{i_{k}}(\cdot)$ at $\left(y_{i_{k}}^{k}, x^{\star}\right)$. By definition, we have

$$
\begin{aligned}
f_{i_{k}}\left(y_{i_{k}}^{k}\right)-f_{i_{k}}\left(x^{\star}\right) \leq & \left\langle\nabla f_{i_{k}}\left(y_{i_{k}}^{k}\right), y_{i_{k}}^{k}-x^{\star}\right\rangle \\
\stackrel{(\star)}{=} & \frac{1-\tau}{\tau}\left\langle\nabla f_{i_{k}}\left(y_{i_{k}}^{k}\right), \phi_{i_{k}}^{k}-y_{i_{k}}^{k}\right\rangle+\left\langle\nabla f_{i_{k}}\left(y_{i_{k}}^{k}\right)-\widetilde{\nabla}_{k}, x_{k}-x^{\star}\right\rangle+\left\langle\widetilde{\nabla}_{k}, x_{k}-x_{k+1}\right\rangle \\
& +\left\langle\widetilde{\nabla}_{k}, x_{k+1}-x^{\star}\right\rangle
\end{aligned}
$$

where (\star) uses the definition of the i_{k} th entry of "coupled table" that $y_{i_{k}}^{k}=\tau x_{k}+(1-\tau) \phi_{i_{k}}^{k}$.
As we will see, the first term on the right side is used to cancel the unwanted inner product term in the variance bound.

By taking expectation with respect to sample i_{k} and using the unbiasedness that $\mathbb{E}_{i_{k}}\left[\nabla f_{i_{k}}\left(y_{i_{k}}^{k}\right)-\widetilde{\nabla}_{k}\right]=\mathbf{0}$, we obtain

$$
\begin{equation*}
\frac{1}{n} \sum_{i=1}^{n} f_{i}\left(y_{i}^{k}\right)-f\left(x^{\star}\right) \leq \frac{1-\tau}{\tau n} \sum_{i=1}^{n}\left\langle\nabla f_{i}\left(y_{i}^{k}\right), \phi_{i}^{k}-y_{i}^{k}\right\rangle+\mathbb{E}_{i_{k}}\left[\left\langle\widetilde{\nabla}_{k}, x_{k}-x_{k+1}\right\rangle\right]+\mathbb{E}_{i_{k}}\left[\left\langle\widetilde{\nabla}_{k}, x_{k+1}-x^{\star}\right\rangle\right] \tag{4}
\end{equation*}
$$

In order to bound $\mathbb{E}_{i_{k}}\left[\left\langle\widetilde{\nabla}_{k}, x_{k}-x_{k+1}\right\rangle\right]$, we use the L-smoothness of $f_{I_{k}}(\cdot)$ at $\left(\phi_{I_{k}}^{k+1}, y_{I_{k}}^{k}\right)$, which is

$$
f_{I_{k}}\left(\phi_{I_{k}}^{k+1}\right)-f_{I_{k}}\left(y_{I_{k}}^{k}\right) \leq\left\langle\nabla f_{I_{k}}\left(y_{I_{k}}^{k}\right), \phi_{I_{k}}^{k+1}-y_{I_{k}}^{k}\right\rangle+\frac{L}{2}\left\|\phi_{I_{k}}^{k+1}-y_{I_{k}}^{k}\right\|^{2}
$$

Taking expectation with respect to sample I_{k} and using our choice of $\phi_{I_{k}}^{k+1}=\tau x_{k+1}+(1-\tau) \phi_{I_{k}}^{k}$ as well as the definition of "coupled table", we conclude that

$$
\begin{gathered}
\mathbb{E}_{I_{k}}\left[f_{I_{k}}\left(\phi_{I_{k}}^{k+1}\right)\right]-\frac{1}{n} \sum_{i=1}^{n} f_{i}\left(y_{i}^{k}\right) \leq \tau\left\langle\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(y_{i}^{k}\right), x_{k+1}-x_{k}\right\rangle+\frac{L \tau^{2}}{2}\left\|x_{k+1}-x_{k}\right\|^{2}, \\
\left\langle\widetilde{\nabla}_{k}, x_{k}-x_{k+1}\right\rangle \leq \frac{1}{\tau n} \sum_{i=1}^{n} f_{i}\left(y_{i}^{k}\right)-\frac{1}{\tau} \mathbb{E}_{I_{k}}\left[f_{I_{k}}\left(\phi_{I_{k}}^{k+1}\right)\right]+\left\langle\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(y_{i}^{k}\right)-\widetilde{\nabla}_{k}, x_{k+1}-x_{k}\right\rangle+\frac{L \tau}{2}\left\|x_{k+1}-x_{k}\right\|^{2} .
\end{gathered}
$$

Here we see the effect of the independent sample I_{k}. It decouples the randomness of x_{k+1} and the update position so as to make the above inequalities valid.
Taking expectation with respect to sample i_{k}, we obtain

$$
\begin{align*}
\mathbb{E}_{i_{k}}\left[\left\langle\widetilde{\nabla}_{k}, x_{k}-x_{k+1}\right\rangle\right] \leq & \frac{1}{\tau n} \sum_{i=1}^{n} f_{i}\left(y_{i}^{k}\right)-\frac{1}{\tau} \mathbb{E}_{i_{k}, I_{k}}\left[f_{I_{k}}\left(\phi_{I_{k}}^{k+1}\right)\right]+\mathbb{E}_{i_{k}}\left[\left\langle\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(y_{i}^{k}\right)-\widetilde{\nabla}_{k}, x_{k+1}-x_{k}\right\rangle\right] \\
& +\frac{L \tau}{2} \mathbb{E}_{i_{k}}\left[\left\|x_{k+1}-x_{k}\right\|^{2}\right] \tag{5}
\end{align*}
$$

By upper bounding (4) using (5) and Lemma 3 (with $h(\cdot) \mu$-strongly convex and $u=x^{\star}$), we obtain

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} f_{i}\left(y_{i}^{k}\right)-f\left(x^{\star}\right) \leq & \frac{1-\tau}{\tau n} \sum_{i=1}^{n}\left\langle\nabla f_{i}\left(y_{i}^{k}\right), \phi_{i}^{k}-y_{i}^{k}\right\rangle+\frac{1}{\tau n} \sum_{i=1}^{n} f_{i}\left(y_{i}^{k}\right)-\frac{1}{\tau} \mathbb{E}_{i_{k}, I_{k}}\left[f_{I_{k}}\left(\phi_{I_{k}}^{k+1}\right)\right] \\
& +\mathbb{E}_{i_{k}}\left[\left\langle\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(y_{i}^{k}\right)-\widetilde{\nabla}_{k}, x_{k+1}-x_{k}\right\rangle\right]+\frac{L \tau}{2} \mathbb{E}_{i_{k}}\left[\left\|x_{k+1}-x_{k}\right\|^{2}\right] \\
& -\frac{1}{2 \eta} \mathbb{E}_{i_{k}}\left[\left\|x_{k+1}-x_{k}\right\|^{2}\right]+\frac{1}{2 \eta}\left\|x_{k}-x^{\star}\right\|^{2}-\frac{1+\eta \mu}{2 \eta} \mathbb{E}_{i_{k}}\left[\left\|x_{k+1}-x^{\star}\right\|^{2}\right] \\
& +h\left(x^{\star}\right)-\mathbb{E}_{i_{k}}\left[h\left(x_{k+1}\right)\right] .
\end{aligned}
$$

Here we add a constraint that $L \tau \leq \frac{1}{\eta}-\frac{L \tau}{1-\tau}$, which is identical to the one used in Zhou et al. 2018. Using Young's inequality $\langle a, b\rangle \leq \frac{1}{2 \beta}\|a\|^{2}+\frac{\beta}{2}\|b\|^{2}$ to upper bound $\mathbb{E}_{i_{k}}\left[\left\langle\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(y_{i}^{k}\right)-\widetilde{\nabla}_{k}, x_{k+1}-x_{k}\right\rangle\right]$ with $\beta=\frac{L \tau}{1-\tau}>0$, we can simplify the above inequality as

$$
\begin{aligned}
\frac{1}{n} \sum_{i=1}^{n} f_{i}\left(y_{i}^{k}\right)-f\left(x^{\star}\right) \leq & \frac{1-\tau}{\tau n} \sum_{i=1}^{n}\left\langle\nabla f_{i}\left(y_{i}^{k}\right), \phi_{i}^{k}-y_{i}^{k}\right\rangle+\frac{1}{\tau n} \sum_{i=1}^{n} f_{i}\left(y_{i}^{k}\right)-\frac{1}{\tau} \mathbb{E}_{i_{k}, I_{k}}\left[f_{I_{k}}\left(\phi_{I_{k}}^{k+1}\right)\right] \\
& +\frac{1-\tau}{2 L \tau} \mathbb{E}_{i_{k}}\left[\left\|\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}\left(y_{i}^{k}\right)-\widetilde{\nabla}_{k}\right\|^{2}\right]+\frac{1}{2 \eta}\left\|x_{k}-x^{\star}\right\|^{2}-\frac{1+\eta \mu}{2 \eta} \mathbb{E}_{i_{k}}\left[\left\|x_{k+1}-x^{\star}\right\|^{2}\right] \\
& +h\left(x^{\star}\right)-\mathbb{E}_{i_{k}}\left[h\left(x_{k+1}\right)\right]
\end{aligned}
$$

By applying Lemma 1 to upper bound the variance term, we see that the additional variance term in the variance bound is canceled by the sampled momentum, which gives

$$
\begin{align*}
\frac{1}{n} \sum_{i=1}^{n} f_{i}\left(y_{i}^{k}\right)-f\left(x^{\star}\right) \leq & \frac{1}{\tau n} \sum_{i=1}^{n} f_{i}\left(y_{i}^{k}\right)-\frac{1}{\tau} \mathbb{E}_{i_{k}, I_{k}}\left[f_{I_{k}}\left(\phi_{I_{k}}^{k+1}\right)\right]+\frac{1-\tau}{\tau n} \sum_{i=1}^{n}\left(f_{i}\left(\phi_{i}^{k}\right)-f\left(y_{i}^{k}\right)\right) \\
& +\frac{1}{2 \eta}\left\|x_{k}-x^{\star}\right\|^{2}-\frac{1+\eta \mu}{2 \eta} \mathbb{E}_{i_{k}}\left[\left\|x_{k+1}-x^{\star}\right\|^{2}\right]+h\left(x^{\star}\right)-\mathbb{E}_{i_{k}}\left[h\left(x_{k+1}\right)\right] \\
\frac{1}{\tau} \mathbb{E}_{i_{k}, I_{k}}\left[f_{I_{k}}\left(\phi_{I_{k}}^{k+1}\right)\right]-F\left(x^{\star}\right) \leq & \frac{1-\tau}{\tau n} \sum_{i=1}^{n} f_{i}\left(\phi_{i}^{k}\right)+\frac{1}{2 \eta}\left\|x_{k}-x^{\star}\right\|^{2}-\frac{1+\eta \mu}{2 \eta} \mathbb{E}_{i_{k}}\left[\left\|x_{k+1}-x^{\star}\right\|^{2}\right]-\mathbb{E}_{i_{k}}\left[h\left(x_{k+1}\right)\right] . \tag{6}
\end{align*}
$$

Using the convexity of $h(\cdot)$ and that $\phi_{I_{k}}^{k+1}=\tau x_{k+1}+(1-\tau) \phi_{I_{k}}^{k}$, we have

$$
h\left(\phi_{I_{k}}^{k+1}\right) \leq \tau h\left(x_{k+1}\right)+(1-\tau) h\left(\phi_{I_{k}}^{k}\right) .
$$

After taking expectation with respect to sample I_{k} and sample i_{k}, we obtain

$$
-\mathbb{E}_{i_{k}}\left[h\left(x_{k+1}\right)\right] \leq \frac{1-\tau}{\tau n} \sum_{i=1}^{n} h\left(\phi_{i}^{k}\right)-\frac{1}{\tau} \mathbb{E}_{i_{k}, I_{k}}\left[h\left(\phi_{I_{k}}^{k+1}\right)\right] .
$$

Combining the above inequality with (6) and using the definition that $F_{i}(\cdot)=f_{i}(\cdot)+h(\cdot)$, we can write (6) as

$$
\frac{1}{\tau} \mathbb{E}_{i_{k}, I_{k}}\left[F_{I_{k}}\left(\phi_{I_{k}}^{k+1}\right)-F_{I_{k}}\left(x^{\star}\right)\right] \leq \frac{1-\tau}{\tau}\left(\frac{1}{n} \sum_{i=1}^{n} F_{i}\left(\phi_{i}^{k}\right)-F\left(x^{\star}\right)\right)+\frac{1}{2 \eta}\left\|x_{k}-x^{\star}\right\|^{2}-\frac{1+\eta \mu}{2 \eta} \mathbb{E}_{i_{k}}\left[\left\|x_{k+1}-x^{\star}\right\|^{2}\right] .
$$

Dividing the above inequality by n and adding both sides by $\frac{1}{\tau n} \mathbb{E}_{I_{k}}\left[\sum_{i \neq I_{k}}^{n}\left(F_{i}\left(\phi_{i}^{k}\right)-F_{i}\left(x^{\star}\right)\right)\right]$, we obtain

$$
\begin{align*}
\frac{1}{\tau} \mathbb{E}_{i_{k}, I_{k}}\left[\frac{1}{n} \sum_{i=1}^{n} F_{i}\left(\phi_{i}^{k+1}\right)-F\left(x^{\star}\right)\right] \leq & \frac{1-\tau}{\tau n}\left(\frac{1}{n} \sum_{i=1}^{n}\left(F_{i}\left(\phi_{i}^{k}\right)-F_{i}\left(x^{\star}\right)\right)\right)+\frac{1}{\tau n} \mathbb{E}_{I_{k}}\left[\sum_{i \neq I_{k}}^{n}\left(F_{i}\left(\phi_{i}^{k}\right)-F_{i}\left(x^{\star}\right)\right)\right] \\
& +\frac{1}{2 \eta n}\left\|x_{k}-x^{\star}\right\|^{2}-\frac{1+\eta \mu}{2 \eta n} \mathbb{E}_{i_{k}}\left[\left\|x_{k+1}-x^{\star}\right\|^{2}\right] \\
= & \frac{1-\tau}{\tau n}\left(\frac{1}{n} \sum_{i=1}^{n}\left(F_{i}\left(\phi_{i}^{k}\right)-F_{i}\left(x^{\star}\right)\right)\right)+\frac{1}{\tau n^{2}} \sum_{j=1}^{n} \sum_{i \neq j}^{n}\left(F_{i}\left(\phi_{i}^{k}\right)-F_{i}\left(x^{\star}\right)\right) \\
& +\frac{1}{2 \eta n}\left\|x_{k}-x^{\star}\right\|^{2}-\frac{1+\eta \mu}{2 \eta n} \mathbb{E}_{i_{k}}\left[\left\|x_{k+1}-x^{\star}\right\|^{2}\right] \\
= & \frac{1-\frac{\tau}{n}}{\tau}\left(\frac{1}{n} \sum_{i=1}^{n} F_{i}\left(\phi_{i}^{k}\right)-F\left(x^{\star}\right)\right)+\frac{1}{2 \eta n}\left\|x_{k}-x^{\star}\right\|^{2} \tag{7}\\
& -\frac{1+\eta \mu}{2 \eta n} \mathbb{E}_{i_{k}}\left[\left\|x_{k+1}-x^{\star}\right\|^{2}\right] .
\end{align*}
$$

Since $\frac{1}{n} \sum_{i=1}^{n} F_{i}\left(\phi_{i}^{k}\right)-F\left(x^{\star}\right)$ may not be positive, we need to involve the following term in our Lyapunov function:

$$
\begin{aligned}
-\frac{1}{n} \sum_{i=1}^{n}\left\langle\nabla F_{i}\left(x^{\star}\right), \phi_{i}^{k+1}-x^{\star}\right\rangle= & -\frac{1}{n}\left\langle\nabla F_{I_{k}}\left(x^{\star}\right), \phi_{I_{k}}^{k+1}-x^{\star}\right\rangle-\frac{1}{n} \sum_{i \neq I_{k}}^{n}\left\langle\nabla F_{i}\left(x^{\star}\right), \phi_{i}^{k}-x^{\star}\right\rangle \\
= & -\frac{\tau}{n}\left\langle\nabla F_{I_{k}}\left(x^{\star}\right), x_{k+1}-x^{\star}\right\rangle+\frac{\tau}{n}\left\langle\nabla F_{I_{k}}\left(x^{\star}\right), \phi_{I_{k}}^{k}-x^{\star}\right\rangle \\
& -\frac{1}{n} \sum_{i=1}^{n}\left\langle\nabla F_{i}\left(x^{\star}\right), \phi_{i}^{k}-x^{\star}\right\rangle .
\end{aligned}
$$

After taking expectation with respect to sample I_{k} and i_{k}, we obtain

$$
\begin{equation*}
\mathbb{E}_{i_{k}, I_{k}}\left[-\frac{1}{n} \sum_{i=1}^{n}\left\langle\nabla F_{i}\left(x^{\star}\right), \phi_{i}^{k+1}-x^{\star}\right\rangle\right]=-\left(1-\frac{\tau}{n}\right)\left(\frac{1}{n} \sum_{i=1}^{n}\left\langle\nabla F_{i}\left(x^{\star}\right), \phi_{i}^{k}-x^{\star}\right\rangle\right) . \tag{8}
\end{equation*}
$$

In order to give a clean proof, we denote $D_{k} \triangleq \frac{1}{n} \sum_{i=1}^{n} F_{i}\left(\phi_{i}^{k}\right)-F\left(x^{\star}\right)-\frac{1}{n} \sum_{i=1}^{n}\left\langle\nabla F_{i}\left(x^{\star}\right), \phi_{i}^{k}-x^{\star}\right\rangle$ and $P_{k} \triangleq$ $\left\|x_{k}-x^{\star}\right\|^{2}$, then by combining (7), (8), we can write the contraction as

$$
\begin{equation*}
\frac{1}{\tau} \mathbb{E}_{i_{k}, I_{k}}\left[D_{k+1}\right]+\frac{1+\eta \mu}{2 \eta n} \mathbb{E}_{i_{k}}\left[P_{k+1}\right] \leq \frac{1-\frac{\tau}{n}}{\tau} D_{k}+\frac{1}{2 \eta n} P_{k} . \tag{9}
\end{equation*}
$$

Case I: Consider the first case with $\frac{n}{\kappa} \leq \frac{3}{4}$, choosing $\eta=\sqrt{\frac{1}{3 \mu n L}}$ and $\tau=\frac{n \eta \mu}{1+\eta \mu}=\frac{\sqrt{\frac{n}{3 \kappa}}}{1+\sqrt{\frac{1}{3 n \kappa}}}<\frac{1}{2}$, we first evaluate the parameter constraint:

$$
L \tau \leq \frac{1}{\eta}-\frac{L \tau}{1-\tau} \Rightarrow \underbrace{\frac{2-\tau}{1-\tau}}_{<3} \cdot \underbrace{\frac{\sqrt{\frac{n}{3 \kappa}}}{1+\sqrt{\frac{1}{3 n \kappa}}}}_{\leq \sqrt{\frac{n}{3 \kappa}}} \leq \sqrt{\frac{3 n}{\kappa}}
$$

which means that the constraint is satisfied by our parameter choices.
Moreover, with this choice of τ, we have

$$
\frac{1}{\tau(1+\eta \mu)}=\frac{1-\frac{\tau}{n}}{\tau}=\frac{1}{n \eta \mu}
$$

Thus, the contraction (9) can be written as

$$
\frac{1}{n \eta \mu} \mathbb{E}_{i_{k}, I_{k}}\left[D_{k+1}\right]+\frac{1}{2 \eta n} \mathbb{E}_{i_{k}}\left[P_{k+1}\right] \leq(1+\eta \mu)^{-1} \cdot\left(\frac{1}{n \eta \mu} D_{k}+\frac{1}{2 \eta n} P_{k}\right)
$$

After telescoping the above contraction from $k=1 \ldots K$ and taking expectation with respect to all randomness, we have

$$
\frac{1}{n \eta \mu} \mathbb{E}\left[D_{K+1}\right]+\frac{1}{2 \eta n} \mathbb{E}\left[P_{K+1}\right] \leq(1+\eta \mu)^{-K} \cdot\left(\frac{1}{n \eta \mu} D_{1}+\frac{1}{2 \eta n} P_{1}\right)
$$

Note that $D_{1}=F\left(x_{1}\right)-F\left(x^{\star}\right)$ and $\mathbb{E}\left[D_{K+1}\right] \geq 0$ based on convexity. After substituting the parameter choices, we have

$$
\mathbb{E}\left[\left\|x_{K+1}-x^{\star}\right\|^{2}\right] \leq\left(1+\sqrt{\frac{1}{3 n \kappa}}\right)^{-K} \cdot\left(\frac{2}{\mu}\left(F\left(x_{1}\right)-F\left(x^{\star}\right)\right)+\left\|x_{1}-x^{\star}\right\|^{2}\right)
$$

Case II: Consider another case with $\frac{n}{\kappa}>\frac{3}{4}$, choosing $\eta=\frac{1}{2 \mu n}, \tau=\frac{n \eta \mu}{1+\eta \mu}=\frac{\frac{1}{2}}{1+\frac{1}{2 n}}<\frac{1}{2}$. Again, we first evaluate the constraint:

$$
L \tau \leq \frac{1}{\eta}-\frac{L \tau}{1-\tau} \Rightarrow \tau \cdot \underbrace{\frac{2-\tau}{1-\tau}}_{<3}<\frac{3}{2}<\frac{2 n}{\kappa}
$$

Then by rewriting the contraction (9), telescoping from $k=1 \ldots K$ and taking expectation with respect to all randomness, we obtain

$$
2 \mathbb{E}\left[D_{K+1}\right]+\frac{1}{2 \eta n} \mathbb{E}\left[P_{K+1}\right] \leq(1+\eta \mu)^{-K} \cdot\left(2 D_{1}+\frac{1}{2 \eta n} P_{1}\right)
$$

By substituting the parameter choices, we have

$$
\mathbb{E}\left[\left\|x_{K+1}-x^{\star}\right\|^{2}\right] \leq\left(1+\frac{1}{2 n}\right)^{-K} \cdot\left(\frac{2}{\mu}\left(F\left(x_{1}\right)-F\left(x^{\star}\right)\right)+\left\|x_{1}-x^{\star}\right\|^{2}\right)
$$

C About the Lyapunov functions for SAGA and SVRG

The Lyapunov functions used to prove the convergence of SAGA (and SSNM) and SVRG (and its variants):

$$
\begin{align*}
& \text { SAGA: } \frac{1}{n} \sum_{i=1}^{n} F_{i}\left(\phi_{i}\right)-F\left(x^{\star}\right)-\frac{1}{n} \sum_{i=1}^{n}\left\langle\nabla F_{i}\left(x^{\star}\right), \phi_{i}-x^{\star}\right\rangle+c_{1}\left\|x-x^{\star}\right\|^{2} \tag{10}\\
& \text { SVRG: } F(\tilde{x})-F\left(x^{\star}\right)+c_{2}\left\|x-x^{\star}\right\|^{2} \tag{11}
\end{align*}
$$

where c_{1} and c_{2} are constants. Thus, the convergence of SAGA (and SSNM) is built with respect to $\left\|x-x^{\star}\right\|^{2}$ and that of SVRG (and its variants) is built with respect to $F(\tilde{x})-F\left(x^{\star}\right)$. If $h \equiv 0$ in Problem 11, $F(x)-F\left(x^{\star}\right)$ and $\left\|x-x^{\star}\right\|^{2}$ only have a constant difference. However, when $h \not \equiv 0$, we only have $(\mu / 2)\left\|x-x^{\star}\right\|^{2} \leq F(x)-F\left(x^{\star}\right)$. For SAGA (and SSNM), this subtle difference prevents us from using techniques that involve restart (e.g., AdaptSmooth, APPA, Catalyst). In the case where $h \equiv 0$, we can use them but an additional $\log (L / \mu)$ factor will appear in the rate. This difference somehow explains why the SVRG-like variance reduction technique is more favorable in theory than that of SAGA.

D Experimental setup in Section 6

All the algorithms were implemented in $\mathrm{C}++$ and executed through a MATLAB interface for fair comparison. We ran experiments on an HP Z440 machine with a single Intel Xeon E5-1630v4 with 3.70 GHz cores, 16 GB RAM, Ubuntu 16.04 LTS with GCC 4.9.0, MATLAB R2017b.
We are optimizing the following binary problem with $a_{i} \in \mathbb{R}^{d}, b_{i} \in\{-1,+1\}, i=1 \ldots m$:

$$
\ell_{2} \text {-Logistic Regression: } \frac{1}{n} \sum_{i=1}^{n} \log \left(1+\exp \left(-b_{i} a_{i}^{T} x\right)\right)+\frac{\lambda}{2}\|x\|^{2}
$$

where λ is the regularization parameter and all the datasets used were normalized before the experiments.
The parameter settings used in the experiments:

- SAGA. We set the learning rate as $\frac{1}{2(\mu n+L)}$, which is analyzed theoretically in Defazio et al. 2014.
- SSNM. We used the same settings as suggested in Algorithm 1 , which are $\eta=\sqrt{\frac{1}{3 \mu n L}}$ and $\tau=\frac{n \eta \mu}{1+\eta \mu}$.
- Katyusha. As suggested by the author, we fixed $\tau_{2}=\frac{1}{2}$, set $\eta=\frac{1}{3 \tau_{1} L}$ and chose $\tau_{1}=\sqrt{\frac{m}{3 \kappa}}$ Allen-Zhu, 2017 (In the notations of the original work).
- MiG. We set $\eta=\frac{1}{3 \theta L}$ and chose $\theta=\sqrt{\frac{m}{3 \kappa}}$ as analyzed in Zhou et al. 2018.

E An empirical comparison with Point-SAGA

Here we report an experiment comparing the performance of SAGA, Point-SAGA and SSNM with respect to iteration counter. The detailed experimental setting is given in Section 6 in the main paper. Since Point-SAGA requires the exact proximal operator of each $F_{i}(\cdot)$ in theory, we focus on training ridge regression in this section:

$$
\text { Ridge Regression: } \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2}\left(a_{i}^{T} x+b_{i}\right)^{2}+\frac{\lambda}{2}\|x\|^{2}
$$

Note that the proximal operator of each $F_{i}(\cdot)=\frac{1}{2}\left(a_{i}^{T} x+b_{i}\right)^{2}+\frac{\lambda}{2}\|x\|^{2}$ can be efficiently computed as mentioned in Defazio 2016.
A memory issue of Point-SAGA: In fact, when we involve an $\ell 2$-regularizer in each $F_{i}(\cdot){ }^{11}$, we cannot use the trick of representing a gradient by a scalar since the update equation of the new table entry g_{j}^{k+1} (in original notations) contains a term that correlates to the weight x_{k}, which leads to an $O(n d)$ memory complexity. A possible solution is to separate the proximal computations for the component functions and the regularizer, but it does not fit in the analysis of Point-SAGA.

[^0]We used the same parameter settings for SAGA and SSNM as in Section 6 in the main paper. For Point-SAGA, we chose the learning rate γ suggested by the original work Defazio, 2016,

$$
\gamma=\frac{\sqrt{(n-1)^{2}+4 n \frac{L}{\mu}}}{2 L n}-\frac{1-\frac{1}{n}}{2 L}
$$

The result is shown in Figure 3. As we can see, the convergence rates of Point-SAGA and SSNM are quite similar and consistently faster than SAGA. Although Point-SAGA is shown to be slightly faster than SSNM in this experiment, considering the general objective assumption and the memory issue of Point-SAGA mentioned above, SSNM is a more favorable accelerated variant of SAGA than Point-SAGA in practice. Interestingly, both accelerated variants are more unstable than SAGA in this experiment.

Figure 3: Comparison of SAGA, PointSAGA and SSNM for solving ridge regression on covtype with $\lambda=10^{-8}$.

[^0]: ${ }^{11} \mathrm{An} \ell 2$-regularizer is always the source of strong convexity for real world problems.

